Pok Man Leung

Pok Man Leung
Monash University (Australia) · Department of Microbiology, Biomedicine Discovery Institute

Bachelor of Science

About

49
Publications
5,754
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
398
Citations
Additional affiliations
February 2018 - May 2018
University of California, San Diego
Position
  • Student
Description
  • Cultivation and Isolation of Microorganisms from Mariana Forearc Serpentinite Mud Volcano Subseafloor Sediment
Education
January 2017 - May 2017
Cornell University
Field of study
  • Agriculture and Life Sciences
September 2014 - August 2018
The Hong Kong University of Science and Technology
Field of study
  • Environmental Science - International Research Enrichment Track

Publications

Publications (49)
Article
Full-text available
Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic...
Article
Full-text available
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how so...
Article
Full-text available
Ecological theory suggests that habitat disturbance differentially influences distributions of habitat generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in...
Article
Full-text available
Significance Diverse microbial life has been detected in the cold desert soils of Antarctica once thought to be barren. Here, we provide metagenomic, biogeochemical, and culture-based evidence that Antarctic soil microorganisms are phylogenetically and functionally distinct from those in other soils and adopt various metabolic and ecological strate...
Article
Full-text available
Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the ca...
Article
Full-text available
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to i...
Preprint
Full-text available
Molecular hydrogen (H2) and carbon monoxide (CO) are supersaturated in seawater relative to the atmosphere and hence are readily accessible energy sources for marine microbial communities. Yet while marine CO oxidation is well-described, it is unknown whether seawater communities consume H2. Here we integrated genome-resolved metagenomics, biogeoch...
Preprint
Full-text available
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, hydrogen oxidising bacteria support primary production through a novel carbon fixation process reliant on the chemoautotrophy-associated RuBisCO form IE. Here, biochemical assays show that atmospheric chemosynthesis occurs globally for...
Article
Full-text available
The microbial community composition and biogeochemical dynamics of coastal permeable (sand) sediments differs from cohesive (mud) sediments. Tide-and wave-driven hydrodynamic disturbance causes spatiotemporal variations in oxygen levels, which select for microbial generalists and disrupt redox cascades. In this work, we profiled microbial communiti...
Preprint
Full-text available
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the ca...
Article
Full-text available
Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multidrug-resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates produc...
Article
The permeable (sandy) sediments that dominate the world’s coastlines and continental shelves are highly exposed to nitrogen pollution, predominantly due to increased urbanisation and inefficient agricultural practices. This leads to eutrophication, accumulation of drift algae and changes in the reactions of nitrogen, including the potential to prod...
Article
Full-text available
Tree stems are an important and unconstrained source of methane, yet it is uncertain whether internal microbial controls (i.e. methanotrophy) within tree bark may reduce methane emissions. Here we demonstrate that unique microbial communities dominated by methane-oxidising bacteria (MOB) dwell within bark of Melaleuca quinquenervia, a common, invas...
Preprint
Full-text available
Tree stems are an important and unconstrained source of methane, yet it is uncertain if there are internal microbial controls (i.e. methanotrophy) within tree bark, that may reduce methane emissions. Using multiple lines of evidence, we demonstrate here that unique microbial communities dominated by methane oxidising bacteria (MOB) dwell within bar...
Preprint
Full-text available
Acinetobacter baumannii is a high-risk pathogen due to the rapid global spread of multi-drug resistant lineages. Its phylogenetic divergence from other ESKAPE pathogens means that determinants of its antimicrobial resistance can be difficult to extrapolate from other widely studied bacteria. A recent study showed that A. baumannii upregulates produ...
Preprint
Full-text available
1 A surprising diversity and abundance of microorganisms resides in the cold desert 2 soils of Antarctica. The metabolic processes that sustain them, however, are poorly 3 understood. In this study, we used metagenomic and biogeochemical approaches to 4 study the microbial communities in 16 physicochemically diverse mountainous and 5 glacial soils...
Preprint
Full-text available
Ecological theory suggests that habitat disturbance differentially influences distributions of generalist and specialist species. While well-established for macroorganisms, this theory has rarely been explored for microorganisms. Here we tested these principles in permeable (sandy) sediments, ecosystems with much spatiotemporal variation in resourc...
Article
Full-text available
Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins t...
Article
Full-text available
Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process...
Preprint
Full-text available
Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process...
Article
Full-text available
Recent big data analyses have illuminated marine microbial diversity from a global perspective, focusing on planktonic microorganisms. Here, we analyze 2.5 terabases of newly sequenced datasets and the Tara Oceans metagenomes to study the diversity of biofilm-forming marine microorganisms. We identify more than 7,300 biofilm-forming ‘species’ that...
Article
Full-text available
Settlement-inducing protein complex (SIPC) is a pheromone that triggers conspecific larval settlement in the barnacle Amphibalanus amphitrite. In the present study, immunostaining and scanning electron microscopy of SIPC revealed signals in the frontal horn pores and the secretions from carapace pores, suggesting that SIPC might be directly secrete...

Network

Cited By

Projects

Project (1)
Project
Wetlands and forests are among earth’s most efficient ecosystems for carbon sequestration, yet this capacity can be offset by the emission of methane (CH4). Recent research indicates that trees can be an important pathway for methane emissions in some systems. Various aspects of this pathway are largely unquantified and there are many dimensions that remain relatively unknown. Hence, this emerging topic has considerable scope for significant new discoveries. This project involves determining methane emissions from trees within a range of ecosystems and will employ cutting-edge techniques, new sampling approaches, including portable greenhouse gas analysers and use of isotopic signatures. Investigations will include exploring the spatial, temporal and seasonal CH4 dynamics of tree-stem emissions with a view to furthering our understanding of key processes, drivers and their overall significance in methane budgets.