
Pietro Tierno- University of Barcelona
Pietro Tierno
- University of Barcelona
About
217
Publications
17,507
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,899
Citations
Introduction
Current institution
Publications
Publications (217)
With contributions from experts in the field, the books in this series provide an essential overview of the latest developments in soft matter research. Each title covers a specific aspect of soft matter, from the fundamental concepts of soft matter systems to the diverse applications across different disciplines. The books are suitable for advance...
Magnetic nano/microrotors are passive elements spinning around an axis due to an external rotating field while remaining confined to a plane. They have been used to date in different applications related to fluid mixing, drug delivery, or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously driven by a...
Magnetic gels with embedded micro-/nano-sized magnetic particles in cross-linked polymer networks can be actuated by external magnetic fields, with changes in their internal microscopic structures and macroscopic mechanical properties. We investigate the responses of such magnetic gels to an external magnetic field, by means of coarse-grained molec...
Magnetic nano/microrotors are passive elements that spin around an axis due to an external rotating field while remaining confined to a close plane. They have been used to date in different applications related to fluid mixing, drug delivery or biomedicine. Here we realize an active version of a magnetic microgyroscope which is simultaneously drive...
Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active...
Microscopic particles flowing through narrow channels may accumulate near bifurcation points provoking flow reduction, clogging and ultimately chip breakage. Here we show that the full flow behavior of colloidal particles through a microfluidic Y-junction (i.e. a three way intersection) can be controlled by tuning the pair interactions and the degr...
Driven or self-propelling particles moving in viscoelastic fluids recently emerged as a novel class of active systems showing a complex yet rich set of phenomena due to the non-Newtonian nature of the dispersing medium. Here we investigate the one-dimensional growth of clusters made of active colloidal shakers, which are realized by oscillating mag...
In our combined experimental, theoretical, and numerical work, we study the out-of-equilibrium deformations in a shrinking ring of optically trapped, interacting colloidal particles. Steerable optical tweezers are used to confine dielectric microparticles along a circle of discrete harmonic potential wells, and to reduce the ring radius at a contro...
Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in the field is now shifting towards exploring the fascinating dynamics of mixture of active and passive systems. Here we reali...
Numerical simulations are used to investigate the collective dynamics of an ensemble of driven paramagnetic colloidal particles confined between two plates. The particles are subjected to an external precessing field and, depending on the field frequency and cell thickness, they can assemble into rotating dimers, up and down binary crystals or dyna...
The effect of curvature and how it induces and enhances the transport of colloidal particles driven through narrow channels represent an unexplored research avenue. Here we combine experiments and simulations...
Collective particle transport across periodic energy landscapes is ubiquitously present in many condensed matter systems spanning from vortices in high-temperature superconductors, frictional atomic sliding, driven skyrmions to biological and active matter. Here we report the emergence of fast solitons propagating against a rotating optical landsca...
We combine experiments and numerical simulations to investigate the low
energy states and the emergence of topological defects in an artificial colloidal ice in
the Cairo geometry. This type of geometry is characterized by a mixed coordination
(z), with coexistence of both z = 3 and z = 4 vertices. We realize this particle ice by
confining field tu...
We report the emergence of large zigzag bands in a population of reversibly actuated magnetic rotors that behave as active shakers, namely squirmers that shake the fluid around them without moving. The shakers collectively organize into dynamic structures displaying self-similar growth and generate topological defects in the form of cusps that conn...
Lattice transformations that preserve the system topology, but not its geometry, are common in condensed matter systems. However, how geometric constrains influence the topological properties of the lattices is still unclear. Here we show that a geometric transformation between two mixed coordination lattices, from Shakti to Cairo in an artificial...
We combine experiments and numerical simulations to investigate the low energy states and the emergence of topological defects in an artificial colloidal ice in the Cairo geometry. This type of geometry is characterized by a mixed coordination ($z$), with coexistence of both $z=3$ and $z=4$ vertices. We realize this particle ice by confining field...
Collective particle transport across periodic energy landscapes is ubiquitously present in many condensed matter systems spanning from vortices in high-temperature superconductors, frictional atomic sliding, driven skyrmions to biological and active matter. Here we report the emergence of fast solitons propagating against a rotating optical landsca...
Shear thinning fluids represent a class of non-Newtonian media characterized by a decrease of the apparent viscosity when increasing the shear rate. Here we experimentally demonstrate a deterministic ratchet effect in such media that enables directed transport of microscopic particles under a square-wave magnetic force. The applied modulation is de...
Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous dr...
The flow-driven transport of interacting micron-sized particles occurs in many soft matter systems spanning from the translocation of proteins to moving emulsions in microfluidic devices. Here we combine experiments and theory to investigate the collective transport properties of colloidal particles along a rotating ring of optical traps. In the co...
Lattice transformations that preserve the system topology, but not its geometry, occur in a wide variety of systems across length scales. Here we show that, in an artificial colloidal ice, unlike in a magnetic spin ice, a geometric transformation between two mixed coordination lattices, from Shakti to Cairo, leads to a breakdown of the ice rule in...
In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex t...
The flow-driven transport of interacting micron-sized particles occurs in many soft matter systems spanning from the translocation of proteins to moving emulsions in microfluidic devices. Here we combine experiments and theory to investigate the collective transport properties of colloidal particles along a rotating ring of optical traps. In the co...
Gels are soft elastic materials made of a three-dimensional cross-linked polymer network and featuring both elastic and dissipative responses under external mechanical stimuli. Here we investigate how such gels mediate the organization of embedded magnetic microparticles when driven by an external field. By constructing a continuum theory, we demon...
Artificial active particles are autonomous agents able to convert energy from the environment into net propulsion, breaking detailed balance and the action-reaction law, clear signatures of their out-of-equilibrium nature. Here we investigate the emergence of directed motion in clusters composed of passive and catalytically active apolar colloids....
Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable phenomena on the transpo...
We study the pair interactions between magnetically driven colloidal microrotors with an anisotropic shape. An external precessing magnetic field induces a torque to these particles spinning them at a fixed angular frequency. When pair of rotors approach each other, the anisotropic particles interact via dipolar forces and hydrodynamic interactions...
Hydrodynamic interactions between fluid-dispersed particles are ubiquitous in soft matter and biological systems and they give rise to intriguing collective phenomena. While it was reported that these interactions can facilitate force-driven particle motion over energetic barriers, here we show the opposite effect in a flow-driven system, i.e., tha...
We investigate phase separation in a chiral fluid, made of spinning ferromagnetic colloids that interact both via hydrodynamic and dipolar forces and collectively organize into separated circulating clusters. We show that, at high spinning frequency, hydrodynamics dominate over attractive magnetic interactions and impede coarsening, forcing the par...
Many-particle effects in driven systems far from equilibrium lead to a rich variety of emergent phenomena. Their classification and understanding often require suitable model systems. Here we show that microscopic magnetic particles driven along ordered and defective lattices by a traveling wave potential display a nonlinear current-density relatio...
Hydrodynamic interactions between fluid-dispersed particles are ubiquitous in soft matter and biological systems and they give rise to intriguing collective phenomena. While it was reported that these interactions can facilitate force-driven particle motion over energetic barriers, here we show the opposite effect in a flow-driven system, i.e. that...
We use numerical simulations to investigate the low-energy states of a bidisperse colloidal ice, realized by confining two types of magnetic particles into double wells of different lengths. For this system, theoretical calculations predict a highly degenerate ground state where all the vertices with zero topological charge have equal energy. When...
The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch wall...
We investigate the collective transport properties of microscopic magnetic rollers that propel close to a surface due to a circularly polarized, rotating magnetic field. The applied field exerts a torque to the particles, which induces a net rolling motion close to a surface. The collective dynamics of the particles result from the balance between...
In colloidal systems, Brownian motion emerges from the massive separation of time and length scales associated to characteristic dynamics of the solute and solvent constituents. This separation of scales produces several temporal regimes in the colloidal dynamics when combined with the effects of the interaction between the particles, confinement c...
In colloidal systems, Brownian motion emerges from the massive separation of time and length scales associated to characteristic dynamics of the solute and solvent constituents. This separation of scales produces several temporal regimes in the colloidal dynamics when combined with the effects of the interaction between the particles, confinement c...
The effect of boundaries and how these can be used to influence the bulk behavior in geometrically frustrated systems are both long-standing puzzles, often relegated to a secondary role. Here, we use numerical simulations and “proof of concept” experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal...
This minireview focuses on recent advances with surface magnetic rotors, namely field responsive spherical or anisotropic particles that translate close to, or are embedded into a confining surface. The application of external magnetic modulations allows these microscopic wheels to be remotely spun and steered while also tuning their interactions a...
The effect of boundaries and how these can be used to influence the bulk behaviour in geometrically frustrated systems are both long-standing puzzles, often relegated to secondary role. Here we use numerical simulations and "proof of concept" experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal ar...
The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch wall...
Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene particles, which are held in the disk by time shared o...
We investigate the out-of-equilibrium dynamics of paramagnetic colloidal nanoparticles driven above a triangular lattice of cylindrical ferromagnetic domains. We use an external precessing magnetic field to create a dynamic energy landscape which propels the particles along complex trajectories, characterized by an alternation of periodic orbital m...
Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene particles, which are held in the disk by time shared o...
We combine experiments and numerical simulations to investigate the emergence of clogging in a system of interacting paramagnetic colloidal particles driven against a disordered landscape of larger obstacles. We consider a single aperture in a landscape of immobile silica particles which are irreversibly attached to the substrate. We use an externa...
We combine experiments and numerical simulations to investigate the emergence of clogging in a system of interacting paramagnetic colloidal particles driven against a disordered landscape of larger obstacles. We consider a single aperture in a landscape of immobile silica particles which are irreversibly attached to the substrate. We use an externa...
In this manuscript we describe the realization of a minimal hybrid microswimmer, composed of a ferromagnetic nanorod and a paramagnetic microsphere. The unbounded pair is propelled in water upon application of a swinging magnetic field that induces a periodic relative movement of the two composing elements, where the nanorod rotates and slides on t...
In this manuscript we describe the realization of a minimal hybrid microswimmer, composed of a ferromagnetic nanorod and a paramagnetic microsphere. The unbounded pair is propelled in water upon application of a swinging magnetic field that induces a periodic relative movement of the two composing elements, where the nanorod rotates and slides on t...
Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and numerical simulations to demonstrate that sh...
Controlling the flow of matter down to micrometer-scale confinement is of central importance in material and environmental sciences, with direct applications in nano and microfluidics, drug delivery, and biotechnology. Currents of microparticles are usually generated with external field gradients of different nature (e.g., electric, magnetic, optic...
We investigate the directional locking effects that arise when a monolayer of paramagnetic colloidal particles is driven across a triangular lattice of magnetic bubbles. We use an external rotating magnetic field to generate a two-dimensional traveling wave ratchet forcing the transport of particles along a direction that intersects two crystallogr...
Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and numerical simulations to demonstrate that sh...
We investigate the collective colloidal current that emerges when strongly confined magnetic microspheres are subjected to a biased, but spatially uniform, precessing magnetic field. We observe a net bidirectional current composed of colloidal particles which periodically meet assembling into rotating dimers, and exchange their positions in a chara...
We investigate the directional locking effects that arise when a monolayer of paramagnetic colloidal particles is driven across a triangular lattice of magnetic bubbles. We use an external rotating magnetic field to generate a two dimensional traveling wave ratchet forcing the transport of particles along a direction that intersects two crystallogr...
Geometric frustration and the ice rule are two concepts that are intimately connected and widespread across condensed matter. The first refers to the inability of a system to satisfy competing interactions in the presence of spatial constraints. The second, in its more general sense, represents a prescription for the minimization of the topological...
Controlling the flow of matter down to micrometer-scale confinement is of central importance in materials and environmental sciences, with direct applications in nano-microfluidics, drug delivery and biothechnology. Currents of microparticles are usually generated with external field gradients of different nature [e.g., electric, magnetic, optical,...
The realization of artificial microscopic swimmers able to propel in viscous fluids is an emergent research field of fundamental interest and vast technological applications. For certain functionalities, the efficiency of the microswimmer in converting the input power provided through an external actuation into propulsive power output can be critic...
Geometric frustration and the ice rule are two concepts that are intimately connected and widespread across condensed matter. The first refers to the inability of a system to satisfy competing interactions in the presence of spatial constraints. The second, in its more general sense, represents a prescription for the minimization of the topological...
We present a theoretical framework to understand the collective dynamics of an ensemble of electrophoretically driven colloidal particles that are forced to assemble around a single topological defect in a nematic liquid crystal by an alternating current electric field. Our generic model combines phoretic propulsion with electrostatic interactions...
The realization of artificial microscopic swimmers able to propel in viscous fluids is an emergent research field of fundamental interest and vast technological applications. For certain functionalities, the efficiency of the microswimmer in converting the input power provided through an external actuation into propulsive power output can be critic...
The ability to assemble mesoscopic colloidal lattices above a surface is important for fundamental studies related with nucleation and crystallization, but also for a variety of technological applications in photonics and micro-engineering. Current techniques based on particle sedimentation above a lithographic template are limited by a slow deposi...
We demonstrate several examples of driving and steering of colloids when dispersed in nematic liquid crystals. The driving mechanism is based on the principle of nonlinear electrophoresis which is mediated by the asymmetry in the structure of the defects that the inclusions generate in the host elastic matrix. The steering mechanism originates in t...
We demonstrate a general and robust method to confine on a plane strongly diffusing submicrometer particles in water by using size tunable magnetic channels. These virtual conduits are realized with pairs of movable Bloch walls (BWs) located within an epitaxially grown ferrite garnet film. We show that, once inside the magnetic conduit, the particl...
The process of crystallization is difficult to observe for transported, out-of-equilibrium systems, as the continuous energy injection increases activity and competes with ordering. In emerging fields such as microfluidics and active matter, the formation of long-range order is often frustrated by the presence of hydrodynamics. Here we show that a...
The transport properties of many two-dimensional systems are strongly affected by the proximity of a periodic pattern. Colloidal particles are now shown to have preferred sliding routes due to competing symmetries between two unmatched crystalline surfaces.
In this article, we combine experiments and theory to investigate the transport properties of anisotropic hematite colloidal rotors that dynamically assemble into translating clusters upon application of a rotating magnetic field. The applied field exerts a torque to the particles forcing rotation close to a surface and thus a net translational mot...
Artificial ice systems have been designed to replicate paradigmatic phenomena observed in frustrated spin systems. Here, we present a detailed theoretical analysis based on Monte Carlo simulations of the low-energy phases in an artificial colloidal ice system, a recently introduced ice system where an ensemble of repulsive colloids are two-dimensio...
Self-propulsion of magneto-elastic composite microswimmers is demonstrated under a uniaxial field at both the air-water and the water-substrate interfaces. The microswimmers are made of elastically linked magnetically hard Co−Ni−P and soft Co ferromagnets, fabricated using standard photolithography and electrodeposition. Swimming speed and directio...
Artificial ice systems have been designed to replicate paradigmatic phenomena observed in frustrated spin systems. Here we present a detailed theoretical analysis based on Monte-Carlo simulations of the low energy phases in an artificial colloidal ice system, a recently introduced ice system where an ensemble of repulsive colloids are two-dimension...
We present a quantitative analysis of the nonequilibrium assembly of colloidal particles dispersed in a nematic liquid crystal. The driven particles assemble into reconfigurable circular clusters by liquid-crystal-enabled electrokinetic phenomena generated by an AC electric field that provides propulsion along the local director. We identify the co...
nanoscale magnetic devices is often limited by the presence of thermal fluctuations, while in micro-nanofluidic applications the same fluctuations may be used to spread reactants or drugs. Here we demonstrate the controlled motion and the enhancement of diffusion of magnetic nanoparticles that are manipulated and driven across a series of Bloch wal...
We perform experiments and numerical simulations to investigate the low energy states of a triangular colloidal ice, realized by confining repulsive paramagnetic colloids to a lattice of topographic double wells. We find that the collective interactions between the particles lead to a unique ground state characterized by vertices with three colloid...
The performance of nanoscale magnetic devices is often limited by the presence of thermal fluctuations, while in micro-nanofluidic applications the same fluctuations may be used to spread reactants or drugs. Here we demonstrate the controlled motion and the enhancement of diffusion of magnetic nanoparticles that are manipulated and driven across a...
We experimentally investigate the clogging and jamming of interacting paramagnetic colloids driven through a quenched disordered landscape of fixed obstacles. When the particles are forced to cross a single aperture between two obstacles, we find an intermittent dynamics characterized by an exponential distribution of burst size. At the collective...
Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle...
Significance
Collections of polar active particles have been unable to form stable and long-living structures due to the presence of self-propulsion. We solve this timely issue by introducing the concept of “active doping” and show that a few light-activated apolar, i.e., non–self-propelling, units can be used to rapidly trigger the formation of so...
Artificial particle ices are model systems of constrained , interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particl...
We investigate the dynamic assembly and swarm translocation of anisometric colloidal particles dispersed in a nematic liquid crystal and driven above a photosensitive surface. We use liquid crystal-enabled electrophoresis to propel these particles via an alternating electric field perpendicular to the sample cell. By manipulating the anchoring cond...
We combine experiments, theory, and simulations to investigate the coexistence of nonequilibrium phases emerging from interacting colloidal particles that are electrokinetically propelled in a nematic liquid crystal solvent. We directly determine the mechanical pressure within the radial assemblies and measure a non-equilibrium equation of state fo...
Field-driven direct assembly of nanoscale matter has impact in disparate fields of science. In microscale systems, such concept has been recently exploited to optimize propulsion in viscous fluids. Despite the great potential offered by miniaturization, using self-assembly to achieve transport at the nanoscale remains an elusive task. Here we show...