Pingkun Yan

Pingkun Yan
Rensselaer Polytechnic Institute | RPI · Department of Biomedical Engineering

Doctor of Philosophy

About

258
Publications
37,690
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,119
Citations
Citations since 2017
144 Research Items
5919 Citations
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
Introduction
Dr. Pingkun Yan currently works at the Department of Biomedical Engineering, Rensselaer Polytechnic Institute. His research goals are to quantify, augment and visualize the information residing in large-scale multi-modality medical imaging data using artificial intelligence and computer vision technologies. His research has been enabling new diagnosis and treatment approaches with higher accuracy and better efficiency. He has published over 80 peer reviewed articles in well recognized international journals and conferences with over 3000 citations.
Skills and Expertise

Publications

Publications (258)
Preprint
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions. Unsupervised Domain Adaptation (UDA) techniques have been proposed to adapt models trained in the source domain to the target domain. However, those methods require a large numbe...
Preprint
In CMF surgery, the planning of bony movement to achieve a desired facial outcome is a challenging task. Current bone driven approaches focus on normalizing the bone with the expectation that the facial appearance will be corrected accordingly. However, due to the complex non-linear relationship between bony structure and facial soft-tissue, such b...
Article
Full-text available
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario, namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when...
Article
Full-text available
Despite the success of deep learning in medical image segmentation, most deep learning-based segmentation methods utilize pixel-wise losses as their training objectives, which focus on the local information around each pixel but lack global context. In this paper, we propose a set of shape description losses to supervise the training of the segment...
Article
Federated learning is an emerging paradigm allowing large-scale decentralized learning without sharing data across different data owners, which helps address the concern of data privacy in medical image analysis. However, the requirement for label consistency across clients by the existing methods largely narrows its application scope. In practice,...
Article
In the past several years, various adversarial training (AT) approaches have been invented to robustify deep learning model against adversarial attacks. However, mainstream AT methods assume the training and testing data are drawn from the same distribution and the training data are annotated. When the two assumptions are violated, existing AT meth...
Article
Fusing intra-operative 2D ultrasound (US) frames with preoperative 3D magnetic resonance (MR) images for guiding interventions has become the clinical gold standard in image-guided prostate cancer biopsy. However, developing an automatic image registration system for this application is challenging because of the modality gap between US/MR and the...
Preprint
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when...
Article
The metaverse integrates physical and virtual realities, enabling humans and their avatars to interact in an environment supported by technologies such as high-speed internet, virtual reality, augmented reality, mixed and extended reality, blockchain, digital twins and artificial intelligence (AI), all enriched by effectively unlimited data. The me...
Preprint
In this work, we propose to explicitly use the landmarks of prostate to guide the MR-TRUS image registration. We first train a deep neural network to automatically localize a set of meaningful landmarks, and then directly generate the affine registration matrix from the location of these landmarks. For landmark localization, instead of directly tra...
Preprint
Simulating facial appearance change following bony movement is a critical step in orthognathic surgical planning for patients with jaw deformities. Conventional biomechanics-based methods such as the finite-element method (FEM) are labor intensive and computationally inefficient. Deep learning-based approaches can be promising alternatives due to t...
Article
Transrectal ultrasound is commonly used for guiding prostate cancer biopsy, where 3D ultrasound volume reconstruction is often desired. Current methods for 3D reconstruction from freehand ultrasound scans require external tracking devices to provide spatial information of an ultrasound transducer. This paper presents a novel deep learning approach...
Article
In the past few years, convolutional neural networks (CNNs) have been proven powerful in extracting image features crucial for medical image registration. However, challenging applications and recent advances in computer vision suggest that CNNs are limited in their ability to understand the spatial correspondence between features, which is at the...
Chapter
Simulating facial appearance change following bony movement is a critical step in orthognathic surgical planning for patients with jaw deformities. Conventional biomechanics-based methods such as the finite-element method (FEM) are labor intensive and computationally inefficient. Deep learning-based approaches can be promising alternatives due to t...
Preprint
Full-text available
Saliency visualization methods help explain artificial intelligence (AI) models and build the trust of AI-driven medical image analysis applications. However, the trustworthiness of the generated explanations is often overlooked. Our article demonstrates that the vulnerabilities of such explanations to subtle perturbations of the input can lead to...
Preprint
Regression plays an essential role in many medical imaging applications for estimating various clinical risk or measurement scores. While training strategies and loss functions have been studied for the deep neural networks in medical image classification tasks, options for regression tasks are very limited. One of the key challenges is that the hi...
Chapter
Many deep learning image registration tasks, such as volume-to-volume registration, frame-to-volume registration, and frame-to-volume reconstruction, rely on six transformation parameters or quaternions to supervise the learning-based methods. However, these parameters can be very abstract for neural networks to comprehend. During the optimization...
Preprint
Full-text available
Federated learning is an emerging paradigm allowing large-scale decentralized learning without sharing data across different data owners, which helps address the concern of data privacy in medical image analysis. However, the requirement for label consistency across clients by the existing methods largely narrows its application scope. In practice,...
Article
Full-text available
Significance: Functional near-infrared spectroscopy (fNIRS), a well-established neuroimaging technique, enables monitoring cortical activation while subjects are unconstrained. However, motion artifact is a common type of noise that can hamper the interpretation of fNIRS data. Current methods that have been proposed to mitigate motion artifacts in...
Article
Full-text available
Significance Functional near-infrared spectroscopy (fNIRS), a well-established neuroimaging technique, enables monitoring cortical activation while subjects are unconstrained. However, motion artifact is a common type of noise that can hamper the interpretation of fNIRS data. Current methods that have been proposed to mitigate motion artifacts in f...
Preprint
Full-text available
Federated learning (FL) can collaboratively train deep learning models using isolated patient data owned by different hospitals for various clinical applications, including medical image segmentation. However, a major problem of FL is its performance degradation when dealing with the data that are not independently and identically distributed (non-...
Article
Purpose: Orthognathic surgery requires an accurate surgical plan of how bony segments are moved and how the face passively responds to the bony movement. Currently, finite element method (FEM) is the standard for predicting facial deformation. Deep learning models have recently been used to approximate FEM because of their faster simulation speed....
Article
Full-text available
Due to lack of the kernel awareness, some popular deep image reconstruction networks are unstable. To address this problem, here we introduce the bounded relative error norm (BREN) property, which is a special case of the Lipschitz continuity. Then, we perform a convergence study consisting of two parts: (1) a heuristic analysis on the convergence...
Article
Full-text available
A recent PNAS paper reveals that several popular deep reconstruction networks are unstable. Specifically, three kinds of instabilities were reported: (1) strong image artefacts from tiny perturbations, (2) small features missed in a deeply reconstructed image, and (3) decreased imaging performance with increased input data. Here, we propose an anal...
Article
Finite element models of the knee can be used to identify regions at risk of mechanical failure in studies of osteoarthritis. Models of the knee often implement joint geometry obtained from magnetic resonance imaging (MRI) or gait kinematics from motion capture to increase model specificity for a given subject. However, differences exist in cartila...
Article
Automatic and accurate prostate ultrasound segmentation is a long-standing and challenging problem due to the severe noise and ambiguous/missing prostate boundaries. In this work, we propose a novel polar transform network (PTN) to handle this problem from a fundamentally new perspective, where the prostate is represented and segmented in the polar...
Article
Prostate segmentation in transrectal ultrasound (TRUS) image is an essential prerequisite for many prostate-related clinical procedures, which, however, is also a long-standing problem due to the challenges caused by the low image quality and shadow artifacts. In this paper, we propose a Shadow-consistent Semi-supervised Learning (SCO-SSL) method w...
Preprint
Full-text available
While various methods have been proposed to explain AI models, the trustworthiness of the generated explanation received little examination. This paper reveals that such explanations could be vulnerable to subtle perturbations on the input and generate misleading results. On the public CheXpert dataset, we demonstrate that specially designed advers...
Article
In the established network architectures, shortcut connections are often used to take the outputs of earlier layers as additional inputs to later layers. Despite the extraordinary effectiveness of shortcuts, there remain open questions on the mechanism and characteristics. For example, why are shortcuts powerful Why do shortcuts generalize well In...
Article
Medical image segmentation is a fundamental task in medical image analysis. Despite that deep convolutional neural networks have gained stellar performance in this challenging task, they typically rely on large labeled datasets, which have limited their extension to customized applications. By revisiting the superiority of atlas based segmentation...
Conference Paper
This paper presents a novel method for informing cartilage material properties in finite element models from T2 relaxometry. In the developed pipeline, T2 relaxation values are mapped to elements in subject-specific finite element models of the cartilage and menisci. The Young's modulus for each element within the cartilage is directly calculated f...
Chapter
Prostate cancer biopsy benefits from accurate fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images. In the past few years, convolutional neural networks (CNNs) have been proved powerful in extracting image features crucial for image registration. However, challenging applications and recent advances in computer vision suggest...
Chapter
Fusing intra-operative 2D transrectal ultrasound (TRUS) image with pre-operative 3D magnetic resonance (MR) volume to guide prostate biopsy can significantly increase the yield. However, such a multimodal 2D/3D registration problem is very challenging due to several significant obstacles such as dimensional mismatch, large modal appearance differen...
Chapter
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also the performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, es...
Chapter
Radiologists usually observe anatomical regions of chest X-ray images as well as the overall image before making a decision. However, most existing deep learning models only look at the entire X-ray image for classification, failing to utilize important anatomical information. In this paper, we propose a novel multi-label chest X-ray classification...
Chapter
The pandemic of coronavirus disease 2019 (COVID-19) has severely impacted the world. Several studies suggest an increased risk for COVID-19 patients with underlying cardiovascular diseases (CVD). However, it is challenging to quantify such risk factors and integrate them into patient condition evaluation. This paper presents machine learning method...
Article
Surgical training in medical school residency programs has followed the apprenticeship model. The learning and assessment process is inherently subjective and time-consuming. Thus, there is a need for objective methods to assess surgical skills. Here, we use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines...
Preprint
Full-text available
Fusing intra-operative 2D transrectal ultrasound (TRUS) image with pre-operative 3D magnetic resonance (MR) volume to guide prostate biopsy can significantly increase the yield. However, such a multimodal 2D/3D registration problem is a very challenging task. In this paper, we propose an end-to-end frame-to-volume registration network (FVR-Net), wh...
Preprint
Prostate cancer biopsy benefits from accurate fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images. In the past few years, convolutional neural networks (CNNs) have been proved powerful in extracting image features crucial for image registration. However, challenging applications and recent advances in computer vision suggest...
Article
Rationale and objectives: We aimed to assess relationship between single-click, whole heart radiomics from low-dose computed tomography (LDCT) for lung cancer screening with coronary artery calcification and stenosis. Materials and methods: The institutional review board-approved, retrospective study included all 106 patients (68 men, 38 women,...
Article
Full-text available
Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Our deep learning CVD risk prediction model, trained with 30,286 LDCTs from the National Lung Cancer S...
Preprint
Full-text available
Radiologists usually observe anatomical regions of chest X-ray images as well as the overall image before making a decision. However, most existing deep learning models only look at the entire X-ray image for classification, failing to utilize important anatomical information. In this paper, we propose a novel multi-label chest X-ray classification...
Preprint
Full-text available
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also the performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, es...
Preprint
Full-text available
Surgical training in medical school residency programs has followed the apprenticeship model. The learning and assessment process is inherently subjective and time-consuming. Thus, there is a need for objective methods to assess surgical skills. Here, we use the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines...
Article
Full-text available
Acquisition of fine motor skills is a time-consuming process as it is based on learning via frequent repetitions. Transcranial electrical stimulation (tES) is a promising means of enhancing simple motor skill development via neuromodulatory mechanisms. Here, we report that non-invasive neurostimulation facilitates the learning of complex fine biman...
Preprint
Full-text available
We propose a Noise Entangled GAN (NE-GAN) for simulating low-dose computed tomography (CT) images from a higher dose CT image. First, we present two schemes to generate a clean CT image and a noise image from the high-dose CT image. Then, given these generated images, an NE-GAN is proposed to simulate different levels of low-dose CT images, where t...
Article
Full-text available
PurposeSeverity scoring is a key step in managing patients with COVID-19 pneumonia. However, manual quantitative analysis by radiologists is a time-consuming task, while qualitative evaluation may be fast but highly subjective. This study aims to develop artificial intelligence (AI)-based methods to quantify disease severity and predict COVID-19 pa...
Chapter
The material presented here will expand upon the deep learning techniques introduced in the prior chapter to address imaging-related issues. Recently, the use of deep learning has gained tremendous popularity within the realm of medical imaging research and development. This chapter will give a general overview of artificial intelligence applicatio...
Book
This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the...
Preprint
Unsupervised domain adaptation (UDA) is widely used to transfer a model trained in a labeled source domain to an unlabeled target domain. However, with extensive studies showing deep learning models being vulnerable under adversarial attacks, the adversarial robustness of models in domain adaptation application has largely been overlooked. In this...
Preprint
Full-text available
Reconstructed 3D ultrasound volume provides more context information compared to a sequence of 2D scanning frames, which is desirable for various clinical applications such as ultrasound-guided prostate biopsy. Nevertheless, 3D volume reconstruction from freehand 2D scans is a very challenging problem, especially without the use of external trackin...
Preprint
Full-text available
Acquisition of fine motor skills is a time-consuming process as it requires frequent repetitions. Transcranial electrical stimulation is a promising means of enhancing simple motor skill development via neuromodulatory mechanisms. Here, we report that non-invasive neurostimulation facilitates the learning of complex fine bimanual motor skills assoc...
Chapter
There has been a debate of using 2D and 3D convolution on volumetric medical image segmentation. The problem is that 2D convolution loses 3D spatial relationship of image features, while 3D convolution layers are hard to train from scratch due to the limited size of medical image dataset. Employing more trainable parameters and complicated connecti...
Chapter
Transrectal ultrasound (US) is the most commonly used imaging modality to guide prostate biopsy and its 3D volume provides even richer context information. Current methods for 3D volume reconstruction from freehand US scans require external tracking devices to provide spatial position for every frame. In this paper, we propose a deep contextual lea...
Preprint
The high risk population of cardiovascular disease (CVD) is simultaneously at high risk of lung cancer. Given the dominance of low dose computed tomography (LDCT) for lung cancer screening, the feasibility of extracting information on CVD from the same LDCT scan would add major value to patients at no additional radiation dose. However, with strong...
Article
Accurate registration of prostate magnetic resonance imaging (MRI) images of the same subject acquired at different time points helps diagnose cancer and monitor the tumor progress. However, it is very challenging especially when one image was acquired with the use of endorectal coil (ERC) but the other was not, which causes significant deformation...
Article
Currently, there is a dearth of objective metrics for assessing bi-manual motor skills, which are critical for high-stakes professions such as surgery. Recently, functional near-infrared spectroscopy (fNIRS) has been shown to be effective at classifying motor task types, which can be potentially used for assessing motor performance level. In this w...
Preprint
Full-text available
While image analysis of chest computed tomography (CT) for COVID-19 diagnosis has been intensively studied, little work has been performed for image-based patient outcome prediction. Management of high-risk patients with early intervention is a key to lower the fatality rate of COVID-19 pneumonia, as a majority of patients recover naturally. Theref...
Article
While image analysis of chest computed tomography (CT) for COVID-19 diagnosis has been intensively studied, little work has been performed for image-based patient outcome prediction. Management of high-risk patients with early intervention is a key to lower the fatality rate of COVID-19 pneumonia, as a majority of patients recover naturally. Theref...
Article
Full-text available
Single pixel imaging frameworks facilitate the acquisition of high-dimensional optical data in biological applications with photon starved conditions. However, they are still limited to slow acquisition times and low pixel resolution. Herein, we propose a convolutional neural network for fluorescence lifetime imaging with compressed sensing at high...
Preprint
Full-text available
Functional near-infrared spectroscopy (fNIRS), a well-established neuroimaging technique, enables monitoring cortical activation while subjects are unconstrained. However, motion artifact is a common type of noise that can hamper the interpretation of fNIRS data. Current methods that have been proposed to mitigate motion artifacts in fNIRS data are...
Conference Paper
1. Background Military medical personnel face continual expansion of their responsibilities and required skills. As medical performance requirements grow, training capabilities must evolve to ensure knowledge and skill competency. There is an active demand for methods and technologies that can accelerate the learning curve, enhance cognitive capabi...
Conference Paper
Full-text available
Domain adaptation aims to alleviate the problem of retraining a pre-trained model when applying it to a different domain, which requires large amount of additional training data of the target domain. Such an objective is usually achieved by establishing connections between the source domain labels and target domain data. However, this imbalanced so...
Article
Artificial intelligence, especially the deep learning paradigm, has posed a considerably impact on cancer imaging and interpretation. For instance, fusing transrectal ultrasound (TRUS) and magnetic resonance (MR) images to guide prostate cancer biopsy can significantly improve the diagnosis. However, multi-modal image registration is still challeng...
Preprint
Full-text available
Transrectal ultrasound (US) is the most commonly used imaging modality to guide prostate biopsy and its 3D volume provides even richer context information. Current methods for 3D volume reconstruction from freehand US scans require external tracking devices to provide spatial position for every frame. In this paper, we propose a deep contextual lea...
Article
Full-text available
Shortage of fully annotated datasets has been a limiting factor in developing deep learning based image segmentation algorithms and the problem becomes more pronounced in multi-organ segmentation. In this paper, we propose a unified training strategy that enables a novel multi-scale deep neural network to be trained on multiple partially labeled da...
Preprint
Full-text available
Graph Convolutional Networks (GCNs) have been successfully applied to analyze non-grid data, where the classical convolutional neural networks (CNNs) cannot be directly used. One similarity shared by GCNs and CNNs is the requirement of massive amount of labeled data for network training. In addition, GCNs need the adjacency matrix as input to defin...
Article
Background The Prostate Imaging Reporting and Data System (PI‐RADS) provides guidelines for risk stratification of lesions detected on multiparametric MRI (mpMRI) of the prostate but suffers from high intra/interreader variability. Purpose To develop an artificial intelligence (AI) solution for PI‐RADS classification and compare its performance wi...
Article
PurposeTumors often have different imaging properties, and there is no single imaging modality that can visualize all tumors. In CT-guided needle placement procedures, image fusion (e.g. with MRI, PET, or contrast CT) is often used as image guidance when the tumor is not directly visible in CT. In order to achieve image fusion, interventional CT im...