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Abstract Density based clustering algorithms (DBCLAs)
rely on the notion of density to identify clusters of arbitrary
shapes, sizes with varying densities. Existing surveys on DB-
CLAs cover only a selected set of algorithms. These surveys fail
to provide an extensive information about a variety of DBCLAs
proposed till date including a taxonomy of the algorithms. In
this paper we present a comprehensive survey of various DB-
CLAs over last two decades along with their classification. We
group the DBCLAS in each of the four categories: density defi-
nition, parameter sensitivity, execution mode and nature of data
and further divide them into various classes under each of these
categories. In addition, we compare the DBCLAs through their
common features and variations in citation and conceptual de-
pendencies. We identify various application areas of DBCLAs
in domains such as astronomy, earth sciences, molecular biol-
ogy, geography, multimedia. Our survey also identifies proba-
ble future directions of DBCLAs where involvement of density
based methods may lead to favorable results.

Keywords clustering, density based clustering, survey, clas-
sification, common properties, applications

1 Introduction
Clustering is an unsupervised learning task that groups data ob-
jects or patterns based on similarity measures. Such objects may
exist as data points in a R? space. Entities belonging to a certain
cluster have greater similarity between them than with an entity
belonging to a different cluster [1-3]. Cluster analysis is done
with the objective of summarization or improved understand-
ing of the data in context, e.g., grouping of related documents
for browsing, finding protein structures and genes having anal-
ogous functions, or as a technique to compress data [4]. A large
number of clustering techniques have been developed for pat-
tern analysis, grouping, decision making, document retrieval,
image segmentation, data mining, yet many significant chal-
lenges still remain in determining the clusters correctly.
Clustering approaches are broadly classified into partitional,
hierarchical and density based methods (Refer to Fig. 1) [1].
Partitional method creates partition of the data instead of a clus-
tering structure. The partitional clustering approach involves
squared error method, e.g., K-means algorithm, graph theoretic
clustering, mixture resolving, e.g., EM algorithm and mode
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seeking method [1].

Hierarchical clustering produces a dendrogram that repre-
sents the nested grouping of patterns, e.g., Chameleon [5]. Hi-
erarchical method adopts agglomerative or divisive approach to
determine the clustering.

Density based clustering depends on the notion of finding
density of a region. The objective of DBCLASs is to find clusters
at different levels of granularity with appropriate noise filter-
ing. Density notion used by the DBCLAs enables segregation
of compact regions in the data space from the noise. In DB-
CLAs, clusters are identified as areas of higher density than the
remainder of the data space [6]. DBCLAs facilitate detecting
clusters of arbitrary shapes. Over a period of last two decades,
numerous density based clustering techniques have been pro-
posed. These methods aim to extract clusters of relatively uni-
form densities lying across the data space.

The other prominent clustering paradigms are: nearest neigh-
bor based clustering, fuzzy clustering, clustering based on ar-
tificial neural network (ANN) and kernel based techniques [1].
Evolutionary approaches for clustering have also been proposed
that makes use of the population of solutions to obtain the glob-
ally optimal partitioning of data.

The clustering algorithms come with their own set of chal-
lenges. Depending on the properties of data and the mecha-
nism adopted to form clusters, we mention certain drawbacks
incurred by various clustering algorithms:

1) Inability to detect clusters correctly in high dimen-
sional space: Most of the challenges faced by the clus-
tering algorithms are particularly related to the quality of
clusters obtained in voluminous high dimensional space.
The phenomenon of “curse of dimensionality” [7] is one
of the major bottlenecks due to which correctness of clus-
ters cannot be guaranteed among data points having nu-
merous attributes.

2) Resource constraint: With the use of very large
datasets, there also exists an issue regarding availability
of computational resources. Clustering algorithm such as
CLARANS [8] is based on the assumption that its data re-
side within memory, an approach that fails for very large
datasets.

3) Inability to detect non-globular clusters: Existing liter-
ature have also pointed out the inability of various meth-
ods to extract arbitrarily shaped clusters having variable
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Fig. 1 Representation of various clustering paradigms
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Fig. 2 Dense areas represent the clusters and subsequently the noises are fil-
tered out. DBCLAS aslo enable cluster detection in areas of uniform density
irrespective of the size of region
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densities. Partitional method such as K-means [9] finds
convex shaped clusters. As a result it fails to identify clus-
ters of non-globular shapes. The algorithm also shows its
limitations while dealing with noisy data. Agglomerative
clustering techniques are not as affected by noise, but they
have a tendency towards identifying globular clusters.

Overlooking clusters in compact areas of arbitrary
sizes: For spatial data-bases, we can often find regions
of uniform density located at a remote area. Such regions
usually go undetected and the probable clusters existing
in those regions are potentially overlooked by many clus-
tering algorithms.

In order to address these challenges, the class of DBCLAs
holds its own importance. The following points underline the
reasons for robustness of the DBCLAs.

1y
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Fig.

DBCLAs discover clusters as dense regions in the data
space separated from areas of lower density [6] (Fig. 2).
The density of any region is given as the number of points
within that region or in terms of its kernel density esti-
mate [10].

DBCLASs enable appropriate noise filtering [6] (Fig. 2).

DBCLAs aim at exploring the data space at varied levels
of granularity [11] to detect clusters in regions of uniform
density (Fig. 2).

Exploring data at higher levels of granularity enables the
DBCLAS to reconstruct the entire shape of the data distri-
bution [12] (Fig. 3).

DBCLAs facilitate detection of arbitrary shaped clusters
with varying sizes and densities [4]. A post processing
phase is considered in order to accumulate the dense re-
gion into an arbitrary shape (Fig. 3).

Elongated cluster

Arbitrary shaped cluster

3 Detecting clusters of arbitrary shapes at varied levels of granularity
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Fig. 4 The construction of grids in the data space. Grid density is determined
by the number of points in a grid cell. The denser grids are grouped to form the
clusters

6) DBCLASs also use grid based methods to explore indi-
vidual regions of the data space and form clusters [11]
(Fig. 4).

7) Grid like methods can be used in context of higher dimen-
sions since the lower dimensional grids define clusters on
subsets of dimensions (Fig. 4).

Contributions of this paper:

1) Provide a brief description of as many as thirty-two DB-
CLAs from the year 1996 onwards.

2) Provide a classification strategy to group the DBCLAs
and based on the strategy adopted, we produce a taxon-
omy of all the DBCLASs described in this paper.

3) We introduce a set of features that are common to all the
DBCLAs, and based on the feature properties exhibited
by each algorithm, we relate and differentiate the DB-
CLAs.

4) The paper also extracts the Citation percentage and Con-
ceptual dependency values of the DBCLAs. These values
are used to compare the DBCLAs by showing the varia-
tion among different algorithms in their referrals as well
as their importance among other DBCLAs.

5) We identify various application domains in which the DB-
CLAs have been applied and highlight the usage of rele-
vant methods in those applications.

The paper is organized as follows: In Section 2, we present
the existing surveys carried out for studying the DBCLAs.
This is followed by a description of the classification strategy
adopted to group the DBCLAS described in this survey (Section
3). In the next Section 4, we essentially classify the DBCLAs
based on the classification strategy adopted in Section 3 as well
as provide the description of individual algorithm. We compare
various DBCLASs in this paper by providing the relationships
and differences among the algorithms in Section 5. Next we
present an empirical study of some of the DBCLAs (Section 6).
This is followed by highlighting the applications of DBCLAS in
Section 7. We mention the future scopes and directions of the
DBCLAs in Section 8 followed by the discussion and conclu-
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sion in Section 9.

2 Related work

Existing surveys on DBCLAs selectively deal with some pi-
oneer density based algorithms. In effect, the surveys end up
covering a limited set of proposed methods. The classification
of algorithms done in those surveys are specific and depends
upon certain properties of the algorithms of choice. A number
of studies were conducted to cover the DBCLAS, however to
the best of our observation all such studies fail to extensively
provide a taxonomy of the algorithms developed till now. In
due course, numerous density based methods have been pro-
posed. The evolution of these methods over the years implies
that there exists a variation in the approach based on which the
clusters are detected, their performance level and the challenges
that these algorithms address upon.

In 2011, a survey on DBCLAS [13] highlighted different vari-
ants of the DBSCAN (density-based algorithm for discovering
clusters in large spatial databases with noise) [6] algorithm.
DBSCAN was the first density based clustering algorithm pro-
posed in 1996. The basis of the study conducted was to identify
necessary parameters that were needed to group the DBCLAsS.
The survey showed its limitations in failing to identify a host
of other DBCLASs and is therefore limited only to a range of
density based techniques. In addition to the methods that were
covered in the 2011 survey, algorithms viz. OPTICS (Ordering
Points To Identify the Clustering Structure) [14], DVBSCAN
(Density Based Algorithm for Density Varied Clusters in Large
Spatial Databases) [15] and ST-DBSCAN (Spatial-Temporal
DBSCAN) [16] were also studied. A similar study from the
year 2013 [17] investigates the properties of as many as seven
DBCLAs along with highlighting their advantages and disad-
vantages. In 2014, another study [18] reviewed only three DB-
CLAs [6, 14, 19] thereby providing a limited information about
different techniques proposed in this paradigm.

A comparative analysis of density based methods [20] in-
volving DENCLUE (DENsity based CLUstEring) [19], DB-
CLASD (Distribution Based Clustering of LArge Spatial
Databases) [21] and DBSCAN [6] was illustrated in 2011. Two
similar studies [22,23] conducted in 2014 and 2016 showed that
only three major DBCLAs [6,14,19] were compared. The com-
parisons in each of the studies were reduced to a small set of
algorithms which fails to provide an insight to other DBCLAs
cutting across various application domains.

The inception of DBCLAs was mainly motivated due to the
volume and variety of clusters that were usually overlooked by
other clustering domains. A review conducted in 2013 focused
on the density based techniques for large databases. The study
mainly dealt with the Soft-DBSCAN (DBSCAN clustering us-
ing fuzzy set theory) [24] method, a combination of DBSCAN
and fuzzy set theory. OPTICS [20] and a polygon method to
detect clusters were other major algorithms presented in the re-
view. A literature on DBCLAs from 2014 by Loh et al. [25]
presented a survey of some recent density based techniques viz.
PDBSCAN (Parallel DBSCAN) [26], CUDA-DClust (CUDA-
Density-based Clustering) [27], GSCAN (Density-Based Clus-
tering Using Graphics Processing Units) [28] for improving the
effectiveness of DBSCAN. Both the studies highlight a list of



methods related to DBCLASs but do not provide any classifica-
tion of the algorithms.

Table 1 highlights the comparison between prior surveys of
DBCLAs conducted and our survey. It is evident that the ex-
isting surveys are limited in their coverage of a variety of DB-
CLAs. Our survey conducts a comprehensive study of a wide
range of DBCLAs along with providing additional features
such as common properties, classification of DBCLAs, con-
ceptual dependency, applications and future directions of the
DBCLAs.

In the next section we present the classification strategy
adopted to demarcate various DBCLAs in this paper.

3 Strategy for classification of DBCLAs

We identified four categories and subdivided each category with
certain number of classes. Based on these classes within each
category, we classify the DBCLAs. The adopted categories are:

e Density definition

e Parameter sensitivity
e Execution mode

e Nature of data.

Every studied DBCLA is placed under all the four categories.
Distinction between DBCLAs happen only due to the classes
which are created within that category itself (Fig. 5). The clas-
sification of DBCLAs within a category remains isolated from
that of the other categories.

Table 1 Comparison of existing surveys of DBCLAs with our survey
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An algorithm may be unique to a class or part of multiple
classes within a given category due to its involvement in han-
dling a variety of data sets or adopting a mixture of techniques
to address certain challenges. In Section 4, we present a detailed
classification chart of the DBCLAS studied in this paper. Next,
we describe each of these categories and various classes placed
within a category w.r.t. Fig. 5.

1) Density definition DBCLAs classified under the defini-
tion of density are segregated based on the way in which
the density is computed. We classify the DBCLAs into
four classes based on the following definitions of density:
point based, grid based, probabilistic, data dependent.

(a) Point based: In this approach, the point density is
calculated based on the number of points that lie
within its neighborhood.

(b) Grid based: The grid based technique relies on find-
ing the denser grids and accumulates them to form
clusters. The density of a grid cell depends on the
quantity of data objects within it. Grid based tech-
niques are helpful in alleviating issues related to
high-dimensional datasets.

(c) Probabilistic: Probabilistic models enable a cluster-
ing method to compute the densities based on some
density functions. This approach is used to han-
dle voluminous datasets in higher dimensions. DB-
CLAs dealing with multimedia datasets use proba-
bilistic models to compute the density.

Survey paper No. of DBCLAs Common Classification Conceptual Anplications Future
(year) studied properties of DBCLAs dependency bp ) directions
[13] (2011) 5 X X X vV vV
[20] (2011) 3 X X X X X
[17] (2013) 7 X X X X X
[18] (2014) 3 X X X X X
[22] (2014) 3 X X X X X
[25] (2014) 6 X X X v v
[23] (2016) 2 X X X X X
Our survey
32
of DBCLAs v v v v v
DBCLA
Density Parameter Execution Nature of
definition sensitivity mode data
. . Multimedia/
Parameter Parameter Spatial Non-spatial Others
sensitive change adaptive
Serial Parallel Distributed
Point Grid e Data
based based Probabilistic dependent

Fig. 5 Classification tree of DBCLAs



2)

3)

4)

Panthadeep BHATTACHARIJEE et al. A survey of density based clustering algorithms 5

(d) Data dependent: Some of the algorithms [4, 29]
use data dependent dissimilarity measure to com-
pute the proximity between instances of data ob-
jects. The density is therefore computed by identi-
fying the quantity of points in the neighborhood of
a data object obtained by using data dependent dis-
similarity approach. E.g., In MBSCAN [29], sim-
ilarity is computed based on the mass of smallest
region engulfing two data points. The point density
is then found out by detecting the number of points
which have a mass less than a certain threshold with
the concerned point.

Parameter sensitivity: Many of the DBCLAs depend on
the use of parameters which potentially influences the
clustering output. There are some algorithms which re-
main adaptive to the changes in parameter values. These
algorithms depend on the data distribution to identify the
parameter values. Based on parameter dependency, we di-
vide the DBCLASs into two classes: parameter sensitive
and parameter change adaptive.

(a) Parameter sensitive: The algorithms whose outcome
depend on the chosen values of the parameters.

(b) Parameter change adaptive: DBCLAs which adapt
to the changes in parameter values. The change in
parameter values do not influence the final output.

Execution mode: Most of the DBCLAs execute in se-
rial mode, however to improve the efficiency, parallel
and distributed algorithms have also been proposed by re-
searchers. We classify the density based clustering tech-
niques into three classes: serial, parallel and distributed
based on their mode of execution.

(a) Serial: DBCLAs which execute its individual mod-
ules one after another in a serial manner lie in this
category.

(b) Parallel: In parallel DBCLAS, data is spread across
multiple machines and the execution happens simul-
taneously in order to speed up the computation.

(c) Distributed: In order to reduce the cost of exe-
cution, distributed DBCLAs have been proposed.
Most of the distributed clustering approaches gen-
erate global models by aggregating local results ob-
tained on each node. The complexity and quality of
solutions depend significantly on the level of aggre-
gation.

Nature of data: Some of the DBCLAs are made to work
on specific datasets. These datasets may be spatial, non-
spatial, image or other multimedia data. Based on the
dataset used by the algorithm, we classify the DBCLAs
into three classes: spatial, non-spatial, multimediajothers.

(a) Spatial: The spatial datasets directly or indirectly
refer to a location on the surface of earth.

(b) Non-spatial: When a dataset cannot be related to
any geographical location, it is referred to as non-
spatial data.

(¢) Multimedia/others: Multimedia data sets consist of
images, videos, graphics. Some of the DBCLAs

highlight their specialty on such data sets as it is
often very challenging to deal with such data-sets
compared to data with spatial attributes.

Next, we describe the individual DBCLAs based on the prop-
erties they exhibit wrt. aforementioned category heads and their
classes.

4 Taxonomy of density based clustering algo-
rithms

4.1 Density definition

In this subsection, as per the first category: Density definition,
we classify the DBCLAS into four classes viz. Point based, Grid
based, Probabilistic and Data dependent.

4.1.1 Point based density computation:

1) DBSCAN (Density-based algorithm for discovering clus-
ters in large spatial databases with noise) (1996) (Repre-
sentative algorithm)

Pros: Extracts clusters of arbitrary shapes with filtration
of noises.

Cons: Fails to detect clusters of variable densities. Unre-
liable in high-dimensional data space.

Key issues addressed: Dense regions are detected as clus-
ters. Points in sparser regions are filtered as outliers.
Description: DBSCAN [6] was proposed in 1996 as
the first DBCLA. DBSCAN detects clusters in spatial
databases along with filtering noise. DBSCAN takes two
parameters Eps and Minpts. For a given point p, Eps sig-
nifies the radius of its surrounding region known as the
Eps neighborhood of p. The literature denotes Eps neigh-
borhood of p as Ngps(p). Let D denote the dataset, then
for any p € D, its Eps neighborhood is given as Ngp(p)
= {q € D | dist(p,q) < Eps}. If |Ngps(p)| > Minpts, then
p is a dense or core point otherwise p is border point. A
border point has at least one core point in its Eps neigh-
borhood. For a core point p wrt. Eps and Minpts, if there
exists a point g € Ng,s(p), then ¢ is directly density reach-
able from p. However ¢ is density reachable from p wrt.
Eps and Minpts only if there exists a chain of points
q1,92:93+--qn> 41=D> qn=¢q such that g;;; is directly den-
sity reachable from ¢g;. Density-reachability is an exten-
sion of direct density-reachability. The relation follows
transitivity but it is not symmetric.

DBSCAN classifies each point as either core or border
point. Two core points have the same cluster membership
if they are directly density reachable. A point in cluster
C is density reachable from any core point belonging to
C. The cluster expansion takes place by merging the den-
sity reachable core points. The algorithm assigns the bor-
der points to a cluster of their nearest core point. Points
not belonging to any cluster qualify as outliers or noise
points.

DBSCAN detects clusters of arbitrary shapes and sizes
with appropriate noise filtering in spatial databases. How-
ever, the preset value of the parameter Minpts does not al-
low the algorithm to detect clusters of variable densities.
The method also shows its limitations in high dimensional
data sets. DBSCAN consumes O(N log N) time, with N as



2)

3)

Front. Comput. Sci., 2021, 15(1): 151308

the size of the dataset.

CLIQUE (CLustering In QUEst) (1998)

Pros: Extracts clusters in high dimensional data space.
The clusters produced do not depend on the order of the
data. The algorithm is scalable.

Cons: The quality of clusters cannot be guaranteed.

Key issues addressed: Scales linearly with the size of the
input. Facilitates automatic high dimensional subspace
clustering.

Description: CLIQUE [12] enables discovery of dense
clusters embedded in high dimensional subspaces. The al-
gorithm provides cluster description through DNF expres-
sions. The algorithm strives to detect projections of input
data automatically. These projections are mapped into a
subset of attributes including regions of high density. The
algorithm provides no prior estimation of any distribution
of the data in its mathematical form. The results produced
by the algorithm are order independent wrt. presentation
of input records.

Table 2 Common notations used in this article

Notation Description

N dataset size

n #labeled points in the dataset

C #clusters

K number of parallel OPTICS run [14]
k number of dimensions of a subspace [12]
K number of cells at the bottom layer
D dataset

c any constant

S; dataset size in i machine [26]

P total no. of core points

q total no. of non-core points and outliers

The estimated density of data points is calculated by parti-
tioning the data space and finding the numerical strength
of points within each cell of the partitioning . Each di-
mension is partitioned into identical equi-spaced inter-
vals. The volume of each unit is equal and the quantity
of points in each volume approximates the density.
Clusters are identified in the projections from the appro-
priate subspaces. The valleys of the density function sep-
arate the data points. Clusters are formed by taking the
unions of the high density components. A description of
the clusters is obtained by covering a cluster with overlap-
ping rectangles and describing it as a union of these rect-
angles. CLIQUE runs to completion in O(ck + Nk) time
with ¢ being a constant, k is the maximum number of di-
mensions and N is the size of the dataset.

GDBSCAN (Generalized DBSCAN) (1998)

Pros: Ability to cluster both point objects as well as spa-
tially arranged objects.

Cons: No clear heuristics specified to determine the pa-
rameters of the algorithm.

Key issues addressed: Clustering of spatially extended
objects having both spatial and non-spatial attributes.
Description: GDBSCAN [30] proposed by Ester et al. is
the generalized version of the DBSCAN [6] algorithm.
GDBSCAN has the ability to group points along with spa-
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tial objects based on their spatial and non-spatial features.
The method is implemented on important application do-
mains such as astronomy, molecular biology, earth sci-
ences, geography. The algorithm mainly prescribes two
notions: a) the neighborhood definition is based on sym-
metric and reflexive binary predicates, b) use of simple
non-spatial measures to compute the density e.g., mean
height of students to define the strength of a class.
GDBSCAN introduces three concepts: NPred- neighbor-
hood, MinCard and wCard function. NPred is a reflex-
ive and symmetric binary predicate on D. The NPred-
neighborhood of an object 0 € D is defined as Nypyeq(0)
= 0" € D| NPred(o, 0’) [30]. wCard represents a function
which measures the cardinality for sets of objects. It is a
weighted function and can be defined as wCard : 2P —
R>% [30]. If MinCard € R*, then for a set of objects S, the
predicate MinWeight is true only if wCard(S) > MinCard.
For a given object p, GDBSCAN extracts all the other ob-
jects that are density reachable [30] from p wrt. NPred
and MinWeight. A cluster membership is assigned to p if
it qualifies as a core object. If no other object is density
reachable from p and p is a non-core object, then it is
classified as an outlier or noise. For unclassified objects
this procedure is iteratively performed to find the clusters.
The run time of GDBSCAN is O(N?) with no index sup-
port. On using a spatial index, the running time reduces to
O(N log N). For a grid based object organization, the time
complexity becomes linearly proportional to the quantity
of data objects.

Inc-DBSCAN (Incremental-DBSCAN) (1998)

Pros: Clusters data objects dynamically after periodic up-
dates.

Cons:Unable to handle bulk insertion or deletion of data
objects. The algorithm is sensitive to change in parameter
values.

Key issues addressed: Introduced first incremental clus-
tering method based on DBSCAN. Addresses the bot-
tleneck of redundant computation involved in non-
incremental methods.

Description: Inc-DBSCAN (Incremental DBSCAN) [31]
is the incremental version of DBSCAN. The algorithm
deals with dynamic datasets. Patterns in database e.g.,log
database alters temporally with new logs being added to
and previous records are deleted from the database. The
algorithm identifies affected parts of the existing clusters
by an update in the database. Based on this underlying
idea of selective handling of the updated dataset, the al-
gorithm proves to be more efficient. After insertion of
new points, some non-core objects may turn into core
forming novel density connections. Points which were not
density reachable [6] earlier might become density reach-
able. Similarly upon performing deletion some core ob-
jects turn into non-core resulting in removal of existing
connections. If an object p is inserted or deleted, then
Ngps(p) [6] becomes the affected region. In addition, all
the other objects in D U {p} also become a part of the af-
fected region. The unaffected points retain the same clus-
ter membership. The number of region queries performed
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by Inc-DBSCAN is determined experimentally. Let r; and
rq denote the mean number of region queries during in-
cremental insertion and deletion respectively. Let f; and
fa be the percentage of insertions and deletions. Then the
cost incurred by Inc-DBSCAN for making r updates to
the dataset incrementally is: r X (f; X ri +fq X rg).

PDBSCAN (Parallel DBSCAN) (1998)

Pros: Uses partitioning scheme to execute DBSCAN con-
currently in multiple machines.

Cons: Load balancing across machines may become a
bottleneck.

Key issues addressed: Faster detection of clusters of arbi-
trary shapes in dense regions.

Description: PDBSCAN [26] is a parallel version of DB-
SCAN. The algorithm uses a distributed data structure as
a part of the shared nothing architecture. Many machines
are connected with replication of data indexes. PDB-
SCAN introduced a distributed index structure known
as dR*-tree. According to this structure, data is spanned
across many workstations with replication of data indexes
in each one of them. As per this method, the main advan-
tage of the “shared nothing” architecture is that it can be
scaled up to thousands of computers.

The algorithm executes parallel DBSCAN by using parti-
tioning strategy. PDBSCAN involves three major steps.
Firstly it creates multiple partitions by dividing the in-
put. The created partitions are distributed across all the
available computers. In the second step, the partitions
which were created in the first step are subjected to clus-
tering. For this purpose the DBSCAN algorithm is run
concurrently. The third step involves merging of clusters
obtained in individual computers and create a clustering
of the whole database. The least efficient machine deter-
mines the run time of PDBSCAN. The algorithm has to
ensure a proper load balancing among different machines
in function. Let S; be the size of the individual partitions,
then by using the dR*-tree index structure, the running
time is reduced to O(S; log S;).

OPTICS (Ordering points to identify the clustering struc-
ture) (1999)

Pros: Produces an augmented ordering of the database in-
stead of explicit clustering structure. Efficiently extracts
intrinsic clustering structure. The algorithm is parameter
change adaptive.

Cons: For high dimensional data spaces, no index struc-
tures go on to exist for efficient support of hyper-space
range queries.

Key issues addressed: The issue of parameter sensitivity
has been resolved. Interactive cluster analysis in an R?
space is possible.

Description: OPTICS [14]was introduced to create an
augmented ordering of the dataset. This ordering repre-
sents density-based clustering organization of the dataset.
The algorithm is not meant for clustering the data explic-
itly. The information contained in the clustering struc-
ture equivalently represents the density based clustering
matching a large range of parameters. To produce a con-
sistent result, the algorithm adheres to certain ordering

7)

8)
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where the data items are handled during cluster expan-
sion.

The algorithm selects an object and writes it to an or-
dered file. The directly reachable points from the core
point maintain an order in a seed list. The points are or-
dered in increasing order of their reachability from the
closest core object from where they are directly density
reachable. Closest core point is selected, and its reacha-
bility distance is calculated. The point is then written to
an ordered file. If the current object is a core object, then
further candidates for expansion may be inserted into the
seed list. The running time is O(N?) however, if tree based
method is used then its complexity becomes O(N log N),
where N is the size of the dataset.

SDBSCAN (Sampling based DBSCAN) (2000)

Pros: Combines sampling technique with DBSCAN for
clustering large spatial databases .

Cons: Cannot detect clusters of variable densities.

Key issues addressed: I/O cost and memory usage are re-
duced drastically.

Description: SDBSCAN [32] is a combination of sam-
pling technique with DBSCAN algorithm to cluster vo-
luminous spatial databases. SDBSCAN introduces two
sampling based techniques: SDBSCAN-1 or sampling
inside DBSCAN and SDBSCAN-2 or sampling outside
DBSCAN. SDBSCAN -1 cuts down the time consumed
on region query operation and memory requirement for
storing a core object. In order to reduce the memory and
I/O costs to speed up the DBSCAN, algorithm samples
some representatives rather than taking all the objects in
the neighborhood of a core object as new seeds.

Apart from sampling, an efficient labeling mechanism is
adopted in order to label the un-sampled data based on R*
tree. SDBSCAN-2 samples the database DB to produce a
sampled dataset sdb. It then creates R* trees DB and sdb.
The sampled data sdb is clustered through DBSCAN. The
algorithm runs to completion in O(N log N) time.

SNN-DBSCAN (Shared nearest neighbor-DBSCAN)
(2003)

Pros: Employs a data dependent dissimilarity technique
to evaluate the proximity measure between data points for
clustering. Removes the use of distance based measure to
find the similarity scores.

Cons: Unable to function for non-spatial data e.g., trans-
action data, genomic data.

Key issues addressed: Finding clusters of uniform den-
sities across sub-spaces. Challenges involved in high-
dimensional clustering.

Description: SNN-DBSCAN [4] is a robust graph based
clustering algorithm which detects arbitrary shaped clus-
ters having variable densities. The algorithm uses the con-
cept of shared nearest neighbor [33] to decide the prox-
imity between two data points. If two nodes have suf-
ficient number of points in their shared neighborhood,
a link is constructed between them. The graph obtained
in this manner is known as the shared nearest neigh-
bor(SNN) graph. A data object is categorized as core if
it has sufficient number of adjacent links to it. Two core
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points sharing a common link are placed in the same clus-
ter. The non-core points are assigned to a cluster of their
nearest core point. Points which fail to obtain any clus-
ter membership qualify as noise points. The definition of
core points allow SNN-DBSCAN to identify arbitrarily
shaped clusters with varying sizes. The use of shared near-
est neighbor instead of any distance measure enables the
algorithm to address the issues related to high dimension-
ality. The algorithm runs to completion in O(N?) time.
The construction of SNN graph in the form of a similarity
matrix results in quadratic time complexity.

DBDC (Density based distributed clustering) (2004)
Pros: Clusters data from different sources locally and ex-
tracts suitable representatives from these clusters.

Cons: Self induced quality criterion used to judge the
clusters.

Key issues addressed: Issue of transmission cost, ineffi-
cient global clustering.

Description: DBDC [34] clusters the data locally and
extracts suitable cluster representatives. Globally located
servers store the cluster representatives in order to restore
the clustering information on the basis of local represen-
tatives. The efficiency of the method lies in the fact that
the local clustering is carried out very quickly and are in-
dependent of each other. On the basis of limited quantity
of representatives, clustering at the global level can also
be performed effectively. DBDC is a combination of both
local and global clustering.

IDBSCAN (Improved density based spatial clustering
with application of noise) (2004)

Pros: Uses Marked Boundary Objects [35] to expand
computing directly without actual dataset selection.
Cons: Unable to find clusters of variable densities.

Key issues addressed: Addresses the issue of greater 1/O
cost and memory requirements involved in clustering.
Description: IDBSCAN [35] applies the idea of Marked
Boundary Object or MBO in order to identify points from
an expansion seed. It searches for a neighboring region for
adding to the expansion seed. If an object P is core satis-
fying the condition of set density, the algorithm aims to
find in the neighborhood the nearest point to the MBOs
and sets the points as the seeds for expansion. The al-
gorithm selects seeds, using numerous MBOs as a result
of which it demands only a single input instance. (3¢-1)
MBOs are added with d representing the number of di-
mensions of the dataset. Number of quadrants is 2¢ and
the number of seeds selected is at most (39-1). The algo-
rithm outperforms DBSCAN and runs to completion in
O(N log N) time.

ST-DBSCAN (Spatial-temporal DBSCAN) (2006)

Pros: Discovers clusters in accordance with spatial, non-
spatial and temporal values of the objects.

Cons: Doesn’t support parallel execution.

Key issues addressed: Resolves the issue of finding clus-
ters among spatio-temporal data.

Description: ST-DBSCAN [16]proposes three extensions
to the DBSCAN algorithm related to detection of core
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objects and outliers along with clusters that are adjacent
to each other. The algorithm mainly fosters the discov-
ery of clusters among non-spatial, spatial and temporal
data objects. One of the major flaws of DBSCAN is its
inability to detect variable density clusters. ST-DBSCAN
addresses the issue by allocating each cluster a density
factor. ST-DBSCAN has the ability to cluster spatio-
temporal data based on its temporal, spatial and non-
spatial attributes. The value of core points within a cluster
can be significantly dissimilar from the values of border or
non-core points on the other side. If the non-spatial values
of neighboring objects have small differences, the clusters
remain adjacent to one other. ST-DBSCAN addresses this
issue by comparing the average value of a cluster with an
incoming value. Spatio-temporal values are indexed ac-
cording to the space and time dimensions. The algorithm
runs to completion in O(N log N) time.

KIDBSCAN (K-means and IDBSCAN)(2006)

Pros: Outperforms DBSCAN by combining K-Means
with IDBSCAN. Not limited by memory while dealing
with large datasets.

Cons: Doesn’t support parallel execution.

Key issues addressed: Cluster accuracy along with I/O
cost.

Description: KIDBSCAN [36] combines the features of
K-means clustering [9] along with IDBSCAN [35] to find
the high-density center points. IDBSCAN is used to ex-
pand clusters from these high-density center points. The
algorithm consists of three phases: firstly, the variables
required by K-means and IDBSCAN are initialized and
are included in the dataset. Secondly, K-means algorithm
is applied to the input dataset to yield K-high density cen-
ter points. The points that are closest to the center points
are found. In the third phase, IDBSCAN is executed on an
adjusted dataset determined by K-means method, and the
clustering result is generated. The algorithm outperforms
DBSCAN.

CUDA-DClust (CUDA-density-based clustering) (2009)

Pros: Exploits the advantages of GPUs to achieve a higher
speedup as compared to DBSCAN.

Cons: Since data structures are stored in shared memory,
this affects the number of threads to be executed in paral-
lel.

Key issues addressed: Cost due to extreme paralleliza-
tion.

Description: CUDA-DClust [27] uses the graphics pro-
cessing unit (GPU) due to its ability to provide high par-
allelism combined with a greater bandwidth. The trans-
fer of memory is done at a reduced cost. The result ob-
tained is assured to be similar to DBSCAN but with a
high speedup. GPUs facilitate massive parallelism and is
used for various computationally intensive tasks. CUDA-
DClust introduces a concept called chain to allow high
degree of parallelism in DBCLAs. Chain represents the
data objects belonging to a common density based clus-
ter. Each chain is assigned to a single cluster, however a
cluster may consist of several chains. CUDA-DClust con-
siders a chain a tentative cluster. Instead of performing
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a single cluster expansion like DBSCAN, different clus-
ter expansions are started at different points through dif-
ferent chains. The algorithm also handles collision when
two chains become a part of a single cluster. The ap-
proach of chains also uses parallelism while determining
the core points and also for making its neighbors as new
seed points.

DVBSCAN (Density based algorithm for density varied
clusters in large spatial databases) (2010)

Pros: Handles local density variation within clusters.
Cons: Parameters cannot be determined automatically.
Key issues addressed: Finding clusters in uniform density
regions.

Description: DVBSCAN [15]enables handling of local
density variation within a cluster. This property does not
exist in the DBSCAN algorithm. DVBSCAN computes
the increasing average density of the cluster along with
cluster density variance for the core point aiming for fur-
ther expansion. The algorithm considers the density of
its € neighborhood. If cluster density variance for a core
point lies within the boundary of a threshold value satis-
fying the cluster similarity index, the algorithm allows the
core point for expansion. The running time of DVBSCAN
is O(N log N).

P-DBSCAN (Photo-DBSCAN) (2010)

Pros: Analyzes places and events using geo-tagged pho-
tos.

Cons: Gathering of data becomes a hectic process.

Key issues addressed: Optimization of dense area search,
convergence speed of the algorithm.

Description: P-DBSCAN [37] is used to analyze locations
and events utilizing an assembly of geo-tagged photos.
The algorithm is based on DBSCAN [6]. P-DBSCAN in-
troduces two novel concepts: density threshold and adap-
tive density. The density threshold is defined according
to the number of people within neighboring region while
adaptive density nurtures fast convergence towards high
density regions. The algorithm aims to discover interest-
ing places or significant events that are characterized by
high photo activity in a specific area. The algorithm starts
with a photo that is neither core nor a noise object. A core
photo is ascribed to a cluster while the neighboring photos
are queued up for further processing. The processing of
photos continues till the queue is empty. For a core photo
the algorithm invokes its adaptive density version. Adap-
tive density threshold is the ratio of present and previous
density of a photo object p. Points lying in the neighbor-
hood of p are placed into the current cluster as long as
the density ratio exceeds 1 or it is more than the thresh-
old density. P-DBSCAN runs to completion in O(N log N)
time, with N representing the quantity of photos.

DADBC (Distributed approach for density-based cluster-
ing) (2011)

Pros: Adopts a distributed structure while reducing
the communication overhead involved in aggregation of
global models.

Cons: Complexity and quality of clusters depend on the
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nature of aggregation.

Key issues addressed: Higher cost involved in merging
results from local nodes involving heterogeneous data.
Description: DADBC [38] reduces the communication
overhead and improves the quality of the global models
by considering the shapes of local clusters. Global mod-
els are obtained by aggregating the localized nodes. The
model proposed by the algorithm is a three step process.
Firstly, it clusters datasets located on each local node and
selects good local representatives. Secondly, all the local
models are sent to the server. Local models are not di-
rectly merged to build the global model. The local models
are extracted from the local data such that their sizes are
small enough to send through the network. The algorithm
regenerates the data objects on the server basing on the
local model representatives. The objective of this step is
to improve the quality of the global model.
MR-DBSCAN (MapReduce-DBSCAN) (2011)

Pros: Adopts a distributed structure while reducing
the communication overhead involved in aggregation of
global models.

Cons: Complexity and quality of clusters depend on the
nature of aggregation.

Key issues addressed: Higher cost involved in merging
results from local nodes involving heterogeneous data.
Description: MR-DBSCAN [39] is a parallel DBCLA
that implements Map-Reduce in four stages. A quick par-
titioning strategy is adopted for large scale non-indexed
data. First stage involves data preprocessing through load
balancing while removing skewness from the data. In the
second stage, a local DBSCAN algorithm is run. All the
related data is prepared for every single reducer, where the
local DBSCAN function executes. The local DBSCAN
is a modified version of the PDBSCAN [26]. The third
stage involves merging of clusters from subspaces. In the
fourth stage, a global view of cluster mapping is built.
This stage also involves streaming of all the local clus-
tered records over the map-reduce process and replacing
their local cluster identity with a new global cluster iden-
tity.

HDBSCAN (Hierarchical clustering method using DB-
SCAN)(2013)

Pros: Finds clusters of variable densities.

Cons: Runs is quadratic time complexity.

Key issues addressed: Sensitivity to change in parameter
values.

Description: HDBSCAN [40] is a density-based, hierar-
chical clustering method producing a clustering hierar-
chy. Itis an improvement over the OPTICS [14]algorithm.
From this clustering hierarchy, a simplified tree of sig-
nificant clusters is reconstructed. The algorithm proposes
a cluster stability measure and formulates a method with
the objective of finding an optimal solution to the problem
of identifying stable clusters. HDBSCAN is not sensitive
to the changes in parameter values. HDBSCAN has the
potential to detect clusters of varying densities. In addi-
tion, the algorithm automatically simplifies the hierarchy
into a representation involving the most significant clus-
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ters. HDBSCAN produces a clustering tree that contains
all partitions obtainable by DBSCAN [6] in a hierarchical
nested manner.

HDBSCAN uses Prim’s algorithm based on an ordinary
list search to construct the minimum spanning tree(MST).
The method is implemented in O(dN?) time, with the data
consisting of d features. At a given point of time, the al-
gorithm takes into account the current hierarchical level,
as a result of which the HDBSCAN algorithm keeps in
memory the extended MST.

Cludoop (Distributed density-based
Hadoop) (2015)

Pros: Efficiently clusters large scale data in parallel using
Hadoop.

Cons: Workload balancing problem of clustering on
Hadoop platform.

Key issues addressed: Density based clustering for big
data applications.

Description: Cludoop [41] uses Hadoop for efficiently
dealing with big data. It is a distributed clustering tech-
nique. Initially, a serial algorithm CluC is proposed to
find fast clusters. CluC classifies points by utilizing the
relationship of cells that are connected instead of any ex-
pensive neighbor query method. CluC is put into the par-
allel mapper using existing data partition on Map/Reduce
platform. Cell based principles guide a three-step prop-
erties: Merge-Refine-Merge in order to combine clusters
over the cover of pre-clustering results upon the reducer.

DSets-DBSCAN (Dominant Sets-DBSCAN) (2016)
Pros: Removes dependency of clustering on change of pa-
rameters.

Cons: Designed to work only for image segmentation .
Key issues addressed: Parameter dependency.
Description: DSets-DBSCAN [42] enables clustering of
image pixels as a part of the image segmentation tech-
nique. In order to remove the dependence of clustering
results on user specified parameters, the algorithm pro-
vides a parameter-free approach based on the dominant
sets (DSets [43]) and DBSCAN [6]. At first, a histogram
equalization is applied to the pairwise similarity matrix of
input data to make the clustering results independent of
user-specific parameters. By merging the merits of DSets
[43] and DBSCAN, the algorithm generates arbitrarily
shaped clusters with no input parameter. DSets-DBSCAN
extracts clusters in a sequential process. The clusters ob-
tained from the dominant sets are extended by means of
DBSCAN.

The algorithm achieves parameter free technique in two
steps. First, histogram equalization is applied to the simi-
larity matrices corresponding to different parameters (o7s)
before they are used in clustering. In the second step,
DSets is run to obtain the dominant sets clusters followed
by cluster extension process based on DBSCAN and ex-
tract the clusters sequentially. DSets clustering uses the
pairwise similarity matrix of the data to be clustered as
input and does not require the data to be represented in
vector spaces. By means of histogram equalization trans-
formation, DSets-DBSCAN makes different os generate

clustering on
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identical similarity matrices which result in identical clus-
tering results. With the involvement of DBSCAN, the al-
gorithm runs into completion in O(N log N) time.

Dynamic density based clustering (2016)

Pros: Provides computational hardness in various updates
schemes under dynamic clustering.

Cons: Convergence of multiple concepts .

Key issues addressed: Inefficient clustering in case of dy-
namic updates.

Description: This work [44] investigates the algorithmic
principles for dynamic clustering by DBSCAN and pro-
poses p-approximate [44] to bring down the computa-
tional hardness on static data. The work also proves that
the p-approximate version suffers from the same hardness
when the dataset is dynamic in nature. However, it also
shows that this hardness disappears when a tiny further
relaxation is made. The quality of result obtained is same
as that while handling the static data. This phenomenon
is known as the “sandwich guarantee” of p-approximate
DBSCAN. The algorithms guarantee near-constant up-
data processing. The approximate version takes O(N)
time while the unit spherical emptiness checking(USEC)
method consumes o(N*/3) time in worst case.

MBSCAN (Mass-based clustering of spatial data with ap-
plication of noise) (2016)

Pros: Introduces generic data dependent dissimilarity
measure to find proximity between data objects. Removes
the disadvantages associated with distance based cluster-
ing.

Cons: Parameter sensitive. Random parameter selection
can impact the final results.

Key issues addressed: Hard density problem, issues re-
lated to distance based clustering.

Description: MBSCAN [29] is the first DBCLA to in-
troduce a general interpretation of dissimilarity depend-
ing on data distribution. The algorithm proves that the
data dependent dissimilarity is better than any geometri-
cal model used for clustering. MBSCAN replaces the dis-
tance function with data dependent dissimilarity measure
removing the shortcomings of methods based on distance
functions. In MBSCAN, the dissimilarity measure de-
pends on the probability mass of the smallest region cov-
ering two data instances. Let D be the dataset from prob-
ability density function F' and H € H(D) is a hierarchical
partitioning model of the space into non-overlapping re-
gions. For two data instances a,b, the smallest local region
covering a and b wrt H and D is given as:

n

R(a,b|H; D) = argmin
rcH|{a,bler =)

I(zenr), (1)

where 1(.) is an indicator function. The mass based dis-
similarity estimated from a finite number of models H; €
H(D),i=1,234,...,tis:

1 t
me(a.b|D) = — > P(R(a.blH;: D)), 0
i=1

where P(R) = i Y.cp 1(z € R). Instead of any con-
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ventional distance metric to measure the proximity, the
similarity between two points m.(a,b) is measured by
using Eq. (2). Unlike DBSCAN, instead of using e-
neighborhood, p-neighborhood is used. The definition of
p-neighborhood is given as:

M, (a) = #{b € Dlm(a,b) < p}. 3)

From Eq. (3), it is evident that only those points b are in-
cluded as seed points for an object a if the mass based
dissimilarity between a and b is less than a certain thresh-
old u. Unlike DBSCAN which involves a radius to decide
the neighborhood while finding point density, MBSCAN
relies on mass based measure. The algorithm runs to com-
pletion in O(N log N) time.

4.1.2 Grid based density computation:

1)

2)

STING (STatistical INformation Grid) (1997) (Represen-
tative algorithm)

Pros: Statistical grid based approach to reduce the cost of
clustering spatial data objects.

Cons: Grid size may impact the final outcome.

Key issues addressed: Parameter dependency.
Description: STING [45] is a statistical technique for
clustering. It adopts a grid oriented approach to limit
the computational cost involved in clustering. STING re-
trieves statistical information from spatially arranged cells
to answer the queries involved in clustering. This proce-
dure is independent of each data item. The algorithm uses
top-down approach while answering queries from spatial
data. In this method, a higher level cell is fragmented into
smaller lower level cells. Statistical information [45] such
as mean, standard deviation, maximum, minimum, type
of distribution in each grid cell are stored after computa-
tion. The parameters of cells at the lower level enables the
algorithm to calculate the statistical information pertain-
ing to each cell.

The algorithm generates the hierarchy of cells with their
associated parameters when the data is loaded. The sta-
tistical parameters are computed directly from the data.
A confidence interval is measured for individual cells in
current level. A cell is labeled as relevant or irrelevant de-
pending on the value of confidence interval. After pro-
cessing the current layer of cells, the next layer of cells is
processed. Instead of going through all the cells, the algo-
rithm looks at only those cells which have been children
of the relevant cells. STING finds all the regions formed
by relevant cells and returns them. The algorithm scans
the dataset only once to determine the parameters associ-
ated with the grid cells at the lower level. The time taken
is linearly proportional to the number of cells K(say) at
the bottom layer and is given as O(K).

DENCLUE (DENsity based CLUstEring) (1998)

Pros: Models points density analytically as the sum of
influence function. Extracts the peak of curve as density
attractors.

Cons: Lacks extensive comparison with other clustering
methods.

Key issues addressed: Clustering large multimedia
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datasets.

Description: DENCLUE [19]fosters cluster discovery in
multimedia databases filled with noise. As per the algo-
rithm, the total density at a point is modeled analytically
as the summation of influence functions. Clusters of ar-
bitrary shapes belonging to any R¢ space are described
through mathematical equations. These equations repre-
sent the generic density function in context of the algo-
rithm. DENCLUE puts data points into following classes:
density attractor and density attracted. For a given point
p, if the sum of influence function of any other point ¢
upon p crosses a certain threshold, then p is designated as
a density attractor. From the point p, if ¢ becomes den-
sity reachable, then point g is classified as a density at-
tracted point. For a continuous and differentiable func-
tion, e.g., Gaussian influence function, a hill climbing
algorithm [46] can detect the density attractor. Peaks of
the influence function which consists of local maxima are
density attractors. The points in the neighborhood of the
peaks are usually the density attracted points.
DENCLUE is a two step algorithm. The first step con-
structs a map of the necessary region of the data space.
A minimal bounding hyper-rectangle is fragmented to a
multi-dimensional hyper cube. Only hyper-cubes which
contain the data points are determined. The numbering of
hypercubes is done based on a relative origin. The map
speeds up the computation of density function which re-
quires an efficient access to the nearby regions. The sec-
ond step is the real clustering step. In this step DEN-
CLUE identifies the density attractors and density at-
tracted points. The densely filled cubes are connected to
other cubes to determine the clusters. DENCLUE runs in
O(N log N) time.

OPTIGRID (Optimal Grid-Clustering)(1999)

Pros: Creates optimal grid partitioning to perform effi-
cient high-dimensional clustering.

Cons: Nature of grid partitioning may have an impact on
the final clustering results.

Key issues addressed: Addresses the issue related to
“curse of dimensionality” for clustering in higher dimen-
sions.

Description: OPTIGRID [47] uses grids to perform clus-
tering. OPTIGRID was introduced by Hinneburg et al.
in order to address various issues related to high dimen-
sional data. The algorithm strives to remove the curse
of dimensionality in high dimensional space. OPTIGRID
shows that different condensation based approaches like
BIRCH [48], STING [45] has effectiveness issues in high
dimensional space. OPTIGRID constructs the grid based
partitioning of data in an optimal way. This is done by cal-
culating the hyperplanes that are best partitioning for each
dimensions using certain projections of the data. The al-
gorithm uses kernel density function to make the density
estimate. To efficiently determine cutting planes, the algo-
rithm uses the concept of contracting projections. A con-
tracting projection is a linear transformation defined on
all points. For a given point x, its density in contracting
projection acts as an upper bound of its planar density.
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Initially, the algorithm determines the set of contracting
projections after which it calculates all projections of the
dataset D. A set of best cutting planes is determined as
BEST_CUT. If BEST_CUT is empty, then the dataset D is
the cluster obtained. Otherwise, the cutting planes which
obtain the maximum score from the set BEST _CUT are
selected. This is followed by the construction of a multi-
dimensional grid G. All the data points x € D are inserted
into G. The highly populated grid cells are chosen as the
clusters and are added to a cluster set C. The procedure
takes O(N) time to completion.

WaveCluster (Wavelet-based clustering)(1999)

Pros: Finds clusters of arbitrary shapes, insensitive to
noise, independent of the order of input data.

Cons: Not designed to work for non-spatial data.

Key issues addressed: Extraction of clusters at higher lev-
els of granularity with appropriate noise filtering.
Description: WaveCluster [49] uses the multi-resolution
property of wavelet transforms to determine clusters of ar-
bitrary shapes in high dimensional space. Wavecluster is
insensitive to noise and the order of the input data. The al-
gorithm partitions the feature space into non-overlapping
hyper rectangles called as cells. Each cell is an intersec-
tion of one interval from each dimension. Each cell has a
list of statistical parameters such as mean, variance, ag-
gregation and the probability distribution of points asso-
ciated with it. Each cell has information about the data
density of the cell. The quantity of points within a cell is
the single chosen statistic used in the algorithm. The al-
gorithm then applies wavelet transformation over the fea-
ture space. Connected components are found in the sub
bands of the transmuted feature space. The cells are as-
signed labels and the objects are mapped to form the clus-
ters. WaveCluster chooses all the points within a cluster as
representative of the cluster. The algorithm runs to com-
pletion in O(N) time.
IPCLUS (Interactive
rithm)(2001)

Pros: Leverages the use of human intervention and com-
puter to determine clusters in high dimensional space.
Cons: Human intuition may be less accurate at times.
Key issues addressed: Issue of extracting meaningful
clusters in high dimensional data space.

Description: IPCLUS [50] uses human intuition to define
the cluster and characterize its meaningfulness. [IPCLUS
utilizes the credibility of both human and computers. The
algorithm proposes a system which performs high dimen-
sional clustering through efficient coordination between
man and machine. Initially, the algorithm determines the
projection of data points. Such projections are referred to
as well polarized projections. A subspace of the data is
determined using the well polarized clusters. The algo-
rithm uses kernel density estimates to determine the data
density at each point of the data projection. The data is
sampled on a iterative basis such that the most dominant
subspace clusters are discovered.

Projected CLUStering algo-

D-Stream (Density-based clustering framework for data
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streams)(2007)

Pros: Finds arbitrarily shaped clusters from data streams
using a grid based approach. No degradation of cluster
quality happens.

Cons: Size of grids may impact the clustering result.

Key issues addressed: Dynamic changes in data stream
are handled by the usage of density decaying technique
[51].

Description: D-Stream [51] enables clustering of stream-
ing data using a density based technique. The algorithm
uses an on-line constituent to map individual data object
to a grid and an off-line constituent to evaluate density of
the grid. Clustering of grids is done based on their den-
sity. D-Stream introduces a density decaying technique in
order to extract the dynamic changes in the data stream.
The algorithm exploits the relationship between the de-
cay factor, data density and the structure of the clusters
efficiently generating and handling clusters in real time.
D-Stream removes grids which are mapped to by the out-
liers for enhancing space and time efficacy. This technique
enables clustering speedy data streams without destroying
the cluster quality. D-Stream takes O(C) time for comple-
tion with C representing the cluster count.

DBCLASD (Distribution Based Clustering of LArge Spa-
tial Databases)(2010)

Pros: Adaptive to change in parameters unlike DBSCAN.
Cons: Not suitable for non-spatial data objects.

Key issues addressed: Addresses the issue of dynamic
dataset through incremental updates.

Description: DBCLASD [21]assumes that the objects
within a cluster are distributed uniformly. The algorithm
dynamically determines the quantity and conformation of
clusters in a database without involving any input param-
eter. The algorithm is efficient for large databases. DB-
CLASD incrementally augments an initial cluster with the
points within its neighborhood. This procedure continues
till the set of nearest neighbor distances of the resultant
cluster fits the estimated distance distribution. A point
which is not yet a part of the current cluster but needs to be
examined for possible cluster membership is a candidate
point. Candidates failing the cluster membership test in
their first attempt are called unsuccessful candidates. Un-
successful candidates are not overlooked. They are con-
sidered at a later time. Objects belonging to any cluster
might shift to another cluster later. The running time of
DBCLASD is approximately twice that of DBSCAN or
O(N logN).

GSCAN (Density-based clustering using Graphics Pro-
cessing Units)(2014)

Pros: Eliminates redundant distance computation for
clustering using a grid structure.

Cons: Size of grids may impact the final clustering re-
sults.

Key issues addressed: Parallelization of density based
clustering.

Description: GSCAN [28] aims to reduce unnecessary
distance computation using a grid structure. GSCAN is
an extension of CUDA-DClust [27] algorithm. Both DB-
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SCAN and CUDA-DClust perform distance computations
for each unclassified object p in dataset D to compute the €
neighborhood N.(p). Most of these objects reside beyond
the € neighborhood of p and thus most of the distance
computations become an overhead. GSCAN reduces the
unnecessary distance computations by forming a grid cov-
ering the entire data space D. The grid dimension d’ is less
than or equal to data dimension d. For each cell in the grid,
a list of objects contained in the cell is generated. The al-
gorithm performs distance computations from an unclas-
sified object p to only the objects contained in the cells
overlapping with the e-range from p. A GPU kernel func-
tion is used to efficiently find the data objects contained
in each grid cell. The entire dataset is evenly divided into
grid size data subsets and each subset is assigned to a ker-
nel block. The data subset assigned to a block consists
of data objects residing adjacently in device memory to
make the best utilization of the device memory cache.

4.1.3 Probabilistic based density computation

1) STING [45] (Representative algorithm): Once a layer is
determined, for every cell elonging to this layer, the con-
fidence interval of probability is computed. This is done
in order to determine the relevance of a cell to a given
query. Moreover the algorithm extracts statistical infor-
mation like mean, standard deviation from spatial cells
to respond against clustering queries. DENCLUE [19]:
A probability measure is used to ascertain whether the
number of density attractors in the whole dataset D and
a dataset containing clusters Dy, (say) is identical or not.
When the number of outliers in D tends to oo(infinity),
this probability equates to one. OPTIGRID [47]: With
a decreasing grid size, the neighboring grids to be con-
nected reduces. At this juncture, the use of probability lies
in identifying the likelihood of cutting planes hitting the
cluster centers.
IPCLUS [50]: The algorithm makes use of kernel den-
sity estimate(KDE) [52] to find the point density. KDE
resembles a probability density function which estimates
the likelihood of a point being drawn from a data sample.
This probability can be interpreted as the density of a data
point.

2) FOPTICS (Clustering of Fuzzy data objects using OP-
TICS) (2005)
Pros: Expresses the similarity between two fuzzy objects
with distance probability functions.
Cons: The variable probability value to a distance may
impact the final clustering result.
Key issues addressed: Issue of performing hierarchical
density based clustering on uncertain and fuzzy data.
Description: FOPTICS [53] uses distance probability
functions to express the closeness between two fuzzy ob-
jects. The algorithm analyzes uncertain data which are
naturally occurring in diverse fields. FOPTICS’ working
principle is based on the OPTICS [14]algorithm. The re-
sult set adds to itself the first element from the seed list
[14]and the range query is carried out. FOPTICS uses
monte-carlo sampling to compute the reachability val-
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ues. The algorithm integrates fuzzy distance functions
into data mining algorithms. The run time of FOPTICS
is O(s>N?) with s denoting the frequency of parallel OP-
TICS run.

3) FDBSCAN (Clustering of Fuzzy data objects using DB-
SCAN)(2014)
Pros: Expresses the similarity between two fuzzy objects
with distance probability functions.
Cons: The variable probability value to a distance may
impact the final clustering result.
Key issues addressed: Issue of performing density based
clustering on uncertain and fuzzy data.
Description: FDBSCAN [54] uses distance probability
function to evaluate the proximity between two fuzzy ob-
jects. A distance value is assigned a probability value by
the fuzzy distance functions. The distance functions pro-
vide information that are fully exploited by performing
integration of these functions. The integration is directly
used into the mining algorithm. In real applications there
often exists no sharp boundary between clusters. Fuzzy
clustering is better suited for such applications. FDB-
SCAN adopts a monte-carlo based sampling technique for
sampling purposes and has an approach similar to DB-
SCAN for clustering the fuzzy objects. The running time
of FDBSCAN is O(N?).

4.1.4 Data dependent density computation

SNN-DBSCAN [4] (Representative algorithm): The use of
shared nearest neighbors in determining the proximity score be-
tween data points is a measure of data dependent computation.
The algorithm does not rely on any geometrical model e.g., dis-
tance to determine the similarity measure between data points.
MBSCAN [29]: MBSCAN was the pioneer algorithm in adopt-
ing a generic definition of data dependent dissimilarity mea-
sure. The algorithm relies on the strength of combined neigh-
borhood between a pair points evaluated through construction
of iForest [29].

4.2 Parameter sensitivity

In this subsection, as per the second category: Parameter sensi-
tivity, we classify the DBCLAs into two classes viz. Parameter
sensitive, Parameter change adaptive. Since we have already
described all the 32 DBCLAs studied in this survey (Refer Sub-
section 1). As a result, we only cite the relevant DBCLAs be-
longing to rest of the categories and their classes.

4.2.1 Parameter sensitive
DBSCAN [6] (Representative algorithm): Depends on param-
eters Eps (radius of a point neighborhood), MinPts (minimum
number of points required to be within the neighborhood of a
point for it to be called as a dense point). STING [45]: For
each cell in a given layer there are parameters which depend on
attributes and otherwise. Some important parameters involved
are: n (dataset size), m (mean of all the cell values), s (standard
deviation of all the cell values), min (minimum cell values),
max (maximum cell value).

DENCLUE [19]: The influential parameters are o (deter-
mines the influence of a point in its neighborhood) and & (points
out if a density-attractor is significant or not). CLIQUE [12]:
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The parameters involved here are & (number of partitions per
dimension), T which represents the density threshold. These pa-
rameters influence the clustering results of the algorithm. GDB-
SCAN [30]: The algorithm depends on following parameters
viz. a neighborhood predicate N Pred, a weight function wCard
and a minimum weight MinCard. Variation in these parameters
affects the overall functioning of the algorithm. Inc-DBSCAN
[31]: Similar to DBSCAN, parameters Eps and MinPts deter-
mine the performance of the algorithm. PDBSCAN [26]: Sim-
ilar to DBSCAN, parameters Eps and MinPts affect the out-
come of the algorithm.

OPTIGRID [47]: Uses the kernel density estimate (KDE)
[52] to find the point density. The related parameters in the
KDE function can potentially influence the density attractors
and attracted points involved in clustering. WaveCluster [49]:
Multiple parameters are used such as number of dimensions d,
number of paritions per dimension m which makes the algo-
rithm parameter sensitive.

SDBSCAN [32]: Extends the DBSCAN algorithm and is
therefore sensitive to parameters. [IPCLUS [50]: The KDE ap-
proach is used to evaluate the point density. KDE comprises
of a smoothing factor or kernel bandwidth % which influ-
ences the outcome of the algorithm. SNN-DBSCAN [4]: SNN-
DBSCAN mainly involves three parameters: Eps, MinPts and
similarity(p, q) where p,q € D (input dataset). Each of these
parameters influence the final set of clusters and outliers ob-
tained. DBDC [34]: DBDC relies on the aggregation of infor-
mation from local sites to a global site for clustering. In this
process, the algorithm uses certain parameters that affects the
final set of clusters.

IDBSCAN [35]: A total of five parameters influence the
IDBSCAN algorithm. These are: the neighbor list size &,
the distance for spatially and non-spatiallly arranged objects
Epsl, Eps2, MinPts similar to DBSCAN and a threshold value
€. FOPTICS [53]: Two fuzzy distance functions are used as
algorithm parameters making FOPTICS parameter sensitive.
ST-DBSCAN [16]: The involved parameters are Epsl, Eps2,
MinPts and Ae potentially affecting the outcome of the algo-
rithm. KIDBSCAN [36]: KIDBSCAN consists of three param-
eters viz. € (radius) MinPts and cluster impacting the result of
the algorithm. D-Stream [51]: An integer parameter is involved
which adjusts the clusters after that amount of time. Variation
in the parameter may impact the cluster adjustment time due to
the offline component of the algorithm.

CUDA-DClust [27]: The algorithm is mainly influenced by
two parameters €, MinPts similar to DBSCAN [6]. The var-
ious components of the algorithm use certain other parame-
ters making the method sensitive to change in the parameter
values. DVBSCAN [15]: The parameters involved are € (ra-
dius), ¢ (equivalent to MinPts of DBSCAN), @ and A which
control the local density variation. P-DBSCAN [37]: The den-
sity parameter used is MinOwners having similar functional-
ity as MinPts of DBSCAN. The other parameter known to
have influence on the algorithm is € (the radius component).
DADBC [38]: Variants of the parameters in DBSCAN are used
by DADBC. These are MinPtsgopa and €gopq Where parameter
MinPtsgopa = f(MinPts, €gopar)-

MR-DBSCAN [39]: Eps, MinPts and m(maximum size of

data per node) are the prominent parameters having an im-
pact on the outcome of the algorithm. FDBSCAN [54]: Since
the method extends DBSCAN while dealing with uncertain
data, the involved parameters go onto have an influence on
the clustering of fuzzy data objects. GSCAN [28]: In case of
GSCAN, the parameters used are the number of data items
N, number of dimensions of data d and the minimum num-
ber of points MinPts within an object’s neighborhood mak-
ing the algorithm sensitive to parameter changes. Cludoop
[41]: The algorithm uses Eps and MinPts as parameters sim-
ilar to DBSCAN leading towards parameter sensitivity. MB-
SCAN [29]: MBSCAN relies on parameters such as number
of iTrees(t), u-neighborhood mass(u), the core point formation
threshold(d..re) to produce the clusters. Any change in parame-
ter values influences the final clustering result.

4.2.2 Parameter change adaptive

OPTICS [14](Representative algorithm): OPTICS produces
cluster ordering that contains information corresponding to
density based clusters. A wide range of parameters are cov-
ered by the mechanism adopted by OPTICS making it a pa-
rameter change adaptive algorithm. DBCLASD [21]: The al-
gorithm functions without the involvement of any parameters.
HDBSCAN [40]: Executes DBSCAN for a range of € val-
ues and aggregates the result to cluster points having stabil-
ity over €. As a result the algorithm is more resistant to pa-
rameter changes. DSets-DBSCAN [42]: Applies the concept
of histogram equalization to pairwise similarity matrix of in-
put dataset. This enables the algorithm to create an approach
independent of user defined parameter setting. Dynamic den-
sity based clustering [44]: The algorithm leverages the idea of
Sandwich Guarantee for the newly introduced p-approximate
DBSCAN. On varying € to a maximum value of pe, the clusters
obatined do not change much for a smaller value of e.

4.3 Execution mode
4.3.1 Serial
DBSCAN [6] (Representative algorithm): The algorithm first
detects the core and non-core points from the dataset and aggre-
gates the core points to form clusters. Subsequently, the points
which are not a part of any cluster get filtered as noise points.
STING [45]: The designation of different layers of cells and
processing the relevant cells to extract clusters happen in a se-
rial manner. DENCLUE [19]: DENCLUE functions in two se-
rial steps. These are mapping of appropriate regions of datas-
pace followed by the clustering step. CLIQUE [12]: The algo-
rithm enables discovery of dense clusters in high dimensional
dataspace. The partitioning of data into cells as well as clus-
ter formation take place serially. GDBSCAN [30]: GDBSCAN
extends DBSCAN for both point objects and spatially arranged
objects. The algorithm functions in a serial manner.
Inc-DBSCAN [31]: It is the incremental version of DB-
SCAN which handles data updates dynamically. The updates
are processed sequentially. OPTIGRID [47]: The partitioning
of dataspace into grids, creation of hyper-planes and the task
of clustering are serial in nature. OPTICS [14]: The augmented
ordering of the database and building of the clustering structure
take place in a serial manner. WaveCluster [49]: The algorithm
partitions the feature space into cell based hyper rectangles. In
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the subsequent stage, wavelet transform is applied over the fea-
ture space resulting to produce clusters. SDBSCAN [32]: The
sampling of data representatives is followed by an efficient la-
beling of the un-labeled data. This is done in a sequential man-
ner.

IPCLUS [50]: Leverages the intervention of human and ma-
chines to extract clusters serially in a high dimensional data
space. SNN-DBSCAN [4]: The steps of SNN-DBSCAN start-
ing from the construction of K-sparsified SNN graph to detec-
tion of core and non-core points happen sequentially. Each step
is dependent on the previous step. The final step is clustering
making the algorithm a serial procedure. IDBSCAN [35]: The
search for a region in the neighborhood for aggregating the ex-
pansion seed happens serially. FOPTICS [53]: The probabil-
ity value used to determine the proximity score between points
followed by clustering is a serial process. ST-DBSCAN [16]:
The algorithm addresses the issue of variable density in a clus-
ter. The clustering of spatio-temporal data or non-spatial data
takes place in serial manner. KIDBSCAN [36]: KIDBSCAN
functions in three steps supporting the integration of K-means
clustering [9] with the IDBSCAN [35] algorithm. Starting from
variable initialization to applying K-means leading into the ex-
ecution of IDBSCAN take place sequentially.

D-Stream [51]: The algorithm facilitates clustering of data
streams using grids. The clustering of grids is done depend-
ing on their density. The steps of the algorithm are serial in
nature. DBCLASD [21]: DBCLASD is an incremental ap-
proach towards clustering. The algorithm dynamically deter-
mines the clusters in a sequential way without involving any
input parameters. DVBSCAN [15]: The algorithm handles the
intra-cluster density variation in a serial manner P-DBSCAN
[37]: P-DBSCAN analyzes locations and events through the
use of geo-tagged photos. The algorithm is based on DBSCAN
thereby adopting a serial method of execution. DADBC [38]:
The model proposed by DADBC is a three step process aggre-
gating the information received from the localized nodes. The
steps are carried out serially. HDBSCAN [40]: Adopts a hier-
archical scheme of clustering based on density computations.
The algorithm focuses on finding the most significant clusters
in a serial manner. FDBSCAN [54]: Extends DBSCAN while
finding the similarity between fuzzy data points in a sequential
manner by using probability based distance functions.

GSCAN [28]: Adopts a mixture of serial and parallel
schemes to perform clustering. The algorithm extends CUDA-
DClust [27] by building a grid like structure while extracting
clusters. DSets-DBSCAN [42]: The algorithm steps involve
histogram equalization thereby combining the benefits of DSets
[43] and DBSCAN [6] for clustering to happen in a sequential
manner. Dynamic density based clustering [44]: The algorithm
facilitates dynamic clustering of data on frequent updates. Vari-
ous theoretical schemes have been proposed to reduce the com-
putational hardness. The algorithm functions in a serial manner.
MBSCAN [29]: MBSCAN computes the similarity measure
between data objects, detects the core and non-core points and
performs clustering in sequential way.

4.3.2 Parallel

PDBSCAN [26] (Representative algorithm): PDBSCAN
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demonstrates parallelization of DBSCAN using a distributed
data-structure as a part of shared nothing architecture. CUDA-
DClust [27]: Uses the high parallelism facility of the GPUs in
combination with a greater bandwidth for efficient clustering.
MR-DBSCAN: Implements the Map-Reduce in four stages to
ensure parallelism. The algorithm locally executes DBSCAN
for extracting the clusters. [39], GSCAN [28]: GSCAN extends
CUDA-DClust by eliminating redundant distance computation
through the use of grid structure.

4.3.3 Distributed

DBDC [34] (Representative algorithm): Clusters data locally in
different sources and restores the cluster information in a glob-
ally located server using a distributed structure. Cludoop [41]:
Uses a distributed structure for efficient clustering of large scale
data.

4.4 Nature of data

4.4.1 Spatial

DBSCAN [6] (Representative algorithm): Uses the SEQUOIA
2000 [55] datasets representing Earth Science tasks. Each of the
contained datasets can be spatially arranged. STING [45]: Sim-
ilar to DBSCAN, the SEQUOIA 2000 [55] datasets were used
for evaluation of the STING algorithm. CLIQUE [12]: Uses
synthetic as well as real world datasets with varying number of
attributes that can be spatially placed. GDBSCAN [30]: Syn-
thetic databases viz. “bell shaped clusters, non-convex shaped
clusters and arbitrary shaped clusters” were used for com-
parisons along with the SEQUOIA 2000 datasets [55]. Inc-
DBSCAN [31]: 2D spatial databases were used along with
WWW access log database. PDBSCAN [26]: The algorithm
uses Birch [56] and SEQUOIA datasets [55] which are spatial
in nature.

OPTIGRID [47]: High dimensional spatial datasets were
used removing the phenomenon of “curse of dimensionality”.
WaveCluster [49]: Large synthetic datasets were generated for
evaluating the algorithm. Each spatial dataset were composed
of 1,000,000 data objects. SDBSCAN [32]: Similar to DB-
SCAN large spatial databases were used along with the SE-
QUOIA 2000 benchmark datasets [55]. IPCLUS [50]: Spa-
tial datasets (See UCI Machine Learning Repository) were
used. SNN-DBSCAN [4]: The spatial datasets used in SNN-
DBSCAN used were 2D dataset, datasets related to earth sci-
ences. DBDC [34]: The algorithm used three 2D point sets for
its evaluation. IDBSCAN [35]: Large spatial databases from
different resources e.g., satellite images, geographical images,
medical images etc. were used for evaluating the algorithm.

ST-DBSCAN [16]: Spatial data such as sea surface temper-
ature, sea winds, wave height, sea surface height have been
used for evaluation. KIDBSCAN [36]: Four spatial datasets
with polygonal clusters have been used for assessing the al-
gorithm. CUDA-DClust [27] Large spatial mining databases
were adopted for comparing the efficiency of CUDA-DClust
over its sequential counterpart. DBCLASD [21]: Large spatial
databases comprising polygonal clusters, earthquake databases
were used for comparisons. DVBSCAN [15]: The algorithm
used 2D synthetic dataset containing 4000 points for the evalu-
ation purposes. DADBC [38]: For evaluation purpose, a spatial
2D dataset viz. DS9 was used. MR-DBSCAN [39]: The GPS
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location records from vehicular traffic were used to asses the
effectiveness of the algorithm. HDBSCAN: 2D spatial dataset
was used while judging the performance of the algorithm [40].
GSCAN [28]: Compares with CUDA-DClust [27] and DB-
SCAN [6] over spatial dataset by varying the parameter val-
ues. Dynamic density based clustering [44]: Both static and
dynamic datasets were used proving the effectiveness of the al-
gorithm. MBSCAN [29]: Well known spatial datasets such as
Libras and Segments (See UCI Machine Learning Repository)
were used for peformance evaluation.

4.4.2 Non-Spatial

GDBSCAN [30] (Representative algorithm): Enables cluster-
ing of objects having both spatial and non-spatial attributes.
Data related to geography, biological data, astronomical data
were looked upon by the algorithm. FOPTICS [53]: The al-
gorithm adopts fuzzy (non-spatial) objects and expresses simi-
larity between them using probability functions. ST-DBSCAN
[16]: The algorithm facilitates cluster discovery for both non-
spatial and temporal data, e.g., record of temperatures during
day time. D-Stream [51]: Synthetic data and KDDCup’99 in-
trusion detection dataset (See UCI Machine Learning Reposi-
tory) were primarily used to judge the quality of the said stream
clustering algorithm.

FDBSCAN [54]: An artificial dataset (ART) consisting of
1000 2D points and an engineering dataset (PLANE) with 5000
42D points were taken into consideration. Cludoop [41]: Clu-
doop uses the Hadoop platform for carrying out distributed
clustering. The datasets included a trajectory dataset from the
project Geolife [57] and a Taxi data [58] containing around 15
million points. In addition, synthetic datasets viz. Ssyn (4413
points) and Lsyn (2 billion) points were also used to evaluate
the algorithm.

4.4.3 Multimedia/others
DENCLUE [19] (Representative algorithm): Datasets related
to CAD and molecular biology were used for assessing the per-
formance level of DENCLUE. OPTICS [14]: Visualizing large
high-dimensional datasets were taken into account while eval-
uating OPTICS. Industrial parts dataset, synthetic 2D datasets,
64D color histograms gathered from TV snapshots were also
employed for evaluation. P-DBSCAN [37]: The algorithm uses
a collection of geo-tagged photos from Flickr for analyzing
places and events. HDBSCAN [40]: Gene-expressions datasets
[59] viz. “Cell-Cycle237”, “Cell-Cycle384” and “YeastGalac-
tose” were used as three of the major datasets. Among the other
major datasets considered were Wine, Glass, Iris (See UCI Ma-
chine Learning Repository). DSets-DBSCAN [42]: The algo-
rithm mainly dealt with the task of image segmentation carried
on Berkley Segmentation dataset (See the Berkeley Segmenta-
tion Dataset and Benchmark).

In order to summarize the classification of DBCLAs, we ex-
tract the following details:

e A classification chart of the DBCLAs (Refer Fig. 6).

e Extract the percentage of DBCLAs belonging to all
classes under any given category (Refer Table 3).

o Identifying multi-class DBCLAs (Refer Table 4).

Table 3 Percentage of DBCLAS in each class

Percentage of

Category Class #DBCLAs #Total DBCLAs
DBCLASs
Point based 23 32 71.875 %
Density Grid based 8 25 %
definition Probabilistic 7 21.875 %
Data dependent 2 6.25 %
Parameter 28 875 %
Parameter sensitive
sensitivity | Ameter change g 18.75 %
adaptive
Execution Serial 27 84.375 %
mode Parallel 4 12.5 %
Distributed 3 9.375 %
Nature of Spatial 25 78.125 %
data Non-spatial 6 18.75 %
Multimedia/others 5 15.625 %

From the classification chart (Fig. 6) we observe that each
of the four categories: Density definition, Parameter sensitivity,
Execution mode and Nature of data contain different classes.
Each category classifies thirty-two DBCLAs into these desig-
nated classes per category.

The classification chart also enables us to extract the percent-
age of DBCLASs belonging to a particular class. Table 3, rep-
resents the percentage share of individual classes within each
category. From Table 3, it is evident that nearly 71% of the DB-
CLAs adopt point based technique to compute the density. A
higher percentage of the algorithms are also sensitive to change
in parameter values.

One of the primary goals of DBCLAs is to handle large vo-
luminous datasets in R? space. These datasets pose challenges
while grouping objects in higher dimensions. As a result, an in-
creasing number of DBCLAs are involved in dealing with large
non-spatial or multimedia datasets. Around 18% of the DB-
CLAs deal with non-spatial data while a significant 15% handle
multimedia datasets e.g., DENCLUE [19], GDBSCAN [30]. It
has also been observed that the point based technique of find-
ing densities from these datasets in R? space has many limi-
tations [4, 19,47]. As a result, nearly 24.24% and 21.875% of
DBCLASs use probabilistic and grid based approach to compute
the neighborhood density in the dataspace.

A single DBCLA can exhibit a combination of properties to
address certain challenges and therefore it may belong to multi-
ple classes under a certain category. Table 4 provides an account
of algorithms that belong to more than a single class. Eg: Un-
der the category of Density definition, around 21% of DBCLAs
use more than one technique to find the density of a neighbor-
hood while an estimated 9.375% of DBCLAs handle multiple
types of datasets. The presence of multi-class algorithms sig-
nifies the evolution of DBCLAs aiming to address a variety of
issues related to dealing with high dimensional datasets.

5 Relationship and differences among DBCLAs

In this section, first we present a set of common features shared
by various DBCLAs in order to relate and differentiate be-
tween the algorithms. Next, we provide the citation percentage
value of each algorithm showing the difference in referrals for
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Fig. 6 Classification chart of the DBCLAs

Table 4 Percentage of DBCLASs belonging to multiple classes

Percentage of

Category DBCLA #Classes Class name .
multi-class DBCLAs
DENCLUE 2 Grid based, Probabilistic
OPTIGRID 2 Grid based, Probabilistic
Density IPCLUS 2 Grid based, Probabilistic
definition SNN-DBSCAN 2 Point based, Data dependent 21.875 %
DBCLASD 2 Grid based, Probabilistic
GSCAN 2 Grid based, Probabilistic
MBSCAN 2 Point based, Data dependent
Parameter
sensitivity
Execution GSCAN 2 Serial, Parallel 3.125 %
mode
Nature of GDBSCAN 2 Spatial, Non-spatial
data ST-DBSCAN 2 Spatial, Non-spatial 9.375 %
HDBSCAN 2 Spatial, Multimedia/others

individual DBCLA. This is complemented by the extraction of
conceptual dependencies of DBCLAs on one another highlight-
ing the inter-algorithm relationship.

5.1 Relationship and differences through common features of
DBCLAs:

Based on our study of DBCLAs in this paper, we extract a set of
generic features: data preprocessing, density evaluation, dense

subspace extraction and cluster build for comparing the DB-
CLAs (Refer to Tables 5 and 6). The description of these fea-
tures are as follows:

5.1.1
Different data pre-processing techniques adopted by DBCLAs:

Data preprocessing

e Transforming raw data to meaningful information.
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Reducing the dimensions of data.

Using data generators.
Processing voluminous data.
Data reduction.

Data preprocessing step requires translating raw data into a
meaningful and understandable form. Real world data at most
times is complex, partial or inconsistent. Therefore it remains
a challenge to identify patterns or predict behavior from such
data. Depending on the context in which the algorithm is used,
it is often desirable to present the input data in a processed for-
mat. A processed input on a given algorithm often enables to
smoothly interpret the outcome of the method. In context of the
DBCLAs, there are methods which adopt a strategy of prepar-
ing data as per the requirements of algorithm. For instance in

Table 5 Relating and differentiating DBCLAS based on their common features

2021, 15(1): 151308

OPTIGRID [47], the projections of points are considered in-
stead of the raw data. The algorithm mainly strives towards ad-
dressing the curse of dimensionality in high dimensional space.

Data mining tasks often demand data to be presented in re-
duced dimensions. This phenomenon of dimensionality reduc-
tion is often carried out by techniques such as the Principal
Component Analysis (PCA) [60], kernel PCA [61], Linear dis-
criminant analysis (LDA) [62], generalized discriminant anal-
ysis [63]. Algorithms such as IPCLUS [50] employ the PCA
technique to find the optimum subspace in which the momen-
tum of a single set of points about their centroid is minimal.

Data generators are used to synthetically produce the data.
The structure of datasets and their size are controlled by the
data generators. Data generators influence important param-
eters such as the records, features and the range of values for

Algorithm Preprocessing Density evaluation Dense subspace extraction Cluster build
DBSCAN [6] No Points wi.thin a region Regions beyor-1d Arl?itrary shapes,
of specified radius threshold density uniform density
Reli tatistical
STING [45] No ¢ 1.es ons a.13 ed Populated grids Arbitrary shapes
information
DENCLUE [19] Yes A-nalytically, su.m Density attra?tors, Arpitra;y shapes
of influence functions kernel functions in R space
No. of point: DNF ions,
CLIQUE [12] Yes . ©- 0 points Dense subspace xp resdsmns
in a subspace CeR
GDBSCAN [30] Yes Points wivt}~1in a region Regions beyor'ld Arb'itrary shaPes,
of specified radius threshold density uniform density
Inc-DBSCAN [31] No Points wivtt~1in a region Regions beyor'ld Arb'itrary shaPes,
of specified radius threshold density uniform density
PDBSCAN [26] Yes Points wivtt~1in a region Regions beyor'ld Arb'itrary shaPes,
of specified radius threshold density uniform density
OPTIGRID [47] Yes Points wivtt~1in a region Regions beyor'ld Highl}./ populated
of specified radius threshold density grid cells
Probabilit Density threshold
OPTICS [14] Yes r'o ol 1}f ensity thresho Arbitrary shapes
density function dependent
Arbitrary shapes,
Wavelet transf
WaveCluster [49] Yes Grid based avelet transtorms wavelet
on feature space .
transformation
. o . . Sampling technique,
Points with R s b d
SDBSCAN [32] Yes oms Wl, ~m a reglon cgrons eyor'l core point cluster
of specified radius threshold density .
formation
IPCLUS [50] Yes kerm'al deTlsity Curve Arbitrar'y shvape
estimation peaks eye estimation
links iforml
SNN-DBSCAN [4] No Strong links Uniformly compact Arbitrary shapes
associated to a point regions
DBDC [34] Yes Points wivtl~11n a region Regions beyor'ld Fr(?m aggre.gated
of specified radius threshold density information
. o . . Arbitrary shapes,
Points with R s
IDBSCAN [35] Yes oints Wl.t. ina reglon egions beyor'ld core point
of specified radius threshold density .
cluster expansion
FOPTICS [53] Yes Pr-()babilit}f Density threshold Fl%zzy
density function dependent objects
Points within a region Arbitrary shape
! W% ! _gl Regions beyond ! . Y shap
ST-DBSCAN [16] Yes of specified radius, . on spatio-temporal
. . threshold density
assigns density factor data
Points within a region Regions beyond .
KIDBSCAN [36 Yes Arbitrary shapes
[36] of specified radius threshold density ety shap
Grids with Combining grids,
D-Stream [51] No Grid based s wit 1oining grt
high density arbitrary shapes
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Algorithm

Preprocessing

Density evaluation

Dense subspace extraction

Cluster build

High no. of chains,

Regions beyond

Cluster expan

CUDA-DClust [27] No . . . . .
multiple seed list threshold density -sion kernel, chains
Arbitrary shapes, .
P less A shapes
DBCLASD [21] Yes aTa.metc?r e.ss, . grid based approach rbitrary shapes,
probability distribution large databases
polygons
Depends on .
C te clust C t clust
DVBSCAN [15] No ompute cluster cluster density ore ottt cluster
density mean . formation
variance
Number of Adaptive Small packed
P-DBSCAN [37] Yes people, owners etc. density clusters with
adaptive density threshold based high density
DADBC [38] Yes Points wi.thin a re.gion Regions beyor-1d Fr<.)m aggre.gated
of specified radius threshold density information
MR-DBSCAN [39] Yes Points wi.thin a re.gion Regions beyor-1d Fr?m aggre.gated
of specified radius threshold density information
HDBSCAN [40] No Points wi.thin a re-gion Regions beyor-1d Fr?m aggre.gated
of specified radius threshold density information
FDBSCAN [54] Yes Core ol?j-ect Peak regions Fuzz.y
probability from the curve clustering
Arbitrary shapes,
GPU kernel
GSCAN [28] Yes erne Grid based arid based cluster
function .
formation
Cludoop [41] No Points wi.thin a re-gion Regions beyor-1d Fr?m aggre.gated
of specified radius threshold density information
DSets- [42 Hist Regions b d
ets- [42] Yes s (?grzl.m cetons eyor-1 Arbitrary shapes
DBSCAN equalization threshold density
Dynamic density . o . . . .
. Points within a region Regions beyond Merging or splitting
based clustering No . . .
[44] of specified radius threshold density of clusters
Mass based Regions b d
MBSCAN [29] Yes ass a.se celons beyon Arbitrary shapes
calculation threshold mass

each feature. In methods such as CLIQUE [19], the clusters are
represented as hyper rectangles in reduced number of dimen-
sions. The user provides cluster description which includes the
hyper-rectangle subspace along with the range for each attribute
in the subspace.

Clustering algorithms dealing with multimedia data e.g., im-
ages, videos, geographical maps etc. requires extensive prepro-
cessing of data. The data is presented in its furnished form to
the method for smooth interpretation of the result. e.g., one of
the major DBCLAs viz. GDBSCAN [30] combines five pic-
tures consisting of 1,024,000 intensity values with 8 bits per
pixel. The method represents individual points over the surface
by a 5-D vector. This corresponds to an earth surface area equal-
ing 10® m?. Extracting clusters in these kind of feature spaces
is a common task applicable in remote sensing digital image
analysis for constructing thematic maps in GIS (geographic in-
formation systems).

Some of the methods consider a reduced yet meaningful in-
formation from the dataset to perform their tasks. The reduction
technique involves transformation of numerical or alphabetical
digital information derived experimentally or through empiri-
cal studies into a corrected, ordered, and simplified form. The
goal is to reduce voluminous data down to meaningful parts.
The data reduction technique may be done due to a number
of reasons. This may include the constraints involved in avail-
ing requisite computational resources. A number of complex

datasets e.g., molecular biology usually contain a huge amount
of information to be processed. Handling of such datasets poses
a significant challenge and may have an impact on the outcome
of the experiment. Data reduction techniques are employed to
alleviate such issues and draw an inference from a given appli-
cation domain.

5.1.2 Density evaluation
DBCLASs perform density computation by adopting the follow-
ing approaches:

e Determining number of points in a neighborhood.
Use of mathematical functions.

Using Kernel Density Estimate (KDE).

Through data dependent similarity measure.

Density of a region is calculated by determining the number
of points lying within that region. Most of the DBCLAs em-
ploy this basic methodology to compute the density of various
subspaces. DBSCAN [6] is the pioneer algorithm in the field
of DBCLAs. In this algorithm, for a single point, its region of
neighborhood wrt. a radius (Eps) must comprise of a minimum
number of points (MinPts) for it to be called as a core or dense
point otherwise it qualifies as a non-core or border point. Fig-
ure 7 depicts a generic method adopted by most DBCLAs to
compute the density.
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Fig.7 Density computation based on number of points in a region

Apart from defining density in terms of number of points
within a region, some algorithms rely on mathematical func-
tions to compute the point density. DENCLUE [19] identifies
such functions as influence functions. Influence functions are a
mathematical description of the influence of a data object x €
R¢. The aggregation of influence functions for all data objects
at a point x provides the density at that point. For a set of fea-
ture vectors D = {x1, X2, X3,....%,} C RY, the density function is
defined as in Eq. (4):

@ =) fi. @)
j=1

Here f Z," (x) represents the influence of x; on x. Influence func-
tion are arbitrary in nature. A specific influence function can be
a distance function d : R? x R¢ — R; - Mustrations of influence
functions can be Square Wave influence function, Gaussian in-
fluence function (Refer to Eqgs. (5) and (6)). Let o be a certain
threshold in context of the influence functions then,

Square Wave function:

Lo are@:y) = 0.if d(x, y ) > o,
= Lifdx,y) <o, (5)

Gaussian Influence function:

_ day)?

fgaussian(x’ y) =e 227, (6)

Another technique known as kernel density estimation(KDE)
has been effectively used to compute densities of different DB-
CLAs. For any random variable, KDE estimates the probability
density function by using non-parametric technique. The ker-
nel density function is defined as follows: Let D be a collection
of r points belonging to a R? space and h represents level of
smoothness, then on the basis of kernel density estimator K, the
density function f” is given by Eq. (7) as:

Pl = %;K(’C—x" ) )

h

The non-negative function K(.) which is the kernel integrates
to 1. It has a mean O and & > 0, where & is a smoothing param-
eter known as bandwidth. In OPTIGRID [47] method, KDE

proves to be a robust technique for detecting clusters in volu-
minous datasets.

Studies related to statistics have pointed out various kernels
K, e.g., the square wave function [64]. The kernel bandwidth &
strongly influences the final estimation. A smoother kernel is a
statistical technique for estimating a real valued function by us-
ing its noisy observation. The estimated function is smooth and
the level of smoothness is set by a single parameter. In OPTI-
GRID, the density function consists of maxima that are above
a certain threshold noise £. These maxima define the clusters of
the algorithm. Methods such as FOPTICS [53], IPCLUS [50],
DBCLASD [21] make use of such density functions.

Data dependent dissimilarity measure also enables to com-
pute point densities. The similarity between points is calcu-
lated based on the distribution of data instead of any geomet-
rical model. MBSCAN [29] was the first algorithm to introduce
a generic approach of finding data dependent dissimilarity in
order to overcome the weaknesses of distance based methods.
MBSCAN employs the concept of iForest [29] to find the mass
of smallest region including the data points. The mass value
between a pair of points gives the measure of their proximity.
For any data item, the density is defined as the total number of
points with whom the mass falls below a certain threshold.

Graph based clustering technique viz. SNN-DBSCAN [4]
also employed the idea of data dependent dissimilarity, e.g.,
shared nearest neighbor [33] to determine the proximity be-
tween data points. In SNN-DBSCAN, a link between two
points is constructed based on the number of shared nearest
neighbors instead of any distance measure. The number of
shared links that are adjacent to a given point gives the mea-
sure of its density. A given point is designated as core if the
number of adjacent links crosses a certain predefined threshold
value. The remaining points are classified as either non-core or
noise points.

5.1.3 Dense subspace extraction
DBCLAs identify dense regions through a varied set of tech-
niques as follows:

o Identify areas with higher frequency of points.

e Select grid cells containing a minimum number of data
objects.

e Determining the peaks of the curve obtained from any
density function as the center of a dense area.

The dense region of a data space is identified based on the
aggregation of points in a certain locality. The regions which
exceed a minimum number of points determined by a prede-
fined threshold are known as dense regions. This technique of
detecting dense region applies for a number of DBCLAsS.

The grid based techniques identify the dense regions by de-
termining the grids which contain a specified minimum number
of data objects within a cell.

Methods which adopt the kernel based techniques to find the
density, detect the peaks of the curve that are obtained from
the probability density function. Such peaks are usually identi-
fied as core points and act as the attractors of other points. The
neighborhood of these peaks are designated as dense regions.
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Methods which adopt the grid based technique accumulate Clustering

the dense grids to form the clusters. The grid based technique
adopted by various algorithms prove useful while detecting
high dimensional clusters.

While detecting clusters by polygonal method, certain geo-
metrical shapes are constructed and are treated as clusters. The
denser geometrical shapes are merged based on their reacha-
bility from each other. The regions which are merged together
assume the shape of a cluster.

5.2 Relationship and differences through variation in citation
percentage and conceptual dependency of DBCLAs

The variation in citation percentage and conceptual dependency
(Refer Fig. 8) represents the importance of a DBCLA in influ-
encing other density based algorithms. The pioneer algorithm
DBSCAN (1996) [6] is a highly cited method till date hav-
ing more than 11,000 citations (See Google Scholar). The DB-
CLAs proposed in the subsequent years consistently refer to
DBSCAN while inheriting concepts from the algorithm. The
point density in DBSCAN relies on the numerical strength of
points in its neighborhood. Although DBSCAN fails to detect
clusters of varying densities, the algorithms which address such
issues cite the method extensively. From Fig. 8 it is clear that
DBSCAN is the most highly cited algorithm with more than
90% referrals.

OPTICS [14] is the second most highly cited algorithm hav-
ing around 50% citations. OPTICS is a parameter change adap-
tive algorithm which orders the data point based on the reach-
ability distance from their nearest core point. Many algorithms
which address the issue of parameter dependency refer to OP-
TICS as a benchmark algorithm. In addition, algorithms such
as FOPTICS, GDBSCAN, FDBSCAN depend directly on the

Fig. 8 Citation percentage and Conceptual dependency percentage variation
of DBCLAs. (a) Citation percentage variation of DBCLAs; (b) conceptual de-
pendency percentage variation of DBCLAs

pioneer DBCLAs like DBSCAN, OPTICS, DENCLUE with
minor variations. As a result the referral percentage to the al-
gorithms proposed in the initial years from 1996 are consid-
erably high. Algorithms such as STING, DENCLUE, CLIQUE
have more than 10% citations while some of the methods which
have been proposed in recent years have not received consider-
able amount of citations as yet.

We also provide the conceptual dependency upon a certain
algorithm by all the other DBCLAs. Through the conceptual
dependency chart in Fig. 8, we identify the percentage of al-
gorithms that inherit the concept of its parent algorithm in its
own working methodology. DBSCAN has the highest concep-
tual dependency with close to 50% dependents. Other major
DBCLAs like DENCLUE and OPTIGRID have about 20% de-
pendency. DENCLUE handles clustering of large multi-media
databases while OPTIGRID is a grid based clustering technique
designed to address issues related to high dimensional data.
Over the years many grid based techniques like D-Stream, IP-
CLUS, DBCLASD have been proposed which depend on ideas
conveyed in OPTIGRID.

Parallel and distributed methods have gained importance in
recent years due to their higher efficiency as compared to the
serial methods. DBCLAs such as MR-DBSCAN makes use of
map-reduce techniques to parallelize the detection of clusters
while Cludoop is a distributed method relying on hadoop prop-
erties to detect the clusters. Subsequently, most of the methods
which are based on parallel execution inherit the methodolo-
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gies proposed in Cludoop or MR-DBSCAN. The depency on
DBCLAs such as IPCLUS, SNN-DBSCAN, IDBSCAN, FOP-
TICS lie below 10%. A number of variants of DBSCAN pro-
posed over a period of time, e.g., ST-DBSCAN, DVBSCAN
have no conceptual dependency till now.

6 Empirical study of DBCLAs

We adopt a qualitative approach to conduct an empirical study
of some representative DBCLAs under various categories cov-
ered. Based on the direct observation of the DBCLAs studied
in this survey, we aim to present a comparison between the con-
cerned algorithms.

1) DBSCAN: DBSCAN [6] is compared with CLARANS
[8] and based on visual inspection both the algorithms
were evaluated. Datasets of SEQUOIA 2000 benchmark
data [55] were selected for comparisons. The included
datasets were raster data, point data, polygon data and di-
rected graph data. For DBSCAN, the amount of noise was
set to 0% for the first dataset, while it was 10% for the
remaining two datasets. DBSCAN was able to detect all
the clusters along with segregation of noise from the in-
volved datasets. On the contrary CLARANS had no clear
notion of noise filtration. As a result all the points end
up obtaining a definite cluster membership. Experimen-
tal results showed that the execution time of DBSCAN
is marginally higher than O(n), where n is the number of
points in the dataset. Moreover, DBSCAN outperformed
CLARANS by a factor ranging between 250 and 1900
which increases with the size of the database.

2) STING: STING [45] is compared with CLARANS [8],
BIRCH [48] and DBSCAN [6] algorithm. In this case too,
the SEQUOIA 2000 datasets were used for comparing
STING with the other clustering approaches. The experi-
ments were conducted with a data of size ranging between
1252 and 12512 points. DBSCAN proved to be about 15
times faster than CLARANS. Furthermore, BIRCH out-
performed CLARANS by about 20 to 30 times. In effect
STING also outperformed BIRCH by a significant mar-
gin. In Fig. 9 taken from [45], we provide the necessary
comparison plot between STING and DBSCAN which
shows the effectiveness of the former.

3) SNN-DBSCAN: The SNN-DBSCAN [4] algorithm was
tested on following datasets: 2D (Chameleon [5] and
CURE [65]) datasets, NASA Earth Science data and KD-
DCup’99 [66] dataset. The value of the similarity thresh-
old involved in SNN-DBSCAN potentially influences the
quality of clusters detected. Figure 10 taken from [4]
shows that the combination of the Jarvis-Patrick [33]
scheme and DBSCAN [6] enables detection of better
clusters as compared to only DBSCAN running on the
same datasets [4]. In case of NASA Earth Science data,
a monthly measurement of sea level pressure was take
from 1982 to 1993. The data was produced in form of a
2.5° (144 horizontal by 72 vertical divisions). The SNN
clustering yielded clusters that were geographically con-
tiguous due to the spatial correlation of the underlying
data. A total of 30 clusters were taken into conderation. In
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Fig. 9 Performance comparison between STING and DBSCAN [45]
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Fig. 10 Clusters detected by the SNN-DBSCAN algorithm on Chameleon and
CURE datasets [4]. (a) Chameleon data set; (b) CURE data set
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case of K-means [9], out of 100 clusters 30 most cohesive
clusters were retained while the rest were discarded. The
clusters obtained by SNN-DBSCAN were better than that
of the K-means algorithm.

4) OPTICS: OPTICS [14] was executed on 64 dimensional
color histogram derived from television snapshots. For
different parameter values, the algorithm shows a scale
up of between 10000 to 100000 data items thereby prov-
ing its efficiency. The algorithm runs in O(n) time where
n is the number of data objects.

5) DENCLUE: The polygonal CAD data is used for prov-
ing the effectiveness of DENCLUE [19]. The data is con-
verted into a eleven dimensional feature vector using a
Fourier transformation. The size of the dataset was varied
from 10000 to 20000. The parameters of DENCLUE and
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DBSCAN were chosen such that both the algorithms pro-
duced identical clusters. Experimental results showed that
DENCLUE is about 45 times speedier than the DBSCAN
algorithm.

From Fig. 11 taken from [19], it is shown that DENCLUE
takes O(log n) time to execute with n being the number of
data objects. The logarithimic time complexity of the al-
gorithm is due to the fact that only data points lying in
the densely populated regions are considered for cluster
formation scheme.

7 Applications of the DBCLAs

In this section, we present the applications relevant to DBCLAs
(Refer to Table 7 for tabular summary). For individual applica-
tion, we mention the following aspects:

e Describe the application.
e Nature of data used.
e DBCLAs involved in the application.

7.1 Earth sciences
In this application spectral space obtained from satellite images
is clustered. This is a task commonly used in remote sensing
image analysis. One of the prominent DBCLAs which finds its
importance in this application is GDBSCAN [30] which uses a
5-D space. This 5-D space is gathered from the satellite imagery
of a region on earth’s surface. After preprocessing, the images
of various spectral channels of a region are merged. Individual
point corresponds to an area of 1000 x 1000 m? on the sur-
face of the earth. Clusters obtained through this procedure finds
importance in analysis of digital images in remote sensing.
Algorithms such as SNN-DBSCAN [4] also finds its appli-
cation in earth sciences data. In particular researchers are inter-
ested in finding the areas of ocean whose behavior correlates
well to climate events on the earth’s land surface. In earth sci-
ence domain, clusters which are relatively uniform and not as
dense are also equally important.

7.2 Molecular biology

Bio-molecules, proteins, DNA and other cell components con-
sist of millions of atoms within them. These cell components in-
teract with each other e.g., protein protein interaction (PPI). PPI
contains dense regions that can be identified based on the data
connectivity [67]. According to molecular biologists, the spa-
tial arrangement of the molecular structures at the site of inter-
action holds importance in addition to physio-chemical molec-
ular behavior. In a PPI, several geometric and physio-chemical

Table 7 Tabular summary of the applications relevant to DBCLAs
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measures are computed for proteins on the surface. The phe-
nomenon of such interactions is called docking [30]. Crystal-
lographic experiments are used to determine the atomic posi-
tions of proteins and their structures. For example, solid angle
(SA) [68], a geometrical property that describes the degree of
convexity or concavity of the area in the neighboring region of
the concerned part.

A database for docking of protein processes queries for com-
plementary protein surfaces. The segments on the protein sur-
face should possess a healthy correlation with the known pro-
tein docking spot. To find segmentation over the surface of the
protein, application pertaining to clustering algorithms is nec-
essary. GDBSCAN is one such DBCLA which finds its appli-
cability in this task of protein segmentation.

7.3 Astronomy

The data acquired from celestial objects may lead to the dis-
covery of various patterns. Grouping of such data is necessary
for detecting the presence of any pattern or any other relevant
information for mining. Surveys detecting celestial objects of
interest enable their statistical studies. Such observations ex-
tract sporadic or irregular objects. Modern surveys can poten-
tially produce images in terms of thousands. Each image can
consume a space of 10 GB to 1 TB [30]. In order to maximize
an yield from a survey it needs a precise and effective approach
to detect the source. Conventional approach to separate single
sources from outliers requires the sources to cross a predefined
threshold. Alternative methods such as [69, 70] make use of the
classifier systems [71] or statistics.

On applying density based method [30] for such purpose,
the final clustering yield a better result than the known sta-
tistical [69, 70] techniques. One of the main reasons to adopt
DBCLAs for such purpose is its ability to segregate compact
regions from the sparse areas in the data space. This enables
detection of clusters in the galactic survey along with appropri-
ate noise filtering.

7.4 Geography
DBCLAs can be used to retrieve two-dimensional polygons
based on the similarity measure of non-spatial attributes. In
order to characterize the proximity between attributes, the do-
main is segregated to some distinct classes. The values lying
within same class are said to be similar. Sets that have the least
or highest feature values become the influence regions. GDB-
SCAN [30] algorithm extracts such regions of influence.

In the area of geospatial clustering, DBSCAN [6] plays
an important role in GIS spatial analysis techniques such as

SI No. Application domain Utility Key function Nature of data DBCLAs involved
R lustering satelli DBSCAN
L Earth Sciences .emote sensn.lg C uste.rmg satellite Image, Spatial GDBSCAN,
image analysis images SNN-DBSCAN
Identify physio-chemical Findi ts
2. Molecular Biology ety physto-chernica 11CIng segments Image GDBSCAN
molecular behavior over protein surface
Grouping patterns
3. Astronomy Satellite imagery upt g p . Image, Spatial GDBSCAN
of celestial objects
4. Geography GIS Merge polygons Image, Spatial DBSCAN
P-DBSCAN,
5. Multimedia/others Urban planning Cluster photos, events Multimedia

DENCLUE
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polygon overlay [72]. In order to improve the usefulness of
clustering, it is essential to study constraint-based geospa-
tial cluster analysis. DBSCAN Ontology (DBSCANO) [73]
has been developed in accordance with the DBSCAN process
and geographic information data characteristics. C-DBSCANO
[73] was developed by combining DBSCAN and DBSCANO.
These methods enable clustering under constraints based on the
geographical background which leads to reasonable clustering
results.

7.5 Multimedia/others
When dealing with multimedia data, many algorithms fail to
cluster multi attribute vectors. As a result the efficiency of
such methods degenerate at rapid pace. DBCLA such as DEN-
CLUE [19] works efficiently for high dimensional data sets al-
lowing random noises while finding clusters. DBCLA such as
P-DBSCAN [37] analyses locations along with utilizing a col-
lection of geographically tagged photos. P-DBSCAN finds in-
teresting places or significant events that are characterized by
high photo activity in a specific area. Determining such places
and events prove to be beneficial for local authorities, service
providers and urban planners. Density based clustering is help-
ful in such cases because of the following reasons: a) no prior
knowledge about the quantity of clusters is available, b) high
photo activity can be measured by density and compared to dif-
ferent parts of the region under investigation, c¢) clusters are of
arbitrary shapes and d)sparse regions are treated as noise.

In the next section, we present the future directions and
scopes where application of DBCLAS can lead to favorable re-
sults.

8 Future directions

In this section, we identify the probable future directions where
the application of DBCLAs may be lead to gain favorable re-
sults. After studying as many DBCLAs in this article, the fol-
lowing directions have been identified:

1) Heterogeneous datasets: In our study, a large num-
ber of proposed techniques focus only on homogeneous
datasets. In effect, there lies a scope for evaluating the
performance of various DBCLAs while dealing with het-
erogeneous datasets. With increase in the volume of on-
line data, and a need to integrate structured and unstruc-
tured data [74], the application of density based clustering
on these datasets can be an important direction. Data re-
lated to studying genome sequence [75], gene functional
classification [76], fault slip data sets for tectonic move-
ments [77], cosmological data sets [78] are few of the ex-
amples where the application of DBCLAs can be advan-
tageous.

2) Intra cluster density variation: The role of clusters having
significant intra cluster density variation remains an open
issue. Although a seminal work on local density variation
is presented [15], the method is parameter sensitive. Also
for high dimensional datasets, to the best of our obser-
vation, no known method is familiar with local density
variation. To make the algorithms adaptive to parameter
changes and detect clusters with intra cluster density vari-
ation, application of DBCLAs can be useful.

3) Graph based applications: Role of DBCLAs in graph
based applications can be of significant importance. Some
real world applications can be mapped to graph domain.
Involvement of DBCLAs in graph based application can
gather importance as DBCLAS can be used to separate out
dense regions in the graph from sparse ones e.g., SNN-
DBSCAN [4].

4) Social networking: The role of DBCLASs in social net-
working domain also remains an interesting challenge. A
recent study [79] relying on density based technique iden-
tifies clusters based on the textual heterogeneity on Twit-
ter using spatio-textual information. Applications of DB-
CLAs in this field may lead to meaningful observations in
the future.

9 Discussion and conclusion

In this article, we presented a comprehensive review of various
DBCLASs from the year 1996. Contrary to the previous surveys
of DBCLAs, this paper studied as many as thirty-two DBCLAs.
Individual algorithms have been described highlighting their
key features, time complexity, cluster extraction techniques.

We introduced the notion of common properties for the DB-
CLAs. The common properties extracts the features that are in-
volved in designing of a DBCLA. The features of the common
properties are uniform to all the DBCLAS and acts as an appro-
priate platform to compare and understand the properties of all
the DBCLAs.

The paper also provided a structured representation of the
classification of DBCLAs. Four distinct categories were iden-
tified and each of these categories independently classified all
the DBCLAs in various classes under that category. We chose to
group DBCLAs under different categories in an isolated man-
ner because of the presence of a variety of properties in each
of the DBCLAs. In addition, we also evaluated the share of
DBCLASs belonging to each class within a category. The pres-
ence of multi-class algorithms shows the evolution of DBCLAs
adopting a mixture of techniques to address challenges related
to high dimensional clustering. We limited ourselves to provide
an empirical study of some of the representative DBCLAs out
of all the algorithms covered in this survey. We did not use any
statistical techniques to prove any hypotheses. Rather, based on
the study conducted on various algorithms, we presented the
behavior of some of the relevant DBCLAs supported by experi-
mental evidences. In future studies, a comprehensive empirical
study of the all the major DBCLAs may be conducted.

While providing the differences between the DBCLAs, the
goal behind finding the conceptual dependency and citation per-
centage chart of DBCLAs was to identify the set of algorithms
that have had a major influence in the field of density based
clustering. The survey also highlights the relevant application
areas and the DBCLAs involved in it along with the nature of
dataset used. We conclude by identifying the probable future
directions where the application of DBCLAs may lead to fa-
vorable results.
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