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On the Resilience of DAG-based Distributed Ledgers
in IoT Applications

A. Cullen, P. Ferraro, C. King, and R. Shorten

Abstract—Distributed Ledgers have been proposed for a num-
ber of applications in the IoT domain where it is essential to have
an immutable and irreversible record of transactions. Directed
Acyclic Graph (DAG)-based architectures, in particular, seem to
provide a vast array of advantages over the more traditional
Blockchain; however it can be challenging to conduct a thorough
analysis of DAG-based ledgers and derive reliable performance
guarantees. In this paper, we analyse one commonly discussed
attack scenario known as the parasite chain attack, which aims at
disrupting the immutability and irreversibility of the ledger, in
the context of the IOTA Foundation’s DAG-based system. Using
a Markov chain model we study the vulnerabilities of IOTA’s
core Tip Selection method against this attack and we present an
extension of the algorithm to improve the resilience of the ledger
in this scenario.

I. INTRODUCTION

With an ever increasing number of connected devices—
predicted to be 50 billion by 2022 [1]—the Internet of Things
(IoT) has become, in recent years, a topic of great interest in
both academia and industry. The power of IoT comes from
the interaction of numerous small and lightweight computing
elements; this interaction is expected to provide access to
a vast array of distributed services, leading to opportunities
for innovation at all levels. From the point of view of a
single agent, the introduction of IoT will affect both worklife
and homelife: for example domotics [2], health-related
applications [3] and enhanced learning [4] are areas where
these changes will impact daily life. At the same time, from
a broader point of view, IoT is expected to bring advantages
to the community as a whole, by providing services such
as smart mobility [15], detecting weather conditions [5]
and monitoring surgery in hospitals [6]. However several
challenges still need to be addressed in order to turn this
vision into a reality. First of all, the constrained capabilities
of many IoT devices as well as the architectures of current
access control systems, which are based on centralized and
hierarchical structures, impede the interaction of multiple IoT
machines (which are often not in the same trust domain)
[7]. Secondly, the kind of data that is shared amongst IoT
agents can be privacy-sensitive or safety-critical and hence an
appealing target for various cyber attacks. Devoting precious
energy and computational resources to support security is often
infeasible due to CPU, memory and battery constraints [7] [8].
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Concurrent with this growth of interest in IoT, Dis-
tributed Ledger Technologies (DLTs)—the agnostic term for
Blockchain and related technologies— have emerged as an
attractive solution for the problem of distributed consensus
in a database [7]. In the aftermath of the 2008 financial
crisis, Satoshi Nakamoto (a pseudonym for the original author
or group of authors) proposed in their whitepaper [14] the
use of an architecture, called the Blockchain, to solve the
problem of distributed consensus on a ledger. Since then, the
scientific community has been probing the boundaries of this
new technology with the goal of applying it beyond financial
transactions. More specifically DLTs have recently emerged as
an enabling technology for managing, controlling and securing
interactions in a range of cyberphysical systems [9][10][11].
We will argue that due to their distributed and trustless nature,
DLTs have characteristics that would prove advantageous as
a data transfer and transaction settlement layer for the IoT
domain:
• Decentralised Trust: DLTs introduce a distributed

consensus mechanism whereby users in a P2P network
can interact and exchange data without the need for
a trusted third party to guarantee the integrity of the
ledger. In IoT this would allow devices with mutually
exclusive trust domains to interact with one another
without the need of a centralised server;

• Irreversibility, Immutability and Transparency: A DLT
grants an irreversible, immutable and transparent record
of transactions. Each agent owns a copy of the ledger
and can verify the correctness of any sequence of
actions. In IoT this would allow multiple devices
to orchestrate their behaviour in order to achieve a
common goal;

• Pseudo-Anonymity and Data Sovereignty: Transactions
in a DLT are pseudo-anonymous1, due to the
cryptographic nature of the addressing, and their
contents can be encrypted. This allows each user to
control access to and ownership of their own data;

• Communication Security: The cryptographic nature of
DLTs means that problems such as key management and
distribution are handled intrinsically. In IoT each device
would have its own unique ID and asymmetric key pair,
and so light-weight security protocols (that would fit and
stratify the requirements for the limited resources of IoT
devices) become more feasible.

1https://laurencetennant.com/papers/anonymity-iota.pdf
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There are many varieties of DLT architecture, but not all are
equally useful for IoT applications. In particular Blockchain,
while responsible for the initial explosion of interest in DLT,
has limited use in IoT applications: the large energy cost
of mining, the volatility of bitcoin, long transaction approval
times, transaction fees, and the inherent preference of miners
to process large transactions rather than small ones [15], all
create a bottleneck when thousands of devices communicate
with each other many times per second. To overcome these
problems, several solutions have been explored: in [12] the
authors describe a Lightweight Scalable Blockchain (LSB) that
is optimized for IoT requirements; [10] proposes the use of
management hub nodes to overcome scalability and computing
constraints; while in [7] the authors tackle Blockchain lim-
itations with an always online, high resource device known
as miner that is responsible for handling all communication
within and external to the home. In this paper we focus on
a different architecture for DLTs based on Directed Acyclic
Graphs (DAGs), and more specifically, on one DAG-based
ledger known as the IOTA Tangle [16]. This architecture seems
to possess properties that make it suitable for the IoT domain;
for a more thorough comparison between Blockchain-based
DLTs and DAG-based DLTs, in the IoT context, we refer the
interested reader to [15]. In particular, the aim of this paper
is to explore the security properties of the IOTA Tangle: as
mentioned earlier, IoT devices often share privacy-sensitive
or safety-critical data, and so the security properties of the
ledger are essential for its success in IoT applications. Since
the resilience of DLTs to cyber attacks is of paramount interest
to the IoT domain, in this paper we analyse the response of
the IOTA Tangle to a commonly discussed attack scenario
known as a parasite chain attack, which is akin to long range
attacks in blockchains and is considered to be one of most
effective attack vector for doublespending on a DAG-based
DLT (the term ‘doublespending’ here refers to an attempt to
alter or reverse any record previously added to the ledger). The
safety of the system is determined by an algorithm, called
Biased Random Walk (BRW) (thoroughly analysed in the
reminder of this paper), whose objective is to leverage the
total computational power of the honest users of the network
to maintain the ledger safe against such attacks. Unfortunately,
due to the complexity of the system at hand tuning the
algorithm’s parameters and its security against double spending
attacks results in a non trivial task. Therefore, to circumvent
this issue and increase the overall security of the ledger, in this
paper we present an extension of the BRW algorithm and we
validate its efficacy through simulations.
To summarize, the contributions of this paper are:
• A mathematical description of the DAG-based DLT

known as the Tangle, together with a Markov chain
model for the algorithm controlling how transactions are
added;

• A thorough analysis of the parasite chain attack on the
Tangle, wherein the attacker attempts to alter or reverse
one or more transactions previously added to the ledger;

• A proposal for a new extension of the BRW algorithm,
which is shown to improve the resistance of the ledger
to parasite chain attacks.

The remainder of this paper is organised as follows: in
Section II we describe the Tangle DAG in detail and introduce
a double spending mechanism known as a parasite chain attack.
Section III summarizes the stochastic model for the Tangle
and presents a new formulation for the Biased Random Walk
(BRW) tip selection algorithm as an absorbing Markov chain.
This formulation is used to analyse the algorithm’s resistance
to parasite chain attacks over a range of parameter choices.
Section IV introduces a modification to the BRW which makes
use of the growth of the cumulative weight in the Tangle
and presents results showing its resistance to a parasite chain
attack.

II. THE TANGLE

The Tangle is a distributed ledger where transactions are
stored in a Directed Acyclic Graph (DAG, i.e. a finite directed
graph without any cycles) and where every new transac-
tion validates several previous transactions using a Proof of
Work (PoW) mechanism2. New transactions are added to the
Tangle by issuers known as nodes, that unlike the miners
in Blockchain [14], do not receive any payment for their
work. Whenever a new transaction (in what follows, we will
use transaction, site and vertex interchangeably) is issued, m
previous transactions (normally set to m = 2) are selected
and, after a small PoW, a site for the new transaction and
m new edges are added to the Tangle (by selecting a site,
a node is approving this site as free from conflicts etc.);
see Figure 1 for a visual representation of this process. The
amount of work spent to issue each transaction determines its
own weight [16]; therefore a user might employ more hashing
power, spending more time or more computational effort in
performing the PoW, to give his/her transaction a larger weight.
In what follows, to increase the readability of the exposition,
we assume that the weight of each transaction is fixed to 1.
Note that this assumption does not affect the main results of
the paper and can be easily relaxed.
Whenever a new edge is attached to site j by the newly added
site i we say that j is directly approved by i. If there is a
directed path from i to j, with length greater than one, we
say that j is indirectly approved by i (e.g., see Figure 2). A
transaction that has received no approvals is called a tip, and
the set of all these transactions is called the tips set. In the
IOTA protocol the node selects m sites for approval from the
current tips set; we discuss shortly several possible algorithms
for the tip selection.

The concept of direct and indirect approval is crucial in our
analysis. The core metric we consider to assess the security of
the Tangle against attacks is the cumulative weight H(t) of a
transaction: this value represents the weight of the transaction
plus the number of vertices that, either directly or indirectly,
approve a given site. Roughly speaking, the cumulative weight
can be interpreted as a relative measure of how legitimate
a transaction is (i.e., a transaction with a higher cumulative
weight is considered more trustworthy than a transaction

2Recently, the IOTA foundation has considered replacing the PoW based
mechanism with one based on Verifiable Delay Functions (VDFs) [13]
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Fig. 1. Sequence to issue a new transaction. The blue sites represent
transactions that have received at least one direct approval, the red ones
represent the tips and the gray ones represent newly arriving transactions.
The black edges represent approvals, whereas the dashed ones represent
transactions that are performing the PoW in order to approve two tips. After
completing the PoW approved transactions cease to be tips.
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Fig. 2. Transaction 8 directly approves 5 and 6. It indirectly approves 1, 2
and 3. It does not approve 4 and 7. This image was also present in [15].

with a lower one). Figure 3 shows an example of how the
cumulative weight changes in time. We also introduce the idea
of mutual consistency between transactions: two transactions
are mutually consistent if there are no conflicts between the
data contained in them or in all sites directly or indirectly
approved by them. Notice that the idea of consistency is very
general and is linked to the type of data that is being recorded
on the ledger: for example it could refer to a conflict in the
way a certain amount of currency was spent, or to a conflict in
the records stored by two devices. In what follows, we assume
that there is a simple and fast way, called the verification step,
which occurs during the approval step, to verify whether or
not the sites selected for approval by a node are mutually
consistent with each other. If the verification step detects an
inconsistency, the tip selection process must be re-run until a
set of consistent sites is found.

Let us consider an example to develop this idea further:
Figure 4 shows an instance of the Tangle. A malicious user
writes some data to the ledger, and the corresponding site is the
yellow block in the figure. The same user, afterwards, writes
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Fig. 3. Representation of the evolution of the Cumulative weight of three
sites as three new transactions enter the Tangle

an amount of conflicting data to the ledger, corresponding to
the green blocks. It is worth stressing, at this point, that since
the ledger is shared in a P2P network, there is no mechanism
to force a user to select certain sites for approval. Any site can
be selected as long as it is mutually consistent with the sites
that are approved (directly or indirectly) by it. Nevertheless it
is reasonable to assume that the vast majority of nodes would
have little interest in approving specific sites and would
follow the tips selection algorithm used by the protocol. In
this scenario, all the transactions that approve the original
yellow site (the blue blocks in Figure 4) are inconsistent with
the green ones, and therefore any new sites can either approve
the green/black sites or the blue/black ones. The green/blue
combination would be considered invalid and a new selection
would be made. The objective of an hypothetical attacker
would be then to wait for the original data (the yellow block)
to be acted upon in some way, and then to release the double
spend sites (the green blocks) in such a way that they get
approved by the majority of the network rather than the
original data (thereby reversing the record of the data that has
already been acted upon).

The success probability of such an attack depends on the
way tips are selected by newly arrived transactions. Several
tips selection algorithms have been proposed for the IOTA
Tangle:

1) Uniform Random Tip Selection: The Uniform Random
Tip Selection (URTS) algorithm selects two tips
randomly from the pool of all available tips. This
algorithm, due to its simplicity, makes the Tangle
vulnerable to double spending attacks. The upper panel
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of Figure 5 shows an example of the random selection
procedure. The interested reader can refer to [16] for a
detailed discussion on this topic.

2) Biased Random Walk Algorithm: The BRW algorithm
(also referred to as the Monte Carlo Markov Chain
(MCMC) tip selection algorithm [16]) is the main tip
selection algorithm discussed in the original whitepaper
of the IOTA Tangle [16]. It works in a slightly more
elaborate way than its random counterpart. In the BRW
algorithm m (generally two) independent random walks
are created in the interior of the tangle; the walks start at
a site deep in the graph (ideally each walk would start
from the genesis, but this quickly becomes infeasible
as the graph grows. We discuss alternative start points
in Section III) and move along the edges of the graph.
The probability of stepping along an edge from site j
to site k is proportional to f(−α(Hj − Hk)), where
f(·) is a monotonic increasing function (generally an
exponential), α is a positive constant and Hi represents
the Cumulative Weight of site i. The stepping process
stops when the particle reaches a tip, which is then
selected for approval. The lower panel of Figure 5 shows
an example of the paths of two walks in this selection
procedure.
Ultimately the goal of the BRW algorithm is to increase
the security of the ledger against double spending
attacks performed by malicious users. The main
difference between the BRW and URTS algorithms
lies in the use of the graph structure: for BRW an
attacker would need to create enough transactions,
with cumulative weights equal to or larger than the
cumulative weight of the main DAG, in order to make
the double spending successful. This, in turn, would
require the malicious user to possess an amount of
computational power comparable to the network of
honest users. The algorithm and its security from
attacks can be tuned using the parameter α: high
values of α increase the probability that the particle
will step to the transactions with the largest available
cumulative weight (as α approaches ∞ the particles
will move in a deterministic way), whereas lower
values of α, as the cumulative weights matter less and
the stepping probability tends to become uniform as
α approaches zero, make the algorithm and its output
more unpredictable. A good way of picturing the effect
of this parameter is by comparing it to the inverse
temperature of a gas: the smaller the value of α the
warmer the gas and vice-versa. The interested reader
can find more details on this topic in [22].

3) Hybrid Selection Algorithm: One of the drawbacks
of the BRW is that as α increases, so also does the
probability that a tip will not receive any approval
by newly incoming transactions. Therefore a trade-
off is required when tuning this value, between the
security of the Tangle and its stability. To overcome
this issue, the authors proposed in [21] the hybrid

Fig. 4. The blue and the green transactions are incompatible with each other.
This image was also present in [15].

selection algorithm. Its aim is to provide a high level
of security against attacks, while ensuring that all tips
get eventually approved. This is done by making two
different selections: a security selection where a high α
BRW is used to ensure the security of the Tangle and
a swipe selection where a low α or a URTS is used to
ensure that eventually all transactions are selected.

In what follows, we focus solely on the BRW algorithm.
The interested reader can refer to [15] and [21] for a thorough
analysis of the URTS and the hybrid selection algorithms.

A. The Parasite Chain Attack
To see how in practice an hypothetical attacker could carry

out a double spending in the Tangle (where the majority of
users select tips using the BRW algorithm), we consider the
attack scenario known as Parasite Chain Attack. A Simple
Parasite Chain (SPC) is illustrated in Figure 6: we refer to this
as kth-order SPC because the first k transactions in the chain
reference the main Tangle. The attacker publishes the yellow
transaction in the Tangle and simultaneously, in secret, creates
a conflicting transaction (the green one) followed by a chain
of vertices which validate it. The attacker waits for the yellow
transaction to be confirmed3 and then immediately broadcasts
the parasite chain to the network and continues publishing
transactions which validate it. The goal of the attacker is
then to try and “race” the Tangle, creating a sub-DAG whose
cumulative weight will outmatch the main body of the ledger.

3It is generally accepted that a transaction should receive a minimum
amount of approvals before it is considered to have been confirmed (for in-
stance in most Blockchain based cryptocurrencies, a transaction is considered
valid after six subsequent approvals). Therefore the attacker should wait at
least until the first transaction is confirmed and accepted by the Tangle before
broadcasting the SPC.
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Fig. 5. Representation of the two main tips selection algorithms: the upper panel shows an instance of the Random Selection algorithm whereas the lower one
presents a possible example of the Markov Chain Monte Carlo algorithm.

1 2 k

Fig. 6. A kth-order SPC: The yellow and green transactions constitute a
double spend.

If the attack were to succeed, newly arrived transactions would
attach to the branch that refers to the green transaction and
would ultimately leave the honest site (the yellow one) behind.

An SPC is characterised by four parameters:
1) TDS is the time between the arrival of the original

transaction and the broadcast of the SPC;
2) k is the ‘order’ of the SPC, i.e. the number of transac-

tions referencing the main Tangle;

3) λ is the rate of arrival of honest transactions i.e. the
computing power of active honest network users

4) µ is the rate at which the attacker can add transactions
to the parasite chain, i.e. the attacker’s computing power
(as opposed to λ which represents the total computing
power of honest users issuing transactions to the Tangle).

Note that it is possible to create parasite chains with more
complex structure than the one presented previously. However
due to the complexity of the analysis it is not yet clear how to
optimally design such a chain. Therefore we will focus solely
on the SPC, and use this special case to draw conclusions
about the Tangle’s ability to resist doublespending attacks.
A possible solution to this limitation, might be to employ
machine learning algorithms (such as reinforcement learning),
to guide the attacker’s actions in designing the structure of
the SPC to maximise his chance of success and, consequently,
perform the same analysis that we propose in this paper
on the shapes found this way. Nevertheless, this would be
beyond the scope of this manuscript and will be investigated
in a future work.
Finally, in the remainder of this paper we will assume that the
honest majority assumption holds true [16]: the computing
power of the attacker is always lower than the total computing
power of the honest users accessing the network (i.e., µ < λ).
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III. THE BIASED RANDOM WALK ALGORITHM

In this section we present a Markov Chain model for the
BRW algorithm which allows us to compute the probability
that a BRW will terminate on a given tip of a given instance of
the Tangle. We refer to these probabilities as exit probabilities.
We then simulate a parasite chain attack on the Tangle, and
investigate how the parameters of the BRW algorithm affect the
Tangle’s response to the attack. In order to generate a random
instance of the Tangle, in simulation, we use an agent based
model in MATLAB: at each time step a random number of
transactions arrive, according to a Poisson distribution, and for
each one of these transactions, the tip selection algorithm is
used to attach these to the Tangle. This agent based model
simulates the arrival of each transaction, together with the
tip selection procedure and the consistency checks, therefore
providing an accurate replica of the mechanism previously
described.

A. Markov Chain Model
We now describe the BRW as a Markov Chain process.

Specifically, we explicitly formulate the transition matrix for
the walk, which is an absorbing Markov chain: this allows us to
obtain analytical expressions to compute the exit probabilities
of the BRW. First we recall the description of the agent-based
model which is used to generate a random instance of the
Tangle. Each new transaction selects m = 2 tips for approval,
and attempts to validate them. To take into account possible
conflicts we assume that d conflicting sub-DAGs exist on the
Tangle, where each transaction from a sub-DAG is mutually
consistent only with transactions from the same sub-DAG.
Thus every site has a label from the set 1, . . . , d, indicating
the sub-DAG to which it belongs. We will call this the type of
the site. If validation fails (i.e., transactions from different sub-
DAGs are selected) the choices are discarded and another two
tips are selected for validation. This continues until the process
is successful. Notice that, in a realistic scenario, the process
of performing the BRW will take some time and it would be
non realistic to model it as an instantaneous effort (especially
in a IoT setting were computational power is already limited);
nevertheless, since the modelling of this phenomena would not
affect the the analysis on doublespending attacks (as it affects
primarily the time evolution of the Tangle, by delaying the
approval of all transactions), an analysis on the effects of the
BRW’s computational efforts are going to be the subject of a
future work.
Once the validation process is over, there is a waiting period
h during which the PoW is carried out. During this time the
approvals of the selected tips are pending, so the tips may still
be available for selection by other new transactions. After the
waiting time h the two sites which were successfully approved
are removed from the tips set, and so are no longer available
for selection by other new transactions (at least, by the ones
that follow the protocol)4. Finally, we assume that the arrival
rate of newly issued transactions is determined by a Poisson
distribution with rate λ.

4It may happen that some of these sites had already ceased to be tips at an
earlier time, due to their being validated by some other new transaction.

Next we review the BRW algorithm for tip selection: for a
given instance of the Tangle, a random walk is initiated starting
somewhere in the interior of the graph. In our simulations,
we use the genesis, but in practice, this start point needs to
be selected by other means. In the current implementation
of the Tangle, the walk begins from special sites known as
milestones5 and exploring the way to select an optimal starting
point remains an open question. The BRW subsequently steps
randomly along edges of the DAG. A step along an edge can
be either forward (meaning toward a site that arrived later than
the current site) or backward. A forward step occurs with a
probability that is proportional to exp(−α(∆H)), where α is a
positive constant and ∆H is the change in Cumulative Weight
along the edge. The walk terminates when it reaches a tip,
which is then selected for approval. Thus, to model the BRW
algorithm we need to define explicitly the cumulative weight
of each transaction and find an expression for the probability
of terminating on a given tip.

Let V (t) denote the set of sites on the DAG at time t. Since
we set the weight of each transaction to 1, the cumulative
weight Hi(t) of transaction i is defined as one plus the number
of transactions that directly or indirectly approve it at time t:

Hi(t) = 1 + #{z ∈ V (t) : z approves i}. (1)

The cumulative weight Hi(t) can be computed using the
adjacency matrix M(t) of the DAG ([M ]ij = 1 if there
is a directed edge between transaction j and transaction i,
otherwise [M ]ij = 0), by noting that [Mk(t)]ij represents
the number of walks of length k that connect transaction i
to transaction j (in a DAG, there is no difference between a
walk and a path). In what follows, we assume that sites are
ordered such that if transaction i arrived earlier than transaction
j, then i < j. Let ti denote the time at which site i was
added to the DAG, i.e. the time at which it completed its PoW,
m = maxV (t) as the last transaction that was added to the
Tangle and recall that h is the duration of the PoW. Define

κi = b(tm − ti)/hc, (2)

Pi(t) =

κi(t)∑
k=1

ei
TMk(t), (3)

where b·c is the floor operator. Then Hi(t) is equal to

Hi(t) = 1 +

N(t)∑
j=i+1

min{Pi(t)ej, 1} (4)

where ei is the i-th vector of the canonical orthonormal basis.
Notice that:
• We use min{·, 1} in order to avoid counting the same

transaction more than once (since there could be several
paths with a different number of steps connecting two
transactions);

5https://blog.iota.org/coordinator-part-1-the-path-to-coordicide-
ee4148a8db08
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Fig. 7. An instance of the Tangle where the longest path between any of the
leftmost transactions (highlighted in green) and the tips (highlighted in red)
can not be longer than four.
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Fig. 8. A simple instance of the Tangle with six transactions.

• The value κi represents the maximum number of
forward steps that can occur along a directed path
from site i to the tips set (as each transaction must
complete a PoW that lasts h time units). Figure 7
shows an instance of the Tangle in which the longest
possible path between the green transactions and the
tips set is four. Due to the presence of the PoW, a
transaction whose arrival time is t can have its earliest
approval at time t + h, therefore there can be no
path longer than κi steps between transaction i and
any of the vertices that approve it (directly or indirectly).

To better clarify equations (2)-(4), consider the simple
instance of the Tangle shown in Figure 8. The delay h is set
equal to 1, m = 6 and the adjacency matrix associated with
this graph is

M =


0 0 1 1 1 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 .

TABLE I. TANGLE PARAMETERS

# Transaction ti[s] κi Pi Hi

1 0.1 2
[
0 0 1 1 2 2

]
5

2 0.2 2
[
0 0 1 1 1 2

]
5

3 1.3 1
[
0 0 0 0 1 1

]
3

4 1.6 1
[
0 0 0 0 0 1

]
2

5 2.4 0
[
0 0 0 0 0 0

]
1

6 2.7 0
[
0 0 0 0 0 0

]
1

The full list of parameters can be found in Table I. Consider
the first transaction: it is easy to verify by visual inspection
that its cumulative weight is five. Notice, also, that M is a
nilpotent matrix and that M l = 0 for l > κ1. The vector P1

can be then computed as

P1 = e1
T (M +M2) = [0 0 1 1 2 2] , (5)

and using (4) it is easy to obtain H1 = 5. The same
procedure can be repeated for the other transactions and the
results can be found in Table I. Notice that the computations of
the power of matrix M need to be executed, at most, κi times.

Given (4), we can go back to the BRW algorithm. In a
previous section we mentioned that in its original formulation
the BRW starts at the genesis. In a practical scenario though,
since the dimension of the Tangle grows with time, it would
be non feasible to start the walk always from its starting
transaction. A possible solution (whose effects on the exit
probabilities still need to be addressed) is to start the BRW
in the interior of the DAG; to take this into account we define
π ∈ RN(t) as the vector whose i-th entry represents the
probability that the walk starts at transaction i. To the best
of the authors’ knowledge no official methods have still been
proposed to choose the official starting transaction. A possible
solution of assigning values to π could be based on the age
and the cumulative weight of each transaction: for instance
by selecting a certain interval T = [t, t], all the transactions
whose arrival time ti belongs to T have a probability of being
selected, as the starting point or the RW algorithm, based
on their cumulative weight (i.e., the larger Hi the larger πi
and vice versa). As another example, in [23] the authors
proposed to start the walk randomly, with uniform probability,
at a transaction in the interval [N(t) − 200λ,N(t) − 100λ]
(where transactions are ordered by their arrival time).

Furthermore we define the difference in cumulative weight
between transaction j and transaction k to be ϑjk(t) =
Hj(t)−Hk(t). Then the transition matrix T (t) whose jk entry
characterizes the probability of stepping from site j to site k
is defined as follows in the case where j is not a tip:

[T ]jk(t) =


q/m if k ∈ Oj

(1− q) e−αϑjk(t)∑
z∈Ij e

−αϑjz(t)
if k ∈ Ij

0 otherwise

(6)

where q ∈ [0, 1/2) represents the probability of going back-
wards, Oj ⊂ V (t) is the set of all sites that are directly
approved by j, m = |Oj | is the number of sites directly
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approved by j, Ij ⊂ V (t) is the set of all sites that directly
approve j, and α is a tuning parameter. When the walk hits a
tip, it remains there indefinitely, therefore when the transaction
j is a tip we have

[T ]jk(t) =

{
1 if j = k

0 otherwise.
(7)

Note that (6) appears in [24], where the BRW algorithm is
analysed in a different context related to non-cooperative game
theory. Here, however, we expand on this model in the interest
of our attack analysis. Equations (6) and (7) provide us with
useful information on the BRW algorithm: the walk process is
an absorbing Markov Chain with N(t)− L(t) transient states
and L(t) absorbing states, where N(t) = |V (t)| is the number
of sites in the tangle at time t, and L(t) is the number of tips
at time t. Therefore, by properly rearranging and re-labelling
the sites the transition matrix can be written as follows:

T (t) =

(
Q(t) R(t)

0 I

)
where Q(t) is the transition matrix between transient states,
R(t) is the transition matrix from transient states to absorbing
states, and I is the identity matrix for the absorbing states.
Standard analysis of absorbing Markov chains yields the
absorbing probability matrix B(t) = (I−Q(t))−1R(t), whose
(i, k) entry is the probability for the BRW to be absorbed at
tip k given that it started at site i.

Next we include the effects of conflicting sub-DAGs. Define
Li(t) to be the set containing the indices of the tips of type i
at time t, and recall that π is the initial probability distribution
of the random walk. Then the probability for the random walk
to terminate at a tip of type i (i.e., to be absorbed by the subset
Li of the absorbing states) is

pi(t) =

∑
j∈Li(t)

πTBej∑d
k=1[

∑
j∈Lk(t)

πTBej]
(8)

Furthermore the probability for a new transaction at time t
to join the tip set of type i is then

P (Type = i) = pi(t)
m

 d∑
j=1

pj(t)
m

−1 (9)

where the second factor on the right side of (9) accounts for
the requirement that all m selections must have the same type.

The validity of equation (8) was investigated using a Monte
Carlo analysis of random walks on a randomly generated
Tangle with two sub-DAGs—the main DAG generated using
the agent-based model, and a large parasite chain attached at
a site deep in the main DAG. In each run of the Monte Carlo
analysis a random walk was generated starting at the genesis,
and the type of the terminal tip of the walk was recorded as
either Type 1 or Type 2. This is illustrated in Figure 9, and
we observe that as the number of Monte Carlo simulations
increases the empirical probability distribution of the BRW’s
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Fig. 9. Convergence of BRW monte carlo simulation results to matrix model
formula

type converges to the value computed by (8). Note that a
very large parasite chain was attached in this example, so the
value of p2 is coincidentally very close to 0.5.

B. Resistance to Parasite Chain Attacks

In this section we report on our investigations of the SPC
(simple Parasite Chain) attack on the Tangle, when the BRW
algorithm is used to select tips. In particular we are interested
in how the parameters of the SPC and of the BRW algorithm
affect the likelihood of a particle terminating on a dishonest
tip. Notice that for an SPC attack to succeed, the majority
of newly arriving transactions must eventually validate tips
on the SPC. While it should be worthwhile to investigate the
probability of this event, it would require an analysis of the
whole dynamical system and of its equilibrium states, and
would stretch beyond the scope of this paper. Furthermore,
the probability of this event would anyway be closely related
to the probability of a single BRW selecting two tips of the
SPC, which is the focus of the analysis presented here.

We denote tips on the main Tangle (which reference the first
of the double spend transactions) as Type 1, and tips on the
SPC as Type 2. Then (8) gives us:

p2(t) =

∑
j∈L2(t)

πTBej∑
l∈L1(t)

πTBel +
∑
j∈L2(t)

πTBej
(10)

We first investigated the effect of the parameter α by
simulating this probability for a randomly generated instance
of the Tangle and a first order SPC with TDS = 120 seconds
and where the attacker has 25% of the total computing power
of the network (i.e., µ = λ/3). Results are shown in Figure
10. Notice how as α increases, the probability of selecting
the SPC increases at first (from a non zero value) reaching
a maximum, and then decreases again: the reason for this
behaviour is that as α approaches infinity the BRW will
automatically select the tips with the highest cumulative weight
(deterministically if only one tip has the highest cumulative
weight) and, therefore, as long as µ < λ, the attack will
always fail. On the other hand, when α is equal to zero the



9

selection will not depend on the cumulative weight but only
on the structure of the graph. Moreover, note that, since the
attacker’s aim is to be able to effectively spend its money twice
the attack would fail if he revealed the parasite chain before
the original transaction had gained sufficient cumulative weight
to be considered as confirmed by other nodes. This happens
because if the original transaction was orphaned before its
confirmation, then it would not be considered valid by the
network and the doublespending transaction would become the
only transaction in which the attacker was able to successfully
spend any currency. Accordingly, in the simulations presented
in Figure 10, we assume that by TDS = 120 the initial spend
on the main branch will be confirmed and, consequently, acted
upon.

Next, we investigated the effect of the double spend time,
TDS , and the results are shown in Figure 11. Recall that TDS
is the time elapsed between the arrival time of the original
transaction and the time the SPC was broadcast to the network.
The reason for the evident decrease in probability of selecting
an SPC tip as TDS increases, as shown in Figure 11, is related
to how the cumulative weights of transactions grow with time,
as illustrated in Figure 12. Because of the Tangle’s structure,
a site in the graph must wait for an adaptation period before
all new arriving transactions will indirectly approve it, and
hence increase its cumulative weight linearly. However each
transaction in the SPC references directly the doublespending
site, and hence its cumulative weight will immediately grow
at the rate of arrival of the attacker’s transactions, which is µ.
Figure 12 was generated by simulating a 100 random DAGs
with a parasite chains using the agent-based model. A new
transaction was selected at random from the main DAG and
the parasite chain during each simulation, and the trajectory of
their cumulative weights were measured—Figure 12 plots the
average of these 100 pairs of trajectories. The gap between
the two averaged trajectories is the difference in cumulative
weight, which directly reduces p2 and explains the reduction
in p2 as we increase TDS that we see in Figure 11. The
intersection point of the two curves in Figure 12 indicates
that as TDS decreases below this threshold, the probability of
selecting an SPC tip increases (as the cumulative weight of
the SPC gets larger compared to the one of the main Tangle).
Figure 13 confirms this hypothesis: for TDS = 60 increasing
α leads to an increase in the probability of selecting a tip
that belongs to the doublespending attack (note that the first
transaction would most likely not have been confirmed by
this time so this apparent advantage may be of no use to the
attacker).

The other key parameter of the SPC is the order, k. There
are two factors to consider for an attacker when it comes to
choosing k. The larger the choice of k, the more likely the
BRW is to step on to the parasite chain. However, more links
to the main Tangle also means more opportunities to step
back on to the Tangle from the SPC (since at every step the
particle has the chance to backstep). The relationship between
the probability of selecting an SPC tip, the attacker’s choice
of k, and the BRW backstepping probability parameter q is
illustrated in Figure 14.
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Fig. 10. Probability of selecting an SPC tip: λ = 15, µ = 5, k = 1,
TDS = 120
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Fig. 11. Probability of selecting an SPC tip: λ = 15, µ = 5, k = 1

As a final note, we want to stress that to maximise its
chance of success, an attacker will try to attach the SPC by the
time the original transaction gets confirmed by the network,
independently of its computing power µ. In fact, to wait less
time would lead one of the two transactions to be orphaned
before they get confirmed. To wait more time, on the other
hand, would also reduce the attacker’s chance of success, as it
would lead to the original transaction’s cumulative weight to
grow larger. Therefore, the parameter TDS , while dependent on
the time it takes for a transaction to be considered confirmed
by the network (which may depend on various heuristics), is
independent of µ.
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Fig. 12. Growth of cumulative weight in the Main Tangle and a Parasite
Chain
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Fig. 13. Probability of selecting an SPC tip: λ = 15, µ = 5, k = 1,
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IV. EXTENDING THE BRW ALGORITHM

The original motivation for using the BRW selection
algorithm was to incentivise network users to validate the
most recently arrived tips, and thereby defend the Tangle
against attacks such as the parasite-chain attack. Theoretically,
if the BRW parameter α is high enough and if the attacker
does not possess the majority of the computing power of
the network, then the attack should never succeed. However
an excessively high value of α would result in many honest
transactions never being approved. The design trade-off
between security and liveness involved in choosing α is
discussed in [22], and solutions to the issue of transactions
being orphaned are proposed in [21].

We now propose a modification to the BRW algorithm which
seeks to reduce the efficacy of double spending attacks whilst
allowing us to maintain a low α, and hence a wide Tangle
and low probability of orphaned transactions. The intuition
for our modification stems from the phenomenon illustrated in
Figure 12: although the cumulative weight of a transaction on
the main Tangle may lag behind due to the initial adaptation
period it underwent, we can be quite sure that if the point
of attachment of a parasite chain is deep in the Tangle, then
the rate of growth of the cumulative weight of transactions
at the attachment site should be equal to λ. Our modification
utilises the first order time derivative of the cumulative weight
in calculating the stepping probabilities of the BRW—we call
this a First Order BRW. Define ϑ(1)jk (t) = |H′j(t) − H′k(t)|,

where H′k(t) is the time derivative of the cumulative weight:

[T ]jk(t) =


q/m if k ∈ Oj

(1− q) e−αϑjk(t)−βϑ(1)
jk (t)∑

z∈Ij e
−αϑjz(t)−βϑ(1)

jz (t)
if k ∈ Ij

0 otherwise
(11)

where β is a non-negative tuning parameter. Of course the time
derivative H′k(t) must be computed using a suitable discrete
approximation (for example using the backward-difference
operator and storing the previous value of the cumulative
weight of each node).

The rationale for this approach can be summarized as
follows: the cumulative weight of a transaction in a parasite
chain grows linearly with rate equal to the computing power
of the attacker, µ, whilst the main Tangle will grow at the
rate of the computing power of the rest of the network, λ,
as illustrated in Figure 12. In other words, since the sites
belonging to the main DAG will be growing at rate λ, and
the site on the SPC will be growing with rate µ, due to the
honest majority assumption (µ < λ) the main DAG will be
favoured when the first order term is included. Therefore, the
parasite chain will be heavily penalized by the First Order
BRW.

Notice that, while computing the first order derivative
comes at a minimal cost (the simpler approximation requires
only the previous value of the current cumulative weight) this
might lead to additional hardware requirements (e.g., storage).
Furthermore, it is possible that this extension could open up
new attack vectors—a thorough analysis to investigate this
possibility and its consequences would need to be considered
before implementing this extension in a real network.

Simulation results for the same instance of the Tangle used
for examples in Section III are shown in Figure 15. These
preliminary results suggest that the First Order BRW achieves
its goal and effectively mitigates the chance of an attacker to
achieve its goal. Of course, the performance of the algorithm
will start to deteriorate when the particle approaches a tip,
as at this height, the cumulative weight on the main Tangle
grows at a different rate. Therefore, it could be useful to
modify the derivative term adding a weight that makes it less
relevant with each step forward.

Finally, it is worth mentioning that (11) can be extended
by considering higher order derivatives (in a real scenario the
arrival rate of new transactions would vary in time, as would
the higher order derivatives of the cumulative weight). Future
work will focus on determining how additional terms might be
added to the stepping probabilities in order to further reduce
the effect of a double spending attack.

V. CONCLUSIONS AND FUTURE WORK

In this paper we considered the suitability of DAG-based
DLT for applications in the IoT domain, with particular
attention to a ledger’s security against tampering. To this
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Fig. 15. Probability of selecting an SPC tip: λ = 15, µ = 5, k = 1,
TDS = 120

end we investigated the performance of the IOTA Tangle
under a well known doublespending attack scenario called the
parasite chain. Our analysis uses a Markov Chain model for
the Biased Random Walk (BRW) tip selection algorithm on
the IOTA Tangle (referred to as MCMC in the Tangle white
paper [16]), and we validated this model using Monte Carlo
simulations of random walks on randomly generated instances
of the Tangle. We then presented an extension of the BRW
algorithm called First order-BRW, which makes use the first
order time derivative of the core metric of the Tangle, the
cumulative weight. Our simulations demonstrated the modified
algorithm’s effectiveness at mitigating parasite chain attacks,
compared to the standard BRW algorithm. Future lines of
research will focus on analysing the effects of the use of higher
order derivatives of the cumulative weight to further extend
the BRW algorithm and to possible attack vectors that these
modifications might be vulnerable to. Furthermore, we will
investigate the impact of different structures for the parasite
chain attack, beyond the simple parasite chain discussed here,
to assess the security properties of DAG-based ledgers.
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