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Incorporating information on predicted solvent
accessibility to the co-evolution-based study of protein
interactions†
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A widespread family of methods for studying and predicting protein interactions using sequence

information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the

co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-

protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the

surface of the proteins or the internal layers close to it. In this work we study the effect of

incorporating information on predicted solvent accessibility to three methods for predicting protein

interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods

in predicting different types of protein associations when trees based on positions with different

characteristics of predicted accessibility are used as input. We found that predicted accessibility

improves the results of two recent versions of the mirrortree methodology in predicting direct binary

physical interactions, while it neither improves these methods, nor the original mirrortree method, in

predicting other types of interactions. That improvement comes at no cost in terms of applicability since

accessibility can be predicted for any sequence. We also found that predictions of protein–protein

interactions are improved when multiple sequence alignments with a richer representation of

sequences (including paralogs) are incorporated in the accessibility prediction.

Introduction

Computational methods for predicting protein interactions and
functional relationships complement experimental techniques in
deciphering the networks of protein interactions underlying cel-
lular processes. These techniques are not only faster and cheaper
but, in certain situations and for certain types of interactions, their
levels of accuracy/coverage are comparable to their experimental
counterparts.1 The tendency now is to combine both approaches
in order to obtain reliable interactomes.2,3

These computational techniques are based on genomic and
sequence features intuitively related to interaction (see ref. 4–7

for recent reviews). A widely used computational approach
for detecting interacting proteins is based on similarity of
phylogenetic trees (co-evolution). It was repeatedly observed
that the phylogenetic trees of interacting proteins are more
similar than those of non-interacting ones (see ref. 8, 9 and
references therein).

This relationship between protein co-evolution (measured as
similarity of trees) and interactions is being exploited in many
different ways, ranging from the detailed study of particular
interacting families which now can be performed with on-line
interactive tools,10 to the prediction of interactomes in a high-
throughput way (e.g. ref. 11 and 12), to the prediction of the
associations between the members of two protein families
known to be related (e.g. a family of ligands and the corres-
ponding receptors13,14).

The underlying cause for this observed relationship between
protein co-evolution and interactions is still a matter of certain
debate. The possible explanations range from specific co-adaptation
between the interacting partners to general global similarities
between their evolutionary rates.8,15,16 The co-adaptative hypothesis
proposes that a long process of specific co-adaptation at the residue
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level (in which interaction de-stabilizing changes in one protein
are compensated by changes of similar magnitude in the
other) would be the responsible for the observed similarity of
evolutionary histories. In the other extreme, it is proposed that
this observed similarity could be simply due to the similarity
between the evolutionary rates of interacting and functionally
related proteins. These two possible explanations for the
observed relationship between co-evolution and interactions
had been already proposed in the first works dealing with this
subject.17 While these two factors could be jointly contributing
to the observed co-evolution, it is possibly the similarity of
evolutionary rates that having a major effect, since compensatory
changes would need to occur in large numbers in order to really
affect the phylogenetic trees.8

A number of works have tried, more or less directly, to get
some insight into the contribution of co-adaptation to the
observed co-evolution.15,18 The simplest way to approach this
problem is to evaluate co-evolution using only the regions of the
proteins amenable to co-adaptation (compensatory changes),
that is, interaction surfaces (interfaces) or the whole surface,
depending on the available information. If co-evolution is
(mainly) due to the similarity in evolutionary rates, it would be
‘‘spread’’ through the whole sequence of the proteins, while if it
were mainly due to compensatory changes it would be more
evident in the surface/interface residues. However, not only
surface residues can suffer inter-protein compensatory changes,
but also those partially buried or even internal ones via indirect
and allosteric effects. Moreover, the ‘‘intersection’’ between data
on protein three-dimensional (3D) structures and interactions is
not high, leading to small or eventually biased datasets to
perform these studies. The scarcity in 3D data has another effect:
if a methodology is eventually developed which combines
co-evolution with structural information (solvent accessibility)
for improving the accuracy in predicting interactions, its range
of applicability would drop drastically compared to its counter-
parts which require only sequence information. Based on the
above, it would be desirable to study the effect of incorporating
predicted solvent accessibility information on co-evolution
methods, instead of the ‘‘real’’ solvent accessibility extracted from
experimental 3D structures. Predicted solvent accessibility can be
obtained for any sequence, and with good levels of accuracy: above
75% for two-state predictions (‘‘buried/exposed’’).19,20

In this work we assess for the first time the effect of
including predicted solvent accessibility information on the
results and range of applicability of three co-evolution based
methods for predicting protein interactions. We used a number
of datasets representing different types of interactions (physical,
functional, . . .) as gold standards in order to interpret the results
in terms of the type of interaction of interest.

Methods

We aim to evaluate the effect of the incorporation of informa-
tion on predicted solvent accessibility in the performance of
three mirrortree-related methods in predicting interactions of
different nature. This has been done by generating, for all

proteins in the model organism E. coli, different sets of
phylogenetic trees constructed using (i) the whole protein and
(ii) only the protein residues above certain thresholds of
predicted accessibility, and evaluating the performance of the
methods based on these different trees. In order to evaluate the
performance we used different datasets of protein interactions
representing interactions of different nature (e.g. physical and
functional). The process is illustrated in Fig. 1, and details are
given below.

Solvent accessibility prediction

First, for each E. coli protein, a list of candidate homolog
protein sequences was retrieved searching with BLAST21 in
the non-redundant Uniprot database.22 Sequences with an
E-value greater than 1 � 10�4 or an identity (based on the
BLAST alignment) less than 20% were excluded. Alignment
coverages lower than 60% (either respect to the hit or the query
protein) were also excluded.

Fig. 1 Scheme of the methodology. In order to evaluate the co-evolution
between proteins R and S based on their residues fulfilling a given predicted
accessibility criterion, the first step is to look for their orthologs in a set of 116
fully sequenced genomes. For each protein, a multiple sequence alignment is
generated with these orthologs, which will serve as a basis for the generation of
the trees. In parallel, another multiple alignment is generated for the same
protein based on the homologs found in the whole Uniprot database (hence
including orthologs and paralogs). This second alignment will be used for the
prediction of solvent accessibility. A tree is generated based on the first alignment
but using only the positions with a given predicted accessibility criterion. The
trees generated in this way are the input for the three methods for evaluating co-
evolution.
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A multiple sequence alignment (MSA) for the remaining
sequences was generated using MUSCLE.23 The identity of each
aligned sequence with the E. coli reference sequence was then
calculated using only positions with less than 90% gaps. If this
identity was less than 20%, the sequence was discarded.
Additionally, sequence redundancy was removed at 95% to
avoid the overrepresentation of some sequences, which could
influence the accessibility predictions.

Finally, this multiple sequence alignment was used as input
for the PROF program for predicting solvent accessibility,24,25

and the predictions for the columns of the MSA were mapped
to the positions of the original E. coli protein. For comparative
purposes equivalent accessibility predictions were also generated
based on the MSAs of orthologs used for constructing the
phylogenetic trees (described in the next section).

Generation of phylogenetic trees

We used a set of 116 fully sequenced organisms previously used
in other works11,26 to look for orthologs of E. coli proteins
and construct the trees based on them. This set does not
contain very similar organisms, thus avoiding phylogenetic
redundancy.

We used the ‘‘BLAST best bi-directional hit’’ criterion for
detecting the ortholog of a given E. coli protein in each genome,
with an E-value cut-off of 1 � 10�5, and requiring an alignment
coverage of 70%. All orthologs found for this E. coli protein
were aligned with MUSCLE23 using the default parameters
of this program. Then, a phylogenetic tree was generated
from this alignment using the neighbor-joining algorithm
implemented in ClustalW,27 excluding the gaps for the distance
calculation.

Equivalent trees were generated but using only the positions
of the alignment fulfilling the following criteria of predicted
accessibility:
� eRIA0: positions predicted as accessible by PROF with any

value of ‘‘reliability’’.
� eRIA3: positions predicted as accessible with reliability

Z 3 (PROF reliability values range from 0 to 9).
� pACC2, pACC12 and pACC50: positions with a predicted

solvent accessible surface Z 2, 12 and 50 Å2, respectively.
Finally, distance matrices containing the pair-wise distances

between all orthologs were generated for the original tree
(based on the whole length of the protein) as well as for these
trees based on (predicted) accessible positions. These distances
are calculated by summing the lengths of the branches separating
the corresponding leaves. These distance matrices are the input
for the mirrortree-based methods described in the next point.

Prediction of protein interactions based on phylogenetic trees

The original mirrortree (MT) approach17 evaluates the co-evolution
between two protein families by calculating the linear correlation
coefficient between the values of their corresponding distance
matrices. A minimum of 15 species in common is required in
order to evaluate a given pair of proteins. Moreover, only correla-
tion values supported by a tabulated P-value of 1 � 10�5 or better
are used.

The profile-correlation (PC) method11 takes as input the
mirrortree raw scores for all pairs of proteins in a given organism.
Hence, in this case the input is a squared matrix the size of the
E. coli proteome with the correlation values for all pairs of
proteins (actually, those with 15 or more organisms in common
and supported by a P-value r 1 � 10�5). A row in this matrix,
known as ‘‘co-evolutionary profile’’, represents the co-evolution-
ary behaviour of a protein respect to the rest of the proteome.
Within the context of the PC method, the co-evolution between
two proteins is re-evaluated as the correlation between
their corresponding co-evolutionary profiles, with the same
significance thresholds used for the original mirrortree. The idea
is that two proteins whose trees are similar and, additionally,
that tend to be similar to the same set of proteins (and dissimilar
to the complementary set) are more likely to represent a case of
true co-evolution.

The context-mirror (CM) method11 takes into account the
influence of ‘‘third proteins’’ in a given co-evolutionary signal
observed for a given pair of proteins using a partial correlation
criterion. In this way it is possible to separate specific
co-evolution (particular to a given pair of proteins) from general
co-evolutionary trends involving many proteins. For a given pair
of proteins, this method produces results at different ‘‘levels’’
of specificity, being ‘‘level 1’’ the one representing the most
specific co-evolution.

Datasets of protein interaction and functional relationship

The performance of the three methods when fed with phylogenetic
trees generated with residues of different predicted accessibility
was evaluated using three datasets representing protein inter-
actions of different nature in E. coli as gold standard.
� Binary physical direct interactions obtained from MPIDB.28

This database contains binary interactions manually curated
from the literature or imported from other databases. We
retrieved the 2103 binary interactions between 1538 different
E. coli proteins stored on it.
� Physical (sometimes indirect) interactions inferred as

co-presence in experimentally determined macromolecular
complexes obtained from EcoCyc.29 This dataset contains
1354 experimentally determined interactions between 591 proteins.
� Functional interactions inferred as membership in the

same metabolic pathways, also taken from the EcoCyc. This
dataset contains 4419 relations between 719 proteins.

In the three cases, the sets of negatives (pairs of proteins
regarded as non-interacting) were constructed by generating all
possible pairs between the proteins in the corresponding
positive (interacting) sets, excluding those pairs already annotated
as interacting.

Performance evaluation

For each combination of a method, an input set of trees
(generated from residues of different predicted accessibility)
and an interaction dataset we obtain a list of protein pairs,
sorted by the score of the corresponding method. Each pair can be
labelled as positive or negative depending on whether it is a
reported interaction in that particular dataset or not. A combination
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method-set of trees will be better for predicting interactions (for
that particular set of interaction evidences) as the positives tend
to cluster at the top of these sorted lists (associated to high
scores) and the other way around for the negatives.

The Area Under the ROC Curve (AUC) was calculated for
these lists, as a global estimator of the accuracy and coverage of
the corresponding predictions. The ROC (‘‘receiver operating
characteristic’’) analysis30 generates a plot of ‘‘true positives
rate’’ (TPR) against ‘‘false positives rate’’ (FPR) when varying
the classification threshold (score of the method). Curves above
the diagonal in this plot represent methods with some discri-
minative power, being this discriminative capacity better as the
curve gets closer to the top-left corner of the plot. Consequently,
areas under these curves range from 0.5 (random classifier,
diagonal in the plot, positives and negatives uniformly distributed
through the list) to 1.0 (perfect classifier, all positives at the top of

the list). ROC analysis was performed with the ROCR library of
the R statistical package (http://www.r-project.org).

Results and discussion

Fig. 2 and Fig. S1 (ESI†) show the performance (AUC value) of
the three mirrortree-based methods, when using the phylogenetic
trees constructed from residues of different predicted accessibility,
and evaluated based on the three different datasets of protein
interactions.

As previously seen,11,26 mirrotree-based methods predict
better physical interactions (binary and complexes) than functional
associations (e.g. pathways). Within physical interactions, those
representing co-membership to macromolecular complexes are
better detected than those representing binary (eventually transient)
interactions. About the methods, the PC and CM methods work

Fig. 2 Performances for different combinations of: phylogenetic tree comparative methods, interaction evidence and predicted accessibility filter. Performance is
evaluated as the ‘‘Area Under the [ROC] Curve’’ (AUC). The same figure with different scales for each plot is available as Fig. S1 (ESI†). Equivalent figures with the results
obtained using predicted accessibility derived from MSAs of orthologs are available as Fig. S2 and S3 (ESI†).
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better than the original MT approach, which presents ‘‘usable’’
levels of performance only for detecting interactions of macro-
molecular complexes.

Predicted accessibility only helps the PC and CM methods in
detecting binary physical interactions

For most cases, the use of predicted solvent accessibility within
mirrortree-based methodologies worsens the results (Fig. 2 and
Fig. S1, ESI†). The AUC values for these methods working
with trees derived from different sets of (predicted) accessible
residues are worse than those based on full sequences.

Interestingly, for the case of binary physical interactions, the
results of the PC and CM methods are improved when using
predicted solvent accessibility. The best results are obtained
when using all residues with a minimum of solvent accessible
area (‘‘pACC2’’, area Z 2 Å2). Restricting to residues predicted
to be highly accessible (Z 12 and Z 50 Å2), or those predicted
as ‘‘accessible’’ by PROF’s two-state predictor (eRIA0 and eRIA9)
works worse than with Z 2 Å2.

For most cases, there is a correlation between the perfor-
mances obtained with the trees based on different predicted
accessibilities and the average lengths of the virtual alignments
used for deriving them (number of positions fulfilling that
particular accessibility cut-off) (Fig. 3 and Fig. S4, ESI†). This
trend is broken for the results of the PC and CM methods
predicting direct physical interactions: in these two cases
pACC2 renders the better results in spite of not having the
largest virtual alignments (Fig. 3). This general decrease in
performance when incorporating predicted accessibility could
be partly due to the intrinsic errors associated with the prediction.
Nevertheless, it is probably more related to the largest contribution
of the similarity of evolutionary rates to the observed co-evolution
(see above): the co-evolutionary signal would be spread through
the whole sequence and not restricted to certain parts (surfaces,
etc.) This is reinforced by the observation that, in general,
performances correlate positively with the number of positions
used for building the trees.

Our interpretation for the fact that accessibility predictions
do not help the original MT (but the other way around) is that

this methodology is mainly detecting non-specific co-evolution
associated with global similarities in evolutionary rates
(reflected in the whole sequence, as commented above). The
more recent PC and CM methods benefit by the use of
predicted accessibility when applied for the prediction of
binary direct physical interactions. These two methods have
been previously associated with the detection of more specific
co-evolution,11 cases where the co-adaptive part of the
co-evolutionary signal is probably higher. In the same line,
these specific co-evolutions (with larger proportions of
co-adaptations) are intuitively more related to direct physical
interactions than, for example, to those relating the members
of macromolecular complexes.

It is also interesting that the set of predicted accessible
residues which renders the best results include residues with a
minimal predicted solvent accessible area (> = 2 Å2), which are
better than those with higher levels of predicted accessibility
(> = 12 Å2, > = 50 Å2). That could be explained by the fact that
co-adaptation is not necessarily restricted to totally exposed
residues but can also happen between their neighbours or even
buried residues (through allosteric effects).

It is better to use accessibility predicted from MSAs constructed
for this purpose, than that based on MSAs with orthologs only

Fig. S2 and S3 (ESI†) show the same AUC results as Fig. 2 and
Fig. S1 (ESI†) but using accessibility predicted from the same
alignments used for constructing the phylogenetic trees input
of the mirrortree-based methods (composed by orthologs only).
The general drop in performance detected when incorporating
accessibility information can be observed to be sharper here.
Moreover, for those cases in which predicted accessibility
improved the results (PC and CM predicting physical inter-
actions, previous point) the improvement obtained with these
alignments of orthologs is still present but smaller. Therefore,
accessibility predicted from the same alignments used for
constructing the phylogenetic trees renders worse results than
that predicted from MSAs constructed ad hoc for this purpose.

The fact that accessibility predicted from ‘‘richer’’ alignments
(including eukaryotic sequences and eventually paralogs) is

Fig. 3 Relationship between the performances and the lengths of the virtual alignments. The length of the virtual alignment is the number of positions (fulfilling a
given predicted accessibility criteria – colors) used for deriving the trees. The data shown here are for binary physical interactions. The corresponding plots for the other
interaction datasets are available as Fig. S4 (ESI†).
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better in helping these co-evolution based methods than that
based on alignments containing only bacterial orthologs was
expected. It was previously shown that the quality of the MSA is
critical for obtaining good sequence-based predictions of protein
features such as accessibility or secondary structure.19 Never-
theless, we wanted to make a test with MSAs of orthologs due
to a methodological reason: these MSAs have to be generated in
order to apply mirrortree and related methods. Consequently, if
the accessibility predicted from them turned out to perform
similarly to that predicted from richer alignments, it would be
trivial to add this accessibility prediction step to current mirrortree
workflows. Unfortunately, although some improvement is
obtained with that accessibility, the best results are obtained
when using that predicted from richer alignments. Consequently,
in order to obtain these optimal results the workflow has to be
‘‘bifurcated’’, generating one alignment for tree construction and
another one for accessibility prediction, as shown in Fig. 1.

Example

For illustrative purposes only, we include an example of an
interacting pair of proteins for whose co-evolution is more
evident when evaluated using solvent accessible predicted
residues. Fig. 4 shows the results of mirrotree and related
methods evaluating the co-evolution between the a and b
subunits of the E. coli acetyl-CoA carboxylase carboxyl transferase.
It can be seen that the similarity between the evolutionary
histories of these two interacting proteins is more evident when
evaluated from trees constructed using the residues predicted as
accessible, except for the original MT method. For example, the
score of the ContextMirror method increases from 0.60, when it is
based on the trees derived from the whole sequence of these
proteins, to 0.68 (trees based on predicted solvent accessible
residues).

Conclusions

The underlying cause for the observed relationship between protein
co-evolution and interactions is still not totally clear. The possible
explanations range from unspecific co-evolution due to the similarity
of evolutionary rates of interacting proteins, to specific co-adaptation
involving inter-protein compensatory changes.8,16 It is possibly the
first factor the one playing a major role since evolutionary rate and
interactions have been previously related through a number of direct
and indirect paths.15,31 The co-evolution observed in pairs of
functionally related proteins which do not necessarily interact
physically (e.g. ref. 32 and 33) is also easier to understand under
this hypothesis. Nevertheless, compensatory changes have been
repeatedly observed in protein interfaces (e.g. see ref. 8) and are
surely playing a role in the co-evolution of interacting proteins at a
local level. However, it is difficult to conceive these changes as
mostly responsible for the observed tree similarity, since a very large
number of such compensatory changes would be necessary to have
an effect on the shapes of the trees. Previous studies tried to
disentangle these two factors by comparing the co-evolution of
protein regions amenable to compensatory changes (surfaces and
interfaces) to that of the whole protein length.15,18 In this work we
tackle this problem but using predicted solvent accessibility, instead
of real surfaces.

We have demonstrated that using predicted solvent accessibility
helps in the co-evolution based prediction of protein interaction
under some circumstances. Besides the implications of these
results for the debate on the contribution of co-adaptation to the
observed relationship between tree similarity and interactions, this
work has also practical implications for the application of these
methodologies, and these are not only related to the improvement
in the prediction of protein interaction. Since this method goes on
a step further in the detection of the protein regions actually
co-evolving, it opens interesting possibilities for studying how the
residues at the interfaces change and co-adapt during evolution.
This could give some insight into the physico-chemical basis of
protein interactions since the coordinated changes at the interfaces
would provide a picture of possible interactions modes for a
particular protein family. Moreover co-evolution has been proposed
as a mechanism for maintaining interactions between proteins
while allowing them to change at the same time. In many inter-
acting protein families co-evolution is reflected in a set of specific
surface residues which concomitantly change in both interacting
partners. These residues are good candidates for mutagenesis
experiments aimed at switching the interaction specificity of the
proteins and/or adapting them to new interaction partners.

It is also important to highlight that the improvement
obtained when incorporating predicted solvent accessibility does
not have any associated cost in terms of coverage/applicability,
since accessibility predictions can be generated for any sequence.
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