Piotr Wasąg

Piotr Wasąg
Kazimierz Wielki University in Bydgoszcz · Department of Biochemistry and Cell Biology

PhD

About

9
Publications
1,211
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
43
Citations
Citations since 2017
6 Research Items
43 Citations
201720182019202020212022202302468101214
201720182019202020212022202302468101214
201720182019202020212022202302468101214
201720182019202020212022202302468101214

Publications

Publications (9)
Article
Full-text available
Pollen tube growth depends on several complex processes, including exo/endocytosis, cell wall biogenesis, intracellular transport, and cell signaling. Our previous results provided evidence that calreticulin (CRT)—a prominent calcium (Ca2+)-buffering molecular chaperone in the endoplasmic reticulum (ER) lumen—is involved in pollen tube formation an...
Article
Full-text available
Background Pollen development in the anther in angiosperms depends on complicated cellular interactions associated with the expression of gametophytic and sporophytic genes which control fundamental processes during microsporo/gametogenesis, such as exo/endocytosis, intracellular transport, cell signaling, chromatin remodeling, and cell division. M...
Article
Full-text available
Tropomyosin is a two-chain coiled coil protein, which together with the troponin complex controls interactions of actin with myosin in a Ca2+-dependent manner. In fast skeletal muscle, the contractile actin filaments are regulated by tropomyosin isoforms Tpm1.1 and Tpm2.2, which form homo- and heterodimers. Mutations in the TPM2 gene encoding isofo...
Article
Calreticulin (CRT) is a multifunctional resident endoplasmic reticulum (ER) luminal protein implicated in regulating a variety of cellular processes, including Ca⁠2+ storage/mobilization and protein folding. These multiple functions may be carried out by different CRT genes and protein isoforms. The plant CRT family consist of three genes: CRT1 and...
Article
Full-text available
Calcium (Ca(2+)) plays essential roles in generative reproduction of angiosperms, but the sites and mechanisms of Ca(2+) storage and mobilization during pollen-pistil interactions have not been fully defined. Both external and internal Ca(2+) stores are likely important during male gametophyte communication with the sporophytic and gametophytic cel...
Article
Full-text available
Main conclusion: Calreticulin is involved in stabilization of the tip-focused Ca (2+) gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca(2+)) gradient seems to be critica...
Article
Full-text available
The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chroma...
Article
Full-text available
The phytohormone abscisic acid (ABA) coordinates plant responses to stressors such as drought, extreme temperature and high salinity, as well regulates non-stress responses including seed formation and maturation, seed and bud dormancy, root growth, leaf senescence, and transition between vegetative and reproductive growth. ABA, similarly like the...
Article
Full-text available
Abscisic acid (ABA) regulates a diverse array of processes including seed maturation and dormancy, root growth, leaf senescence, and the transition between vegetative and reproductive growth. ABA is also a major stress hormone that regulates the adaptation of plants to environmental stresses including drought, cold and salt. It controls the stomata...

Network

Cited By