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Abstract— Due to the popularity of mobile computing and
mobile sensing, users’ traces can now be readily collected to
enhance applications’ performance. However, users’ location
privacy may be disclosed to the untrusted data aggregator
that collects users’ traces. Cloaking users’ traces with synthetic
traces is a prevalent technique to protect location privacy.
But the existing work that synthesizes traces suffers from the
social relationship based de-anonymization attacks. To this end,
we propose W 3-tess that synthesizes privacy-preserving traces
via enhancing the plausibility of synthetic traces with social
networks. The main idea of W 3-tess is to credibly imitate
the temporal, spatial, and social behavior of users’ mobility,
sample the traces that exhibit similar three-dimension mobility
behavior, and synthesize traces using the sampled locations.
By doing so, W 3-tess can provide “differential privacy” on
location privacy preservation. In addition, compared to the
existing work, W 3-tess offers several salient features. First,
both location privacy preservation and data utility guarantees are
theoretically provable. Second, it is applicable to most geo-data
analysis tasks performed by the data aggregator. Experiments
on two real-world datasets, loc-Gwalla and loc-Brightkite, have
demonstrated the effectiveness and efficiency of W 3-tess.

Index Terms— Trace privacy, trace plausibility, cloaking,
differential privacy.

I. INTRODUCTION

CURRENT popularity of mobile computing and mobile
sensing have enabled the capability to collect an increas-

ing number of users’ traces, which is expected to enhance
many new applications, e.g., mobility management, identifying
friends, map inference, etc. [1], [2]. However, users’ location
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privacy can be disclosed to the untrusted data aggregator which
collects users’ traces, thus incurring personal information
disclosure, such as life style, political beliefs, etc. [3], [4].

A prevalent method to protect users’ location privacy is
to cloak real traces with synthetic traces consisting of syn-
thetic locations (see Fig. 1(a)) [5], [6]. Heuristic algorithms
are proposed in [7], [8] that generate synthetic traces using
interpolation, circles, grids, etc. However, the synthetic traces
therein cannot credibly imitate users’ mobility behavior, since
each user has a consistent lifestyle and meaningful mobility.
As a result, these synthetic traces are filtered out by attackers,
resulting in users’ location privacy disclosure. The follow-up
techniques [9]–[11] generate synthetic traces by modeling
users’ mobility behavior, e.g., following consistent movement
pattern, stopping at several locations to visit attractions, etc.
But these techniques only consider the temporal or spatial
behavior of users’ mobility, while ignoring locations’ semantic
features. As such, attackers can distinguish the synthetic traces
from the exact ones, according to the semantic features of
users’ locations, incurring the location privacy disclosure.
Overall, all these work are susceptible to location inference
attacks [12], where attackers identify synthetic traces based
on users’ mobility behavior.

The latest research [5] (dubbed as PULE) synthesizes
plausible traces by considering locations’ semantic features,
which is characterized by users’ temporal and spatial behavior
(i.e., when they move and where they go). However, users’
mobility behavior is also shaped by their social relationships
(i.e., why they move) [13], [14], as the contact graph derived
from users’ traces can be structurally correlated with the social
relationship graph in social networks, and therefore cloaked
users can be identified by these structural correlations. As a
result, PULE would suffer from the social relationship based
de-anonymization attacks [6], [15]. For example, the users
denoted by red nodes in the contact-graph (cf. Fig. 1(b)) are
structurally correlated with users denoted by red nodes in
the social relationship graph (cf. Fig. 1(c)), and thus users
in contact-graph can be identified when attackers incorporate
with the social relationship graph.

To tackle the above issue, in this paper, we propose
W 3-tess, the first work that synthesizes privacy-preserving
traces via enhancing the plausibility of synthetic traces with
social networks. The idea of W 3-tess is simple: we first
characterize the three-dimension (i.e., temporal, spatial, and
social) behavior of each user’s mobility, sample the traces
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Fig. 1. (a) Cloaking a user’s trace with a synthetic trace, where the red symbols refer to the user’s trace, and the blue symbols refer to the synthetic trace.
(b) An example of the contact graph in loc-Gowalla dataset, where nodes refer to users, numbers are users’ IDs, and the edges indicate contacts. (c) An
example of relationship graph in loc-Gowalla dataset, where the edges indicate friendships. The red nodes in (b) are structurally correlated with these red
nodes in (c).

that exhibit similar three-dimension mobility behavior with
the user, and then synthesize traces for fake users1 using
the sampled locations. However, we need to address several
challenges:

(1) It is nontrivial to model users’ social mobility behavior,
since the influence of friends on users’ mobility are dynamic.
Our method is to investigate the temporal-spatial dynamic
of friends’ influence on users’ mobility, based on which a
three-dimension mobility model and a dynamic strategy are
proposed accordingly.

(2) It is not easy to cloak users’ traces for three-dimension
mobility behavior, as synthetic traces in one dimension can
be easily re-identified from another, e.g., traces cloaked in
temporal dimension can be identified in spatial and social
dimensions. Therefore, we propose to partition traces in tem-
poral, spatial, and social dimensions, and synthesize traces
using the traces that exhibit similar three-dimension mobility
behavior.

(3) It is difficult to guarantee trace data utility, since cloak-
ing users’ traces with synthetic traces definitely deteriorates
the data utility of users’ traces. To this end, we propose to
sample the traces that exhibit similar three-dimension behavior
to achieve specially designed differential privacy so that the
statistical feature of users’ traces and synthetic traces is
statistically the same as that of users’ traces.

Compared with the existing work, W 3-tess offers several
salient features. First, both location privacy preservation and
trace data utility guarantee (a.k.a QoS) are theoretically guar-
anteed in W 3-tess (cf. Theorems 3 and 4), while most if
not all of existing work lacks theoretical guarantee for QoS.
Second, W 3-tess is applicable to most geo-data analysis tasks
as long as they are composable (cf. Corollary 5), while existing
work can only preserve several features of traces gathered in
specific geo-data analysis tasks.

The remainder of this paper is organized as follows.
Section II introduces some preliminary knowledge. Section III
describes the design of W 3-tess in detail, followed by some
theoretical discussions in Section IV. Section V evaluates the
performance of W 3-tess, and Section VI reviews the related
studies. Finally, Section VII concludes the paper.

1We define that a specific synthetic trace corresponds to a fake user.

Fig. 2. The scenario considered in W 3-tess.

II. PRELIMINARY

A. Scenario

We consider the scenario shown in Fig. 2. Users who take
part in data aggregation, first send their traces to the trusted
server. Then, the trusted server performs the proposed mecha-
nism, W 3-tess, to generate synthetic traces, and cloaks users’
traces by injecting these synthetic traces into the database of
users’ traces. Thereafter, the trusted server sends the cloaked
traces (including users’ traces and the synthetic ones) to the
data aggregator. Upon receiving these cloaked traces, the data
aggregator executes geo-data analysis tasks, e.g., searching
for top-k frequently visited locations, updating map, etc.,
to support new applications.

Similar to existing work [6], [16]–[18], we consider the data
aggregator is semi-honest. It strictly executes geo-data analysis
tasks, but it may share these traces to, e.g., advertisers, illegal
organizations, etc., for commercial interests. These advertisers,
illegal organizations, etc., may be attackers that attempt to
filter out the synthetic traces through launching, e.g., social
relationship based de-anonymization attacks [6], [15], [19] or
inference attacks [12], [20], to identify users’ traces. If users’
traces are identified by the attackers, it will incur more
personal information disclosure, such as life style, political
beliefs, etc. Therefore, it is desirable to enhance the plausibil-
ity of synthetic traces to avoid the synthetic traces from being
identified by the attackers.

Note that users’ locations are periodically updated in
many APPs, and W 3-tess does not have any constraints on
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users’ traces. Specifically, for example, Didi Taxi records and
updates each user’s location every 2 ∼ 5 minutes. Goole Map,
Gaode Map, Baidu map, etc., also periodically updates users’
locations when users use these applications. The recorded
locations indicate that where the users are at a specific time.
Furthermore, we have to emphasize that this paper focus on
generating synthetic traces, given users’ traces consisting of
locations, and that how to record locations is not the main
contribution of this manuscript. Moreover, no mater what the
traces users take, W 3-tess generates synthetic traces to protect
users’ location privacy, upon receiving users’ traces.

B. Differential Privacy

ε-Differential privacy [21] is a method to prevent informa-
tion disclosure when two input datasets D and D−t differ
only in one tuple t (i.e., neighboring databases). The standard
interpretation of the notion, neighboring databases, is that
any single tuple t is removed from the input D [22], [23].
An alternative is that D and D−t include the same number
of tuples, and all tuples in D and D−t except for one tuple
t are same [24]. We adopt the first kind of interpretation in
our work. (δ, ε)-Differential privacy is a relaxation of the ε-
differential privacy. Its formal definition is:

Definition 1: A randomized algorithm Al satisfies
(ε, δ)-differential privacy if for any dataset D, any tuple t ∈ D,
and any S ∈ Range(Al), the following holds with probability
at least (1 − δ) [25]:

e−ε ≤ Pr[Al(D) = S]
Pr[Al(D−t) = S]

≤ eε, (1)

where Range(Al) is the output range of Al; D−t is the dataset
where a tuple t is removed from D; ε ∈ (0, 1) and δ ∈ (0, 1).

The following composition property of differential privacy
describes the privacy preservation that a sequence of mecha-
nisms Mi provide.

Theorem 1: Assume each of mechanisms Mi, i =
(1, . . . , r), provides εi-differential privacy, and M performs
Mi, i = (1, . . . , r) with independent randomness. Then M
satisfies

�r
i=1 εi-differential privacy [26].

Theorem 1 implies that if W 3-tess meets the (ε, δ)-
differential privacy in each of the three dimensions, i.e., tem-
poral, spatial, and social dimensions, W 3-tess will provide
(ε, δ)-differential privacy on location privacy preservation
(cf. Theorem 3).

In addition, (ε, δ)-differential privacy can guarantee that
the output is statistically the same when any single tuple
in D is removed. However, it cannot be directly applied
to W 3-tess, as we aim to guarantee trace data’s statistical
characteristics when any k (k ≥ 1) tuples are removed. To this
end, we propose the (k, ε, δ)-differential privacy to guarantee
trace data utility as follows.

Definition 2: A randomized algorithm Al meets
(k, ε, δ)-differential privacy if for any dataset D, any
tuple Di ∈ D, and any S ∈ Range(Al)

e−ε ≤ Pr[Al(D) = S]
Pr[Al(D�) = S)]

≤ eε, (2)

where input datasets D = (D1, D2, . . . , Dn)T , D� = (D�
1, D�

2,
. . . , D�

n)T , Di and D�
i are tuples in datasets D� and D; for

each Di, Dj , D�
i, D�

j , i < j, Di �= D�
i, and Dj �= D�

j , it holds
j−i+1 ≤ k; D�

i (resp. D�
j) is obtained by removing or adding

a row in Di (resp. Dj); Al(Di) = S[i] (resp. Al(Dj) = S[j]).
Compared to (ε, δ)-differential privacy, (k, ε, δ)-differential

privacy can guarantee that the output is statistically the same
(i.e., the error is bounded by ε) with the probability (1 − δ)
when k tuples are removed from or added to D.

For example, assume the trace of a specific user u1 is
D1 = {l11, l12, . . . }. Assume the user u1’s trace D1 is
cloaked with another (k − 1) synthetic traces D�

2, D�
3, . . . ,

D�
k, and each D�

i = {l�11, l�12, . . . } (i = (2, 3, . . . , k)).
In such a case, the input dataset D� = (D�

1, D
�
2, . . . , D

�
k)T =

(D1, D
�
2, . . . , D

�
k)T , and D = (D1, D2, . . . , Dk)T =

(D1, Θ, . . . , Θ)T (Θ = {O, O, . . . }, O is an zero vector).
D2, . . . , Dk are obtained by removing the row in D�

2, D�
3,

. . . , D�
k. According to Definition 2, the trace data utility of

the user u1’s trace is guaranteed when it is cloaked with these
synthetic traces.

III. DESIGN OF W 3-tess

The design of W 3-tess follows two steps: modeling mobil-
ity behavior and synthesizing traces, which are introduced in
detail in this section.

A. Modeling Mobility Behavior

Users’ mobility exhibits strong periodicity and seemingly
random jumps, which is motivated by the existing work [13],
[27]–[29]. It is validated in studies [13], [27]–[29] that users
periodically move back and forth among home, workplaces,
and vocation places (hereafter centers), which is mainly con-
strained by the time and space. For example, people alternate
between home and workplaces throughout certain periods
of the day on weekdays. In addition, users also seemingly
randomly travel to meet friends, especially at evening and
weekends, which is mainly constrained by their social relation-
ships (i.e., influential friends). Therefore, we propose to map
users’ traces into three dimensions (i.e., temporal, spatial, and
social dimensions). We refer to the locations in random jumps
as “social locations”, and the locations in periodic movement
as “non-social locations”.

Denote the trace of a specific user ui as Lui = {l1ui
, l2ui

, . . . ,
ljui

, . . . , lnui
} when the user ui posts his location at time tn,

where ljui
= (xj

ui
, yj

ui
) is ui’s location at time tj , xj

ui
and

yj
ui

are latitude and longitude coordinates, and n is the total
number of ui’s locations when he posts his location at tn.
We first define the three-dimension mobility model of ui at
time tn as follows:

Mtn = (Γtn,s, Γtn,sp, Γtn,so), (3)

where Mtn is the three-dimension mobility model, Γtn,s is
the social behavior, Γtn,sp is the spatial behavior, Γtn,so is
the temporal behavior, and Γtns = (Γtn,sp, Γtn,so) is the
non-social behavior.
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1) Modeling Social Behavior: Next, we focus on modeling
social behavior and non-social behavior. We first define J (·) to
distinguish the social locations where users are geographically
in contact with their friends:

J (ljui
) =

nf�
i�=1

ni��
j�=1

Dαd
(ljui

, lj
�

ui� )Tαt(t
j
ui

, tj
�

ui� ), (4)

where Dαd
(·) = 1 when the Euclidean distance � · �≤ αd,

otherwise Dαd
(·) = 0; Tαt (·) = 1 when modulus | · |≤ αt,

otherwise Tαt(·) = 0; αd and αt are the spatial and temporal
distance specified by the trusted server; ui� is one of ui’s
friends; nf is the number of ui’s friends; n� is the total
number of ui�’s locations when ui posts his location at time
tn; lj

�
ui� is the location of ui� at time tj� . When J (ljui

) > 0,
it means ljui

is a social location; Otherwise, it is a non-social
location. This idea is motivated by the existing work [6], [30].
Study [6] introduced the observation that friends are in contact
with each other when they are within certain spatio-temporal
distance. Here, we first formalize this observation (cf. Eq. (4)).
Work [30] inferred friendship according to the number of co-
locations. In contrast, we decide whether friends are visiting
the same place.

However, it is non-trivial to model users’ social behavior
as the influence of friends on users’ social locations varies
with time and space. To address this problem, we propose
a dynamic strategy to update the most influential friends
whenever users post their locations.

Denote C1
ui

, . . . , Cm
ui

, as m centers related to the user ui.
m is the number of centers. Studies [31], [32] introduced
the notion, centers, and intuitively regarded home as users’
mobility center without any theoretical explanation. This
paper formalizes and generalizes the definition of centers
in the following. Denote ui’s social locations by Lui,s =
{l1ui,s, l

2
ui,s, . . . , l

j
ui,s, . . . , l

ns
ui,s}. We first define the following

Ctj
ui

as the movement center of ui at time tj , or,

Ctj = arg min
τ :1≤τ≤m

{� ljui,s, C
τ
ui

�}. (5)

So the movement center of ui at time tns,s is Ctns,s . Denote
ui� ’s influence on ui’s social locations by I(ui, ui�), and
I(ui, ui�) = {It1,s(ui, ui�), It2,s(ui, ui�), . . . , Itns,s(ui, ui�)}.

First, in terms of spatial dynamic, users are more likely
to visit their friends living near their movement center [31],
e.g., home, workplace, or vocation places. For example, on the
basis of real world datasets from Gowalla and Brightkite, [31]
discovered the probability that a user visits his friends within
1km from his home is ten times larger than the probability that
he visits his friends who are 1000km away. In addition, users
are more likely to visit their friends around their locations.
In summary, we formalize the spatial influence SItns,s at time
tns,s which varies with space as follows:

SItns,s(ui, ui�) = π1e
−π2

�l
ns
ui,s,C1

u
i�

�
�C1

u
i�

,Ctns,s �
, (6)

where π1, π2 are parameters, and π2 > 0; π1 > 0 when �
C1

ui� , Ctns,s �≤ αd, otherwise, π1 = 0; Cui� ,1 is the home
of ui� . The spatial influence implies the movement of user ui

is more likely to be affected by his friends living near his

movement center. Moreover, friends around ui’s location lns
ui,s

exhibit stronger influence on ui’s mobility.
Second, friends’ influence varies with time. Specifically,

the friends checking in the same place with ui at the same time
exhibit the strongest influence on ui’s mobility. In addition,
ui tends to visit places his friends have visited within a
αt time interval. Thus, we define the temporal influence
T Itns,s(ui, ui�) at time tns,s to characterize the temporal
dynamics of ui� ’s influence,

T Itns,s(ui, ui�) =
ni��

j�=1

J �(j�, j), (7)

where J �(j�, j) = π3e
−dsαd

(ljui,s,lj
�

u
i�

)tiαt (tj
ui,s,tj�

u
i�

)
, dsαd

(·) =
� · � when � · �≤ αd, otherwise dsαd

(·) = 0; tiαt(·) =
| · | when | · |≤ αt, otherwise tiαt(·) = 0; π3 > 0 when
dsαd

(·)tiαt(·) > 0, otherwise π3 = 0.
Based on the definition of the spatial and temporal influence

of ui� , we define ui� ’s influence at time tns,s as follows:

Itns,s(ui, ui�)=ωsSItns,s(ui, ui�)+ωtT Itns,s(ui, ui�), (8)

where ωs and ωt are parameters that are independent of the
friend ui� and the time tns,s, and specified by the trusted
server.

Therefore, we characterise ui’s social behavior at time tns,s

with the influence of his friends, Γtns,s = {Itns,s(ui, u1),
. . . , Itns,s(ui, unf

)}, where u1, . . . , unf
are ui’s friends.

2) Modeling Non-Social Behavior: We model the
non-social locations based upon the notion that periodic
movement always occurs around some centers, e.g., home,
workplace [13]. For example, users move around their
workplaces during the working hours, and around their homes
in evening.

We first model the temporal behavior as follows. Denote the
user ui’s non-social locations Lui,s = {l1ui,s

, l2ui,s
, . . . , lns

ui,s
}.

When the user ui is moving around a specific center Cj
ui

(computed according to Eq. (5)) at time tns,s, we denote the
state of ui’s movement at this time as S(tns,s) = Cj

ui
. The

corresponding probability which varies with time is

Pr[S(tns ,s) = Cj
ui

]

=
1

1 +
�m

τ=1
τ �=j

γCτ
ui

γCj
ui

e

−( π
12 )2[

(t−λCj
ui

)2

2χ2
Cj

ui

−
(t−λCτ

ui
)2

2χ2
Cτ

ui

]

, (9)

where γCj
ui

and γCτ
ui

are the proportions of non-social loca-

tions centered at Cj
ui

and Cτ
ui

, respectively. δCj
ui

and χCj
ui

are
the average and variance of the visiting time of the non-social
locations which are centered at Cj

ui
. Note that Eq. (9) is a

generalization of the temporal behavior defined in [13].
Motivated by mobility centers introduced in [13], [32],

we model the spatial behavior, i.e., the distribution of
non-social locations that are centered at Cj

ui
using the
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m-dimensional Gaussian distribution. Formally, we have

Pr[lns

ui,s
] =

m�
j=1

Pr[lns

ui,s
|S(tns,s) = Cj

ui
]

×Pr[S(tns,s) = Cj
ui

]

=
m�

j=1

N (UCj
ui

, ΣCj
ui

)Pr[S(tns ,s) = Cj
ui

], (10)

where ΣCj
ui

is the covariance matrix of locations that are

centered at Cj
ui

, and UCj
ui

is the mean of these locations.
Therefore, we get the non-social behavior Γtns,s,s = Pr[lns

ui,s
].

Given the three-dimension mobility model, next we propose
to synthesize traces to protect users’ location privacy and
guarantee trace data utility.

B. Synthesizing Traces

To protect user ui’s location privacy, the synthetic traces
cloaked with users’ trace should exhibit similar social, tempo-
ral, and spatial behavior as ui’s trace. Unfortunately, location
cloaking suffers from the curse of dimensions [16], [33].
That is to say, a specific user’s trace cloaked in social
dimension can be identified when attackers incorporate the
other two attributes in temporal and spatial dimensions. Thus
we propose to partition three-dimension traces. Specifically,
we group users’ mobility behavior into three different dimen-
sions (i.e., temporal, spatial, and social dimensions), and syn-
thesize traces that exhibit similar behavior in each dimension.

Furthermore, to guarantee the trace data utility, synthetic
traces should exhibit similar statistical features as ui’s trace in
a specific geo-data analysis task, e.g., searching for top-kt fre-
quently visited locations, etc. Differential privacy is expected
to solve this problem. But existing work relies on output
perturbation to satisfy differential privacy while the output
of the geo-data analysis task cannot be perturbed by users.
Moreover, different statistical features of traces are collected
in various geo-data analysis tasks. To this end, we propose
(F , k, ρ) sampling (F is a specific geo-data analysis task, k is
ui’s privacy parameter, and 0 < ρ < 1) to provide an alter-
native approach (i.e., input perturbation) to achieve specially
designed differential privacy. As a result, the statistical feature
(analyzed in F ) of ui’s trace cloaked with synthetic traces is
statistically the same as that of the user’s trace (to be proved
in Section IV).

In summary, the main idea of synthesizing traces is to
sample from the so called seed locations in each of the
three dimensions, and synthesize locations using the sampled
locations that exhibit similar statistical feature (analyzed in F )
as ui’s trace.

First, to synthesize plausible social locations, we propose
to use the locations of ui’s influential friends as the social
seed locations, since influential friends exhibit similar social
behavior with ui. We first rank ui’s friends by the influence
Itns

ui,s
(ui, ui�) (cf. Section III-A.1), and select Nf (Nf > k)

most influential friends. The social locations of these most
influential friends are regarded as the social seed locations.

Second, to synthesize plausible non-social locations,
we propose to select the traces of other users who exhibit

similar temporal and spatial behavior as ui. The locations
in Nf most similar traces are treated as the non-social seed
locations. To this end, we use the Kullback-Leibler Diver-
gence (KL) to define the mobility similarity in temporal and
spatial dimensions:

tr(Σ−1

Cj�
u

i�
ΣCj

ui
) + (UCj�

u
i�
− UCj

ui
)T

× Σ−1

Cj�
u

i�
(UCj�

u
i�
− UCj

ui
) − ln(

detΣCj
ui

det ΣCj�
u

i�

). (11)

It quantifies the similarity of user ui and a specific user ui�

in temporal and spatial dimensions, and moreover ui exhibits
more similar mobility features with the user ui� when KL is
small. Finally, these selected users’ locations are regard as the
non-social seed locations.

Denote the synthetic traces at time tn−1
ui

as {L1
tn−1
ui

,L2
tn−1
ui

,

. . . ,Lj

tn−1
ui

, . . . ,Lk
tn−1
ui

, . . . }. And a synthetic trace Lj

tn−1
ui

=

{Lj

tn−1
ui

,s
,Lj

tn−1
ui

,s
}, (j = 1, 2, . . . , k, . . . ), where Lj

tn−1
ui

,s
(resp.

Lj

tn−1
ui

,s
) is the set of social locations (resp. non-social) in

synthetic trace Lj

tn−1
ui

. To guarantee the trace data utility,

the synthetic traces at time tnui
should be statistically similar to

that of users’ traces. Specifically, we first select location lui,s

(resp. lui,s) from the social (resp. non-social) seed locations
that meet the following constraints: there exists at least one
synthetic trace Lj

tn−1
ui

(j = (1, 2, . . . , k, . . . )) so that

F(Lui,s) = F(Lj

tn−1
ui

,s
∪ {lui,s}) ± Δf,

F(Lui,s) = F(Lj

tn−1
ui

,s
∪ {lui,s}) ± Δf, (12)

where Δf is the predefined threshold by the trusted server.
Denote the set of these locations lui,s (resp. lui,s) as L�

ui,s

(resp. L�
ui,p). Thereafter, we sample from L�

ui,s and L�
ui,s

with the probability ρ. The sampled locations that are geo-
graphically consistent are regarded as synthetic locations.
Denote the corresponding synthetic traces at time tnui

as
{L1

tn
ui

,L2
tn
ui

, . . . ,Lj
tn
ui

, . . . , Lk
tn
ui

, . . . }.
Lastly, to protect the location privacy of users whose loca-

tions are selected to synthesize traces (hereafter participating
users), the statistical features of synthesize traces should be
different from these participating users so that attackers cannot
infer these participating users’ locations by observing the
synthesize traces. In particular, we select no less than k
synthetic traces which meet the following constraints as the
final output:

| F(Luτ ) −F(Lj
tn
ui

) |≥ Δf �, (13)

where Luτ is the trace of the user uτ whose location is selected
to generate jth synthetic trace at time tnui

(namely, uτ is a
participating user).

IV. THEORETICAL ANALYSIS

In this part, we theoretically analyze the privacy preserva-
tion and trace data utility guarantee that W 3-tess provides.
To begin with, we introduce an theorem in the existing
work [24], which is shown as follows.

Authorized licensed use limited to: Donghua University. Downloaded on February 21,2020 at 04:27:07 UTC from IEEE Xplore.  Restrictions apply. 



2396 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Fig. 3. Location privacy preservation varies with parameters ε, δ, ρ, and k, where δ and ε mean that the error of three dimension mobility behavior of
synthetic traces and users’ traces is within ε with probability (1 − δ), ρ is the sampling probability, and k is the number of synthetic traces.

Theorem 2: The version of randomized response described
above is (ln 3; 0)-differentially private.

It implies that any a kind of the randomized response meets
differential privacy. Furthermore, it provides an alternative
approach (without injecting noise) to achieve differential pri-
vacy. Motivated by Theorem 2, we try to theoretically prove
that W 3-tess meets differential privacy, as it integrates the
(F , k, ρ) sampling.

In addition, according to Definitions 1 and 2, both
(ε, δ)-differential privacy and (k, ε, δ)-differential privacy can
quantify the privacy preservation and trace data utility guar-
antee. Specifically, a smaller ε indicates the outputs of the
algorithm Al on these two neighboring datasets are more
statistically similar. Moreover, a smaller δ means the outputs
on these two neighboring datasets are statistically similar with
a larger probability. Therefore, on one hand, smaller ε and
δ strengthen the trace data utility as the outputs are more
statistically similar with a larger probability. On the other
hand, smaller ε and δ improve the privacy preservation, since
it is more difficult for attackers to infer the participation or
absence of a specific tuple in the dataset.

In summary, we will theoretically prove that W 3-tess meets
(ε, δ)-differential privacy, to quantify the privacy preservation.
Furthermore, we will theoretically prove that W 3-tess meets
(k, ε, δ)-differential privacy, to quantify the trace data utility,
since (k, ε, δ)-differential privacy can guarantee that the output
is statistically the same when less than k tuples are removed
from or added to the dataset.

A. Privacy Preservation Analysis

W 3-tess protects a specific user’s location privacy via
cloaking user’s trace with more than k synthetic traces that
exhibit similar three dimension mobility behavior. In the
following, we take one step further to theoretically prove
the privacy preservation that W 3-tess provides using (ε, δ)-
differential privacy. We have the following results:

Theorem 3: W 3-tess provides (ε, δ)-differential privacy for
any a specific user’s trace, with 0 < ρ < 1, ε ≥ −ln(1 − ρ),

δ = max
n:n≥( k

� −1)

n�
i>�n

�(i, n, ρ), � = (eε−1+ρ)
eε , and �(i, n, ρ) =�i−1

i�=0
n−i�
i−i� ρi(1 − ρ)n−i.

Proof: See Appendix A.
We next focus on investigating the impact of the four

parameters δ, ε, ρ, and k on the privacy preservation, according

to Theorem 3. First we set k ∈ [5, 25], ρ = 0.2, and
n = 10000. It can be seen from Fig. 3(a), a larger k results
in a smaller δ. For example, δ decreases by 10−2 at ε = 1
when increasing k from 20 to 25. In addition, a larger k
leads to a smaller ε, given the parameter δ. In summary,
increasing k can enhance the privacy preservation. Second,
we vary the parameter k within [1, 5] with ρ = 0.01, as shown
in Fig. 3(b). As we can see, sampling with probability ρ
strengthens location privacy preservation, as δ < ρ when
k = 1. Furthermore, when k ≥ 2, location anonymization
enhances location privacy preservation, with δ significantly
decreasing and δ 	 ρ. Lastly, we set ρ within [0.1, 0.5] and
k = 15 to investigate the impact of ρ on location privacy
preservation, which is shown in Fig. 3(c), where δ and privacy
budget ε rapidly decrease with decreasing ρ. Thus, decreasing
ρ can strengthen location privacy preservation.

B. Trace Data Utility Guarantee Analysis

The synthetic traces deteriorate the trace data utility for
user ui, since ui is cloaked with the synthetic traces. To guar-
antee the trace data utility, the statistical feature (analyzed
in F ) of ui’s trace Lui should be statistically the same when
no less than k synthetic traces are added to Lui . According
to Definition 2, (k, ε, δ)-differential privacy can guarantee
that the output is statistically the same (i.e., the error is
bounded by ε) with the probability (1 − δ) when k tuples
are removed from or added to the input D. Therefore, in the
following, we bound the trace data utility guarantee using the
two parameters ε and δ.

Theorem 4: W 3-tess guarantees the trace data utility of
any a specific user ui with (k, ε, δ)-differential privacy in
the geo-data analysis task F , where 0 < ρ < 1, ε ≥
−ln(1 − ρ)(k−1), δ = max

n:n≥( k
� −1)

n�
i>�n

�(i, n, ρ), and � =

1
n argmin

i
[f(i) ≥ eε],

f(i)=
n(n − 1) · · · [n − (k − 1) + 1]

(n − i)(n − i − 1) · · · [n − i + 1 − (k − 1)]
(1 − ρ)k−1.

Proof: See Appendix B.
Let us present some explanations of Theorem 4. First, we set

parameter k ∈ [5, 25], and ρ = 0.02. As parameter ε is
bounded by k and ρ, ε is bounded within different ranges
as shown in Fig. 4(a). We can see that δ and ε decrease with
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Fig. 4. Trace-data utility varies with parameters ε, δ, ρ, and k, where δ and ε mean that the error of statistical feature of synthetic traces and users’ traces
is within ε with probability (1 − δ), ρ is the sampling probability, and k is the number of synthetic traces.

decreasing k, indicating the improvement of the trace data
utility. In addition, δ decreases with the increasing ε. This
shows the trade-off between ε and δ in terms of the data utility
guarantee. Next, we focus on investigating the relationship
between ε and k when δ is set less than 10−6 (cf. Fig. 4(b)).
As shown in Fig. 4(b), given the parameter δ, a larger ε will
lead to a smaller k. Lastly, we study the impact of ρ on the
data utility guarantee, which is shown in Fig. 4(c). It shows
that δ and ε increase with the increasing ρ. So decreasing
sampling probability ρ strengthens the data utility guarantee.

It is important to note that Theorem 4 holds when the
geo-data analysis task F is composable. Next, we use the
following corollary to explain this in detail.

Corollary 5: W 3-tess can guarantee trace data utility with
(k, ε, δ)-differential privacy in all geo-data analysis tasks F
as long as they are composable, i.e., F(Ω) =

N�
τ=1

F(Luτ ), or

F(Ω) =
N�

τ=1
Fτ (Luτ ), where Ω is the set of all users’ traces

when ui posts his location at time tnui
; N is the number of

all users; Luτ is the trace of user uτ ; Fτ is one or several
subtasks on uτ ’s trace.

For the first case F(Ω) =
N�

τ=1
F(Luτ ), the synthetic trace

should exhibit similar statistical feature F(Lui) with ui’s
trace. In contrast, the synthetic trace should exhibit similar
statistical feature Fτ (Lui) with ui’s trace when F(Ω) =
N�

τ=1
Fτ (Luτ ). Overall, if F is not composable, W 3-tess

cannot guarantee the trace data utility. In addition, since the
composable geo-data analysis task F is involved in (F , k, ρ)
sampling, W 3-tess is applicable to various geo-data analysis
tasks even different statistical features of traces are collected
in each geo-data analysis task.

V. PERFORMANCE EVALUATION

In this section, we evaluate the location privacy preserva-
tion and trace data utility guarantee of W 3-tess, using two
real-world datasets, loc-Gwalla and loc-Brightkite [34].

A. Datasets and Setup

Dataset loc-Gwalla consists of 196, 591 nodes (i.e., users),
950, 327 edges (i.e., friendships) and 6.4 million
check-ins (i.e., locations) from Feb. 2009 to Oct. 2010.

Dataset loc-Brightkite records 4.5 million check-ins of
58, 228 nodes from Apr. 2008 to Oct. 2010 and there are
214078 edges among users. The average degree and graph
density in loc-Gwalla and loc-Brightkite are 9.7, 4.92E-5,
and 7.5, 1.32E-5. For each month, we delete the users who
posted their locations less than 100 times.

To evaluate W 3-tess, we compare it with the latest work [5]
PULE and three heuristic algorithms dubbed as: PAD [7],
INTER [8], PAS [11]. PAD and INTER generate traces based
on a virtual grid and interpolation strategies respectively;
PAS generates fake users pausing at some locations; PULE
considers the semantic features of users’ locations. In addition,
we focus on the following metrics for performance evaluation.

Location Privacy Preservation Metrics: The related work,
heuristing algorithms are susceptible to inference attacks, and
the latest work suffers from the social relationship based
de-anonymization attacks. So, we consider the above two kind
of state-of-the art attacks: inference attacks [12] and social
relationship based de-anonymization attacks [6], to validate
the performance of W 3-tess against such two kind of attacks.
Specifically, in inference attacks [12], attackers try to identify
each user’s trace from the anonymous traces consisting of
users’ traces and synthetic traces generated by W 3-tess, via
finding the most likely assignment of users to obfuscated
traces and maximizing the probability of all users using a
joint assignment algorithm. In contrast, in social relationship
based de-anonymization attacks [6], attackers first construct
the contact graph according to users’ locations, and then
search for the optimal mapping between the contact graph and
the social network graph using the method, Distance Vector,
aiming to distinguish users’ traces from the synthetic traces.

Furthermore, to quantify the location privacy preservation,
we use two metrics, inference attack success rate P in, and
social relationship based de-anonymization attack success
rate P so. Both P in and P so are proportion of users whose
locations (i.e., traces) can be identified by attackers.

Trace Data Utility Guarantee Metrics: As different sta-
tistical features of traces are collected in different geo-data
analysis tasks, we quantify the trace data utility guarantee
according to the specific geo-data analysis task.

In continuous location based services (LBS), users’ loca-
tions are continuously sent to the LBS server along with the
synthetic locations. Upon receiving the results sent by LBS
server, users can obtain the accurate results through filtering
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Fig. 5. Location privacy preservation in both datasets loc-Gwalla and loc-Brightkite varying with the number of synthetic traces corresponding to each user’s
trace k. (a) (b) Inference attack success rate P in and (c) (d) social relationship based de-anonymization attack success rate P so in both loc-Gwalla and
loc-Brightkite.

out the results corresponding to synthetic locations using the
existing indexing schemes, e.g., air indexing in work [35].
Therefore, no data utility loss in continuous LBS.

In addition, we consider the following geo-data analysis
tasks to quantify the trace data utility: (1) Top-κ point of
interest (POI) extraction: searching for top-κ frequently visited
locations. We compute the distribution of visits among top-
κ frequently visited locations. (2) Map inference: updating
map using users’ traces. We investigate the KL-divergence
KL of the distribution of visits among locations both in
synthetic traces and real traces. (3) Modeling users’ mobility:
studying the mobility behavior. Thus, we study the mobility
similarity sim (cf. Eq. (11)) of synthetic traces and real
traces. (4) Friendship inference: inferring friendship from
the geographic coincidences. So we investigate the proba-
bility of friendship deduced from synthetic traces and real
traces as the existing work [36]. Note that the deduced
friendship is compared to the social relationship in social
network (i.e., Gwalla and Brightkite). (5) Influential friends
inference: inferring influential friends according to users’
traces. We define the probability of error as 1−(Πs∩Πr)/nof ,
where Πs and Πr are the sets of top-nof influential friends
inferred from synthetic traces and real traces respectively [37].

Computation Cost Metric: In addition, we also investigate
the computation cost to evaluate the scalability of the proposed
W 3-tess. Specifically, in W 3-tess, the computation cost refers
to the computation operations of the generation of plausible
traces. In PAD [7], we investigate the computation overhead of
the circle-based dummy generation, and in INTER [8], we con-
sider the computation cost of the interpolation strategies.
Moreover, in PAS [11] and PULE [5], generation of fake
traces dominates the whole computation cost. What’s more,
we consider the impact of the number of synthetic traces
corresponding to each user’s trace k on the computation cost,
since the number of synthetic traces significantly affects the
computation overhead.

Other default parameters are set as follows: αd = 25km;
αt = 2000s; π1 = π2 = 0.5, π3 = 1; ωs = 0.3, ωt = 0.7;
ρ = 0.2; the number of synthetic traces corresponding to each
user’s trace k ∈ (2, 12); in friendship inference, the number of
co-occurrences is 5, the temporal range is 24 hours, the number
of most influential friends Nf = 14, and the length of
traces le = 100. In addition, Δf and Δf � in above five
geo-data analysis tasks are: {1, 15}; {0.1, 0.6}; {0.2, 0.5};

{0.1, 0.3}; {0.1, 0.5}. Simulations are implemented in C++
and conducted on a desktop PC with an Intel Core i7 3.41G Hz
processor and 8G RAM.

B. Location Privacy Preservation

1) Location Privacy Preservation Against Inference Attacks:
As shown in Figs. 5(a) and 5(b), in both loc-Gwalla and loc-
Brightkite, PULE and W 3-tess outperform PAD, INTER, and
PAS, with the inference attack success rate P in significantly
less than that in PAD, INTER, and PAS. The superiority of
PULE and W 3-tess is attributed to that the three simple
heuristic algorithms fail to model users’ mobility behavior and
thus are susceptible to location inference attacks. In addition,
compared to PULE, W 3-tess provides comparable privacy
preservation against inference attacks, because synthetic traces
in both PULE and W 3-tess exhibit similar temporal and
spatial features to the real traces. Lastly, P in in PAD, INTER,
and PAS decreases with the number of synthetic traces k. That
is because it is more difficult to distinguish real traces from
synthetic traces when more synthetic traces are generated.
Furthermore, we have also investigated the impact of the
number of most influential friends Nf and the length of
traces le on the inference attack success rate P in, which
is shown in Figs. 6(a) and 6(b). It shows that P in in the
five algorithms and the two datasets slowly decrease with
the increasing Nf and le. Larger Nf and le mean more
locations of friends used to generate synthetic traces, therefore
enhancing the plausibility of synthetic traces. As a result,
the P in is decreased. In addition, we can observe that the
P in in algorithms PAD, INTER, and PAS, are less robust to
Nf and le. It because PULE and W 3-tess are sophisticated
algorithms, and can credibly imitate temporal and spatial
features, compared to algorithms PAD, INTER, and PAS.

2) Location Privacy Preservation Against Social Relation-
ship Based De-Anonymization Attacks: Figs. 5(c) and 5(d)
show the privacy preservation against social relationship
based de-anonymization attacks in both loc-Gwalla and loc-
Brightkite. It can be observed that W 3-tess outperforms the
four algorithms with P so significantly less than that in these
algorithms. Because PAD, INTER, PAS, and PULE ignore
users’ social behavior, and therefore the contract graph in these
algorithms are structurally correlated with the social relation-
ship graph. Furthermore, P so decreases with k, as more syn-
thetic traces confuse attackers. In addition, P so in loc-Gwalla

Authorized licensed use limited to: Donghua University. Downloaded on February 21,2020 at 04:27:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SYNTHESIZING PRIVACY PRESERVING TRACES: ENHANCING PLAUSIBILITY WITH SOCIAL NETWORKS 2399

Fig. 6. Location privacy preservation in both datasets loc-Gwalla and loc-Brightkite varying with the number of most influential friends Nf and the length
of traces le. (a) (b) Inference attack success rate P in varying with Nf and le. (c) (d) social relationship based de-anonymization attack success rate P so

impacted by Nf and le.

is a bit larger than that in loc-Brightkite as loc-Gwalla exhibits
higher average degree and graph density, and thus more social
relationship information in loc-Gwalla is available to correlate
users in the contact graph. The superiority of W 3-tess to
PULE indicates that the users’ social behavior should be
protected except for the temporal and spatial behavior. Lastly,
as shown in Figs. 6(c) and 6(d), we investigate the impact of
Nf and le on P so. We can observe that P so in the five algo-
rithms and the two datasets slowly decrease with the increasing
Nf and le. The reasons are as analyzed above, larger Nf and
le enhance plausibility of synthetic traces. Moreover, P so in
the five algorithms and the two datasets are less robust to Nf

than P in. It is attributed to that de-anonymization attacks [6]
heavily rely on the social feature of traces.

In summary, W 3-tess outperforms all existing work, pro-
tecting users’ location privacy against both inference attacks
and social relationship based de-anonymization attacks.

C. Trace Data Utility Guarantee

1) Top-kt POI Extraction: Figs. 7(a) and 7(b) show the
distribution of visiting proportion of top-50 POI in both
loc-Gwalla and loc-Brightkite. REAL refers to the real traces
in the two datasets. It can be observed that W 3-tess and PULE
outperform all the heuristic algorithms, with synthetic traces
exhibit similar visiting proportion to the real traces. That is
because PAD, INTER, and PAS fail to model users’ mobility.
In addition, W 3-tess performs better than PULE, as PULE
ignores users’ social behavior and thus cannot credibly imitate
users’ social locations.

2) Map Inference: The KL-divergence of real traces to the
synthetic traces is shown in Table I. KL in PAD, INTER, and
PAS is larger than that in PULE and W 3-tess. This indicates
the distribution of visiting proportion among locations are
preserved in PULE and W 3-tess. Furthermore, the KL in
W 3-tess is a bit less than that in PULE, as PULE fails to
model users’ social locations.

3) Modeling Users’ Mobility: The mobility similarity is
shown in Table I. The synthetic traces in PULE and W 3-tess
exhibit more similar mobility behavior, because the two algo-
rithms credibly model users’ temporal and spatial behavior.
In addition, W 3-tess outperforms PULE, as PULE ignores
the social behavior.

4) Friendship Inference: It shows in Figs. 7(c) and 7(d)
that the probability of friendship decreases with the number

of synthetic traces in the four algorithms except for REAL.
Because REAL does not cloak real traces with synthetic ones
while the other four algorithms do, and more synthetic traces
result in more fake users. Furthermore, W 3-tess significantly
outperforms the other four algorithms, as the fake users in
W 3-tess exhibit similar social behavior to users. In addition,
the probability of friendship in loc-Gwalla is larger than that
in loc-Brightkite, since more friendships exist in loc-Gwalla.

5) Influential Friends Inference: As shown in
Figs. 7(e) and 7(f), the probability of error increases
with the number of influential friends. That is not surprising,
as inferring more influential friends definitely leads to more
inference errors. In addition, the probability of error in
W 3-tess is much less than that in other four algorithms,
as W 3-tess syntheses traces considering both temporal,
spatial, and social behavior. Lastly, the probability of error
in loc-Gwalla is less than that in loc-Brightkite, since more
friendships exist in loc-Gwalla.

In summary, W 3-tess outperforms all existing work, as it
can guarantee trace data utility in all the above geo-data
analysis tasks.

D. Computation Cost

The computation cost in PAD, INTER, PAS, PULE, and
W 3-tess in the two datasets loc-Gwalla and loc-Brightkite is
shown in Fig. 8. It can be observed that the computation cost
in the two datasets loc-Gwalla and loc-Brightkite increases
with the number of synthetic traces corresponding to each
user’s trace k, since algorithms in PAD, INTER, PAS, PULE,
and W 3-tess have to generate more traces when parameter k
is enlarged, thus incurring more computation cost. Moreover,
in both Figs. 8(a) and 8(b), computation cost in W 3-tess is
less than that in PULE and PAS, and a bit larger than that
in PAD and INTER. It is because that PAD and INTER only
considered the spatial and temporal characteristics of locations
when generate fake traces, and that in contrast W 3-tess
consider temporal, spatial, and social behavior of each user’s
mobility. Moreover, PAS iteratively generated trajectory with
pauses, and PULE processed all users’ locations both in
geographic and semantic spaces. In contrast, W 3-tess relies
on light-weight algorithm to process the friends’ locations of
each user rather than the whole users’ locations. As a result,
W 3-tess incurs less computation cost. Lastly, computation
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Fig. 7. Trace data utility in both loc-Gwalla and loc-Brightkite. (a) (b) Top-50 POI extraction; (c) (d) Friendship inference varies with the number of synthetic
traces k; (e) (f) Influential friends inference.

TABLE I

KL AND sim BETWEEN SYNTHETIC AND REAL TRACES

cost in dataset loc-Gwalla is larger than that in dataset loc-
Brightkite, as the more users’ locations are included in dataset
loc-Gwalla. In summary, W 3-tess is preferable in terms of
computation cost, since it provides more location privacy
preservation and trace data utility guarantee.

VI. RELATED WORK

A. Literature Concerning Synthesizing Traces

To protect users’ location privacy against the untrusted
data aggregator, a prevalent method to protect users’ location
privacy is to cloak real traces with synthetic traces. Naive
heuristic algorithms were proposed in [7], [8] that generated
dummy users’ data by applying interpolation strategies, or
according to circles, grids, etc. These work cannot model
users’ mobility behavior and thus was vulnerable to mobility
model based inference attacks. To this end, the follow-up
work [11] generated dummy users stopping at several locations
to visit attractions. The same problem is tackled by [10] that
first characterizes users’ driving behavior from their traces and
then on this basis generate dummy traces using probabilistic
models. Further, authors in [9] made efforts towards generating
dummy traces with consistent movement patterns, taking three
kind of privacy disclosure. However, all these work [7]–[11]
are susceptible to the inference attacks [12] where adversaries

Fig. 8. Computation cost in both datasets loc-Gwalla and loc-Brightkite
varies with the number of synthetic traces corresponding to each users trace k.

infer users’ location privacy according to the semantic features
of locations. To this end, research [5] considered the semantic
of users’ data by characterizing users’ temporal and spatial
behavior when cloaking users’ data. Furthermore, the latest
research [38] used interest points and the road network topol-
ogy to make the generated dummy more realistic and effective
in time and space dimension. Moreover, study [39] proposed
an estimation-based dummy trajectory generation without any
assumptions about users’ movements. Another work [40]
utilized dummy based technique to generate dummy locations
in spatial crowdsourcing. Unfortunately, it is vulnerable to the
social relationship based de-anonymization attacks [6], [15].

To tackle the above problem, in this paper, we propose
W 3-tess, the first work that synthesizes privacy preserving
traces via enhancing the plausibility of synthetic traces with
social networks.

B. Other Somehow Related Work

Other studies concerning privacy preservation are somehow
related to our work, which mainly includes the studies based
on differential privacy and work based on encryption.
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1) Studies Based on Differential Privacy: Several
papers [41]–[45] concerning applying differential privacy
to location privacy are somehow related to our work.
Specifically, existing work [41] introduced a generalized
version of differential privacy, geo-indistinguishability.
The follow-up study [42] proposed spatial or temporal
distance function, and on this basis, combined differential
privacy and δ-neighbourhood. Similarly, the work [43]
proposed δ-location set based differential privacy and
taked account for the temporal correlations in location
data. Thereafter, the study [44] inferred users’ social
relationships from their locations in a differentially private
manner. Moreover, research [45] considered the temporal
correlations among continuous data and quantified the
corresponding privacy disclosure of differential privacy. The
latest work [46] proposed a privacy-preserving method that
meets differential privacy constraint to protect location data
privacy and maximize data utility. Moreover, study [47]
generated synthetic integrated dataset so that the publication
of high-dimensional data meets differential privacy.
Another work [48] utilized the geo-indistinguishability
based on differential privacy to preserve the sensitive
location information. In contrast, literature [49] designed a
differentially private GAN that meets differential privacy
under GANs.

However, all these work only considered the temporal
and spatial behavior implied in users’ locations, and thus
suffered from the social relationship based de-anonymization
attacks. Different to these studies above, W 3-tess takes
temporal, spatial, and social behavior into consideration,
and it can defend against such social relationship based
de-anonymization attacks.

2) Studies Based on Encryption: Work [50] proposed a
hybrid homomorphic encryption via combining public-key
encryption and homomorphic encryption. Study [51]
designed a distance-based encryption to apply biometrics
in identity-based encryption. Thereafter, work [52] used a
key-aggregate approach and a proxy re-encryption scheme to
design a key-aggregate proxy re-encryption scheme. Another
work [53] focused on BSS-based speech encryption to encrypt
speech signal via linearly combining it with secret key signal.
Literature [54] designed a novel Dynamic Searchable
Symmetric Encryption to provide higher level of privacy.
Moreover, work [55] protected query range and individual IoT
device’s data using BGN homomorphic encryption technique.
Studies [56], [57] utilized a cryptographic technique and
differential privacy to allow the collector to privately compute
the statistics and support the dynamic dropouts. Nevertheless,
these encryption-based approaches incurred a large amount
of computation and communication overheads. In contrast,
we propose a lightweight yet effective scheme that synthesizes
privacy preserving traces via enhancing the plausibility of
synthetic traces with social networks.

VII. CONCLUSION

In this paper, we present W 3-tess, the first work that
synthesizes privacy preserving traces through enhancing the

plausibility of synthetic traces with social networks to pro-
tect users’ location privacy against social relationship based
de-anonymization attacks. In addition, both location privacy
preservation and trace data utility guarantee are theoretically
provable. Moreover, it is applicable to most geo-data analysis
tasks. Extensive experiments on two real world datasets have
demonstrated the effectiveness of W 3-tess.

APPENDIX A
PROOF OF THEOREM 3

Proof: According to the composition property (cf. The-
orem 1), we only need to prove W 3-tess satisfy
(ε, δ)-differential privacy in each dimension (i.e., temporal,
spatial and social behavior). We first prove W 3-tess meets
(ε, δ)-differential privacy in terms of temporal behavior.

Denote p the procedure of selecting trace fragments using
(F , k, ρ) sampling in W 3-tess; F the trace data analysis task;
p(t) the three-dimension attributes; D the set of users’ traces
and the synthetic traces; D−t is the dataset where the tuple
(i.e., trace) t is removed from D. Assume n tuples t� in D
meet p(t�).temporal = p(t).temporal. Denote i the number
of p(t).temporal in S. Denote �(i, n, ρ) =

�i
j=0 f(i, n, ρ),

where f(i, n, ρ) is the probability of getting i heads in n trials
where each trial succeeds with probability ρ. According to
Section III-B, (F , k, ρ) sampling in W 3-tess is like the game,
tossing a coin. According to Theorem 2, we get the following
results.

First, we have

Pr[F(D)=S]
Pr[F(D−t)=S]

=
�(i, n, ρ)

�(i, n− 1, ρ)
=

⎧⎨
⎩

n(1−ρ)
n−i

, n≥ i

1, n<i.
(14)

Obviously, e−ε ≤ Pr[F(D)=S]
Pr[F(D−t)=S] ≤ eε holds for i > n. When

n ≥ i, we get n(1−ρ)
n−i > 1−ρ. Since ε ≥ −ln(1−ρ), 1−ρ ≥

e−ε holds. Next, we only need to consider the following case
where n(1−ρ)

n−i > eε so that Eq. (1) does not hold.

n(1 − ρ)
n − i

> eε, s.t

⎧⎨
⎩n ≥ i >

(eε − 1 + ρ)
eε

= n�,

i ≥ k.
(15)

Then the possibility that F(D) and F(D−t) give bad out-
comes (i.e., Pr[F(D)=S]

Pr[F(D−t)=S] ≤ eε does not hold) is

max
n

n�
i:i≥k∧i>�n

�(i, n, ρ), (16)

max
n

n−1�
i:i≥k∧i>�n

�(i, n − 1, ρ). (17)

Since both equations above increase with n, Eq. (16) is thus
larger than Eq. (18). Furthermore, δ is bound by

δ = max
n

n�
i:i≥k∧i>�n

�(i, n, ρ)
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Pr[F(D) = S]
Pr[F(D−T ) = S]

=
Ci

nρi(1 − ρ)(n−i)

Ci
n−(k−1)ρ

i(1 − ρ)(n−(k−1)−i)
=

⎧⎨
⎩

n(n − 1) · · · (n − i + 1)(1 − ρ)k−1

[n−(k − 1)][n − (k − 1) − 1] · · · [n−(k − 1) − (i − 1)]
, n≥ i;

1, n<i;
(21)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
n:n<� k

� −1�

n�
i:i≥k

�(i, n, ρ),

max
n:n≥� k

� −1�

n�
i:i>�n

�(i, n, ρ).
(18)

Lastly, we get

δ = max
n:n≥� k

� −1�

n�
i:i>�n

�(i, n, ρ). (19)

In summary, W 3-tess meets (ε, δ)-differential privacy in
terms of temporal behavior.

Similarly, we can prove W 3-tess meets (ε, δ)-differential
privacy in terms of spatial and social behavior.

Overall, Theorem 3 holds.

APPENDIX B
PROOF OF THEOREM 4

Proof: We only need to prove the following holds with
the possibility (1 − δ),

e−ε ≤ Pr[F(D) = S]
Pr[F(D−T ) = S]

≤ eε, (20)

where T is the set of any k tuples in D.
As any tuple p(t) appears no less than k times, then i ≥ k,

and we get Eq. (21), shown at the top of this page.
Eq. (20) does not hold for some values of i. So next we try

to bound the possibility δ that Eq. (20) is violated. It can be
deduced from Eq. (21) that Eq. (20) hold when i > n.

We now consider the case when n ≥ j ≥ k. Note
that φ(n, k, i) = n(n−1)···(n−i+1)

[n−(k−1)][n−(k−1)−1]···[n−(k−1)−(i−1)] > 1,
so φ(n, k, i) (1 − ρ)k−1 > (1 − ρ)k−1 ≥ e−ε. Hence
next we only need to consider the values of i that make
φ(n, k, i)(1 − ρ)k−1 > eε. The formula in Eq. (21) can be
simplified into

f(i)=
n(n − 1) · · · [n − (k − 1) + 1](1 − ρ)k−1

(n − i)(n − i − 1) · · · [n − (i − 1) − (k − 1)]
. (22)

Denote g(i) = (n − i)(n − i − 1) · · · [n − i + 1 − (k − 1)].
Obviously, g(i) decreases with increasing i. Thus Eq. (22)
increases with i. So we can get i = �n through dichotomy so
that � = 1

n arg min
i

[f(i) ≥ eε]. Thus, when i > �n, Eq. (20)
is violated.

So far, we have proved

Pr[F(D) = S]
Pr[F(D−T ) = S]

> eε, s.t

	
n ≥ i ≥ k,

i > �n.
(23)

The possibilities that F(D) and F(D−T ) output bad outcomes
are

max
n

n�
i:i≥k∧i>�n

�(i, n, ρ), (24)

max
n

n−1�
i:i≥k∧i>�n

�(i, n − 1, ρ). (25)

Since
n�
i

�(i, n − 1, ρ) increases with n, the possibility in

Eq. (24) is larger than that in Eq. (25). Thus, we only need to
bound the possibility in Eq. (24). So the error possibility δ is
bound by

δ=max
n

n�
i:i≥k∧i>�n

�(i, n, ρ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
n:n<no

n�
i:i≥k

�(i, n, ρ),

max
n:n≥no

n�
i:i>�n

�(i, n, ρ),

(26)

where no = �k
� − 1� which satisfies no� < k and

(no + 1)� ≥ k. Lastly, we get the error possibility δ

δ = max
n:n≥no

n�
i:i>�n

�(i, n, ρ). (27)

In summary, Theorem 4 holds.
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