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Abstract

Recent attempts to diagnose equilibrium climate sensitivity (ECS) from
changes in Earth’s energy budget point toward values at the low end of
the Intergovernmental Panel on Climate Change Fifth Assessment Report
(AR5)’s likely range (1.5–4.5 K). These studies employ observations but still
require an element of modeling to infer ECS. Their diagnosed effective ECS
over the historical period of around 2 K holds up to scrutiny, but there is
tentative evidence that this underestimates the true ECS from a doubling
of carbon dioxide. Different choices of energy imbalance data explain most
of the difference between published best estimates, and effective radiative
forcing dominates the overall uncertainty. For decadal analyses the largest
source of uncertainty comes from a poor understanding of the relationship
between ECS and decadal feedback. Considerable progress could be made
by diagnosing effective radiative forcing in models.
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1. INTRODUCTION

The equilibrium climate sensitivity (ECS)—defined as the globally averaged surface temperature
change at equilibrium for a doubling of atmospheric CO2 concentration—has taken on almost a
mythical status in climate science as the uncertainty that will not go away. From its introduction
and first assessment by Charney et al. (1979) until the latest Intergovernmental Panel on Climate
Change (IPCC) report, the Fifth Assessment Report (AR5) (Stocker et al. 2013), its range has
hovered around 1.5–4.5 K. This temperature range represents the uncertainty in global mean
warming for a sustained doubling of background carbon dioxide levels.

The seeming intransigence of the uncertainty range belies huge improvements in our under-
standing and quantification of many aspects of climate, including its sensitivity. It is too simplistic
to compare the 1979 range to the 2013 range and say that we are no better off. The 1979 Charney
range was a subjective judgment based on two basic global climate models. In contrast, the 2013
AR5 range was based on an assessment of multiple lines of evidence, including comparing the latest
climate models to observations, understanding historical records and the paleoclimate record, and
investigating changes in Earth’s energy budget. Additionally, the science community has realized
that a factor-of-three uncertainty in ECS does not necessarily imply a factor-of-three uncertainty
in projected warming. A related quantity, the transient climate response (TCR), is much more
important for defining warming during the coming century. TCR is defined as how much the
world would warm after 70 years of continually increasing CO2 levels (at 1% per year) and has
a smaller uncertainty range [1.0–2.5◦C (Stocker et al. 2013)]. As well as the uncertainty in TCR,
future climate is affected by uncertainties in projected emissions and feedbacks with the Earth
system (such as methane release from Arctic tundra). Further, the impacts of climate are locally
realized, and future regional rainfall changes (for instance) are not uniquely determined by global
temperature change or ECS (Andrews et al. 2010). Nevertheless, ECS remains important to con-
strain, both for its status as a talisman of climate science and for fundamentally understanding
how Earth’s temperature responds to perturbations in its energy budget.

Compared to the IPCC’s Fourth Assessment Report (AR4) (Solomon et al. 2007), AR5 re-
duced its lower bound from 2◦C to 1.5◦C and did not make a best estimate. This was a result of
publications deriving ECS from the instrumental record (recent historical temperatures and top-
of-atmosphere energy change) tending to report a lower ECS best estimate than did publications
using other lines of evidence (see box 12.2, figure 2, of Collins et al. 2013).

Since publication of AR5 it appears that the instrumental-based approaches have continued to
diverge from the approaches that compare model climatologies to observation. The purpose of
this review article is to critically examine these energy budget approaches and search for possible
causes of discrepancy from the different lines of evidence. Section 2 introduces the theoretical
basis; Section 3 critically examines past studies, concentrating on those published since AR5;
Section 4 examines uncertainty in deriving ECS from multidecadal trends; Section 5 examines
shorter-timescale approaches; and Section 6 points to the way forward.

2. THE THEORETICAL BASIS

The time-dependent energy imbalance, N, of Earth (taken as positive downward) can be split into
forcing, response, and noise terms such that (e.g., Forster & Gregory 2006, Gregory et al. 2002)

N = F − αT + γ. (1)

F is the radiative forcing; T is the globally averaged surface temperature change; γ represents a
noise term whereby N could be affected by variability unrelated to T (discussed in Section 5); and

86 Forster

Changes may still occur before final publication online and in print

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
16

.4
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

L
ee

ds
 o

n 
05

/0
6/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EA44CH05-Forster ARI 16 April 2016 13:53

α is the climate feedback parameter, which gives the dependency of N on T, such that α = − δN
δT .

This formulation is a linear approximation to the global energy budget and remains valid provided
T is small.

Fourier (1827) was the first to associate planetary temperature with its top-of-atmosphere
energy budget. Stefan (1879) used existing laboratory measurements to deduce the relationship
between the temperature of a body and its emitted radiation. This relationship became known as
the Stefan-Boltzmann law, one of the underpinning laws of physics. Early authors realized that
Earth’s effective emission temperature and its surface temperature were not the same but could
be straightforwardly connected through the gray-body approximation. N could therefore also be
written as N = ASR−εσ T 4

s , where ASR is the absorbed solar radiation, ε the assumed gray-body
emissivity of Earth, and Ts the absolute surface temperature. This can be differentiated to give a
value for α, assuming Earth has a black-body response, such that αBB = 4εT 3

s .
Arrhenius (1896), building on the work of Tyndall (1861), already knew about the role of water

vapor and cloud feedbacks modifying the black-body response. Feedbacks can be included in the
simple model by adding a temperature dependence in the emissivity and/or ASR terms. The first
climate modeling papers included water vapor feedback but typically assumed fixed clouds (e.g.,
Manabe & Wetherald 1967). A more realistic value of α combines the black-body response from
the Stefan-Boltzmann law with that due to climate feedbacks such as water vapor change, lapse
rate change, surface reflectance change, and cloud changes: α = αBB + αw.v. + αlapse. . . .

Once the radiative forcing is determined for a doubling of CO2 (F2×CO2 , approximately
3.7 Wm−2), it then becomes possible to derive ECS by solving Equation 1 for T at equilibrium
(N = 0). An effective ECS can also be determined for nonequilibrium conditions:

ECS = F2×CO2

α
= F2×CO2

T
F − N

. (2)

It is in making the connection between an α diagnosed in a particular situation to an α or ECS
applicable for 2 × CO2 equilibrium conditions that a major fallacy emerges: It is possible to use
these sets of equations with observations of N, F, and T to make an estimate of ECS that does
not depend on a climate model. Gregory et al. (2002) were the first to employ observations of
N directly to make such an “observationally constrained” estimate of ECS. Forster & Gregory
(2006, p. 39) overstated the benefits of such an approach by claiming, “Importantly, the [ECS]
estimate is completely independent of climate model results.” As Equation 1 derives directly from
conservation of energy, the Forster & Gregory (2006) claim would appear valid. But it in fact
makes the assumption that the α derived from a particular observational period is the same as the
α applicable under long-term climate change. Another way of stating this assumption is saying
that the effective climate sensitivity (the apparent ECS diagnosed from a specific α) is the same as
the true ECS. Uncertainties around the derivation of ECS from an energy budget approach can
be attributed to two causes: the model used to translate α into an ECS estimate and the quality of
the observation-based data sets.

3. SUMMARY OF PAST RESULTS

The first attempts to constrain ECS from the historical record implicitly assumed a version
of Equation 1 and employed some form of climate model to link the variables (Andronova &
Schlesinger 2001, Wigley et al. 1997). These methods have continued to be used, most noticeably
when linked with a detection and attribution approach (Frame et al. 2005, Lewis 2015). Ocean
temperatures are combined with other observations, such as hemispheric temperature differences,
to help constrain aspects of the model response (e.g., Aldrin et al. 2012, Knutti et al. 2002). Studies
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Figure 1
Published best estimate values of the climate feedback parameter, α, and effective equilibrium climate sensitivity by study publication
year. These are categorized into multidecadal analyses (blue circles), decadal analyses (red triangles), and model analyses ( gray squares).
Filled symbols correspond to bold entries in Table 1. Four studies quote a range of best estimates illustrated by the error bars (see
Table 1 for details).

have also employed more direct measurements of N, either from ocean heat content (e.g., Gregory
et al. 2002, Otto et al. 2013, Roe & Armour 2011, Skeie et al. 2014) or from satellite observations
(e.g., Dessler 2013, Forster & Gregory 2006, Lindzen & Choi 2011, Murphy et al. 2009). Table 1
and Figure 1 present summaries of the works that have employed variants of Equation 1 to derive
α and/or ECS. Studies have been categorized as long-timescale (multidecadal) analyses, short-
timescale (decadal) analyses, and climate model analyses. Studies have either employed Equation 1
or 2 directly or used a mixed layer model approach to solve Equation 1, whereby N simply heats a
mixed layer ocean of fixed heat capacity, giving the climate a fixed timescale of response (Bengts-
son & Schwartz 2013, Schwartz 2007). Other studies have quantified individual feedback terms
(Dessler 2013, Soden & Held 2006). Some studies either deliberately or inadvertently omit the
forcing term from Equation 1 (Chung et al. 2010; Lindzen & Choi 2009, 2011).

The role of Bayesian uncertainty analysis and prior distributions in making a probabilistic
estimate of ECS has been extensively discussed (e.g., Aldrin et al. 2012, Bindoff et al. 2013, Forest
et al. 2006, Lewis 2013). A particular online debate surrounded the modification of the prior, which
adjusted the Forster & Gregory (2006) estimate of ECS when quoted in IPCC AR4 (Hegerl et al.
2007); see, for example, http://judithcurry.com/2011/07/05/the-ipccs-alteration-of-forster-
gregorys-model-independent-climate-sensitivity-results/. These choices are important for
gauging realistic uncertainty ranges but are not considered further in this review. Rather, this
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Table 1 Estimates of α and/or corresponding ECS derived from energy budget changes

Study Year range Energy imbalance (N) Model

α

(Wm−2

K−1)
ECS
(K) Notes

Long-timescale (multidecadal) analyses

Gregory et al.
2002

1957–1994 cf.
1861–1900

1957–1994 estimate based
on 0–700 m OHC from
Levitus et al. (2012);
N = 0.16 Wm−2 assumed
for base years

Equation 2 0.6 2.1 Forcing from various
sources; α computed from
medians in paper; ECS is
modal value

Schwartz 2007 1880–2004 1956–2002 estimate based
on OHC from Levitus
et al. (2012), including
deep ocean and other
components

Mixed layer
model

3.3 1.1 Forcing not used; time
constant and heat capacity
of ocean used to determine
sensitivity

Lin et al. 2010 1880–2005 Present-day N =
0.85 Wm−2 from model
data

Mixed layer
model

1.0 to
1.3

2.8 to
3.7

Range depends on ocean
heat uptake rates; forcings
principally from GISS
(Hansen et al. 2007)

Roe & Armour
2011

Preindustrial
(not
specified)–
present

Present-day estimate made
in paper is N = 0.74 Wm−2

Equation 2 1.23 3 Forster et al. (2007)
forcings and Solomon
et al. (2007) temperatures

Schwartz 2012 1965–2009 1950–2010 various OHC
data used, including deep
ocean and other
components

Equation 1 0.86
to
3.22

1.1 to
4.3

Regression used over
period; different methods
and forcing data sets used

Otto et al.
2013

1970–2009 cf.
1860–1879

Global heat uptake estimate
made for 1961–2011 from
various sources; N =
0.08 Wm−2 for base
period

Equation 2 1.72 2 Evaluated different periods;
used an ERF of 2 × CO2

of 3.44 Wm−2; forcings
from Forster et al. (2013)

Bengtsson &
Schwartz
2013

1970–2010 1970–2010 estimate based
on OHC from Levitus
et al. (2012), including
deep ocean and other
components

Equation 1 1.83 2.0 Regression used as in
Schwartz (2012); various
forcing data sets used

Lewis & Curry
2014

1995–2011 cf.
1859–1882

Final period, same source as
Otto et al. (2013); N =
0.15 Wm−2 for base
period, from modeled
steric sea-level rise, scaled
down

Equation 2 2.25 1.64 Various sensitivity tests
performed; AR5 forcings
used (Myhre et at. 2013)

Kummer &
Dessler 2014

1958–2010 cf.
1880–1900

1958–2010 total OHC
reanalyses from Balmaseda
et al. (2013) plus other
terms; implicit zero base
period assumed

Equation 2 1.1 to
1.6

2.3 to
3.4

Range depends on transient
forcing efficacy of aerosol;
AR5 forcings used

(Continued )
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Table 1 (Continued )

Study Year range Energy imbalance (N) Model

α

(Wm−2

K−1)
ECS
(K) Notes

Masters 2014 1955–2011 1955–2011 different OHC
data sets used, including
Domingues et al. (2008)

Equation 2 2.05 1.98 Various base periods and
time periods analyzed
within dates; GISS
forcings used (Hansen
et al. 2007).

Short-timescale (decadal) analyses

Tsushima et al.
2005

1985–1999 ERBE 60◦S–60◦N Equation 1,
no forcing

0.98 3.8 Overestimate of solar
sensitivity by factor of 2

Forster &
Gregory 2006

1985–1996 ERBE 60◦S–60◦N Equation 1 2.3 1.6 Effects of regression
explored

Lindzen &
Choi 2009

1985–1999 Tropical ERBE Equation 1,
no forcing

4.5 0.8 Several errors in method
identified

Murphy et al.
2009

1985–2005 ERBE and CERES Equation 1 1.25 3.0 Explored seasonal and
interannual analyses

Trenberth
et al. 2010

1985–1999 60◦S–60◦N ERBE Equation 1 0.8 to
1.6

2.3 to
4.6

Range depends on case
investigated

Chung et al.
2010

1985–1999 60◦S–60◦N ERBE Equation 1,
no forcing

0.11 34 Very big shortwave
feedback found

Lindzen &
Choi 2011

1985–2008 Tropical ERBE and
CERES from 2000

Equation 1,
no forcing

6.9 0.5 Similar errors as in their
earlier work

Tsushima &
Manabe 2013

1985–2005 1985–1999, 60◦S–60◦N
ERBE and global CERES
from 2000

Equation 1,
no forcing

1.1 3.4 Used a gain factor approach

Dessler 2013 2000–2010 Reanalyses Sum of
feedbacks

1.15 3.2 —

Donohoe et al.
2014

2000–2013 CERES global data Equation 1 1.2 3.1 —

Trenberth
et al. 2015

2000–2013 CERES global data Equation 1,
no forcing

1.13 3.3 α = 2.28 Wm−2 K−1 if
using tropospheric
temperatures for
regression

Climate model–based analyses (long timescale)

Forster &
Taylor 2006

70 years of 1%
per year CO2

increase

Model result Equation 1 1.42 2.7 Average of 20 CMIP3
models

Soden & Held
2006

2000–2100 SRES A1B scenario Sum of
feedbacks

1.28 2.9 Average of 12 CMIP3
models

Forster et al.
2013

Andrews et al.
2012

4 × CO2

abrupt runs
Model result Equation 1 1.13 3.32 Average of 23 CMIP5

models

(Continued )
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Table 1 (Continued )

Study Year range Energy imbalance (N) Model

α

(Wm−2

K−1)
ECS
(K) Notes

Dessler 2013 200 years of
either
preindustrial
or CO2

increase

Model result Sum of
feedbacks

0.6 (un-
forced)
or 1.26
(forced)

2.9 or
6.1

Average of 13 CMIP5
models; difference from
unforced and forced runs;
higher α in models with
good ENSO

Masters
2014

1955–2011 Model result Equation 1 1.18 3.1 Assumed aerosol forcing; 32
CMIP5 models

Bold entries are taken directly from the paper; others are estimated using ECS = F2×CO2 /a , assuming F2×CO2 = 3.7 Wm−2. Data sources: OHC data,
Levitus et al. (2012) or earlier incarnation of same data set referenced within; ERBE, Wong et al. (2006); CERES, Loeb et al. (2009). Abbreviations: AR5,
Intergovernmental Panel on Climate Change Fifth Assessment Report; CERES, Clouds and the Earth’s Radiant Energy Systems; CMIP, Coupled Model
Intercomparison Project; ECS, equilibrium climate sensitivity; ENSO, El Niño Southern Oscillation; ERBE, Earth Radiation Budget Experiment; ERF,
effective radiative forcing; GISS, Goddard Institute for Space Studies; OHC, ocean heat content; SRES, Special Report on Emissions Scenario.

review concerns itself with understanding differences between the best estimates of the various
studies. The long-timescale analyses tend to quote ECS and/or corresponding α values, whereas
most of the short-timescale analyses explicitly state that their values of α are not necessarily
representative of long-term climate change and therefore do not attempt to derive an ECS value.
Note that emboldened numbers in Table 1 (filled symbols in Figure 1) are quoted directly in the
cited paper. The long- and short-timescale analyses have different pedigrees in the literature and
are discussed separately in the following section.

4. EQUILIBRIUM CLIMATE SENSITIVITY
FROM MULTIDECADAL DATA

The studies outlined in Table 1 can be considered successors of the study by Gregory et al. (2002)
that employ Equation 1 or 2, or a close variant, to determine ECS. These form a subset of a wider
group of studies that employ some form of simple energy budget model that has climate sensitivity
and/or ocean heat uptake as tunable parameters. Historically such approaches have been used to
simultaneously constrain both aerosol radiative forcing and climate sensitivity (Forest et al. 2006,
Knutti et al. 2002). More recent examples of this approach have been able to exploit both tighter
bottom-up constraints on aerosol forcing (Boucher et al. 2013) and better estimates of ocean heat
content (Rhein et al. 2013). Employing these constraints, simple model approaches give a similar
range of sensitivities to those seen in Table 1 and have best estimates of ECS less than 3.0 K.
Johansson et al. (2015) found a best estimate of 2.5 K. Their ECS values are at the high end of the
range. Other studies have best estimates below 2.0 K: Skeie et al. (2014) found a best estimate of
1.8 K and Lewis (2013) a best estimate of 1.6 K. Such studies are somewhat comparable to those
listed in Table 1, but for the sake of simplicity we focus on those that use Equation 1 or 2 more
directly.

We investigate the uncertainty or potential bias in the T, N, and F values employed, beginning
by examining how well we can close Earth’s energy budget using recent best estimates. Figure 2
presents the current state of this closure employing data taken from AR5. This gives an illustrative
best estimate of α around 1.8 Wm−2 K−1, corresponding to an ECS around 2 K, which fits
within the canonical ECS in AR5 and earlier assessments. This shows that estimates of effective
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Figure 2
This graph illustrates the closure of Earth’s energy budget with a rearrangement of Equation 1. Cumulative
energy totals of N and F are shown integrated over 1970–2011 in units of zettajoules (ZJ; 1 ZJ = 1021 J).
These are taken from chapters 3 (Rhein et al. 2013) and 8 (Myhre et al. 2013) of the Intergovernmental
Panel on Climate Change Fifth Assessment Report (AR5) (Stocker et al. 2013), respectively. Hadley
Centre–Climatic Research Unit version 4 (HadCRUT4) data (Morice et al. 2012) are used for T. The F and
T baselines are taken as the 1860–1879 average. An N baseline of 0.08 Wm−2 is assumed (Lewis & Curry
2014, Otto et al. 2013). These baselines are subtracted from the 1970–2011 data. The energy emitted to
space from the integral of αT is estimated employing an α of 1.8 Wm−2 K−1. Other data source choices
and/or different base periods lead to a range of best estimates.

sensitivity, derived from values of N, F, and T that have been measured and/or inferred from
disparate observations, give a meaningful value of the ECS that is in broad agreement with other
studies. Provided data sets can be considered independent, this result should be regarded as an
important test that our observational capability and physical theory have passed, illustrating the
fundamental robustness of climate science (see Church et al. 2013).

The cumulative approach used in Figure 2 effectively compares N, T, and F integrated over
1970–2011 with their preindustrial counterparts. This is just one method based on Equation 1 to
determine climate sensitivity. When employing such methods, uncertainty arises from a number
of sources, discussed below and illustrated in Figure 3.

4.1. Method and Periods Analyzed

Some studies are relatively simple and compare F, N, and T over a recent period to an assumed
zero point during preindustrial times (Kummer & Dessler 2014, Lin et al. 2010). However, most
choose their analysis periods carefully and perform a degree of sensitivity testing. Although all
methods are based on Equation 1 the exact calculation technique differs, from the use of mixed
layer models (Lin et al. 2010, Schwartz 2007) to a regression approach (Bengtsson & Schwartz
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Figure 3
Uncertainty analysis for (a) the climate feedback parameter, α, and (b) effective equilibrium climate sensitivity (ECS) diagnosed from
the historical record. Equation 1 and 2 are used to derive α and effective ECS, respectively, comparing present-day values to
preindustrial values. Upper- and lower-bound 5% and 95% uncertainty ranges are assumed for N, T, and F and their effect on α

estimated using Equation 1. The additional uncertainty in the effective radiative forcing of F2×CO2 is taken into account in the effective
ECS calculation (Equation 2). The uncertainty ranges are based on the Intergovernmental Panel on Climate Change Fifth Assessment
Report (AR5) (Stocker et al. 2013), and errors are assumed to be Gaussian and are added in quadrature to estimate the total uncertainty.
The best estimates and 5–95% ranges are as follows: N, 0.6 Wm−2 (0.4 to 0.85 Wm−2); T, 0.85 K (0.65 to 1.06 K); F, 2.2 Wm−2 (1.2 to
3.1 Wm−2); F2×CO2 , 3.7 Wm−2 (3.1 to 4.4 Wm−2). N is estimated from the 0.72 Wm−2 2000–2011 energy imbalance calculated from
data in chapter 3 of AR5 (Rhein et al. 2013), applying a preindustrial offset of 0.1 Wm−2 for the best and 5% range estimates and zero
for the 95% range estimate. T and F are anomalies computed from the 1880–2012 linear trends and their uncertainty. T trends are
quoted from chapter 2 of AR5 (Hartmann et al. 2013). F trends and F2×CO2 are taken from chapter 8 of AR5 (Myhre et al. 2013). Our
simple analysis overestimates the contribution of F2×CO2 to the overall uncertainty as it assumes F2×CO2 would be independent of F,
when in reality there is a degree of compensation (Lewis & Curry 2014).

2013, Schwartz 2012) to time period comparisons (Gregory et al. 2002, Roe & Armour 2011,
Lewis & Curry 2014, Masters 2014, Otto et al. 2013) to an integral approach as seen in Figure 2
(Kummer & Dessler 2014). The integral approach has been adopted to reduce the effects of
noise/variability. Other studies achieve a similar outcome by averaging N, T, and F over sufficiently
long present-day and base periods (Lewis & Curry 2014, Otto et al. 2013). From conservation of
energy, a variability-driven change in one variable should drive consistent changes in the others.
Nevertheless, considering variability is important, as variability-driven changes in the geographical
pattern of surface temperature (for example) could cause an instantaneous change in feedback (α
values), driving it away from its long-term mean (Colman & Power 2010). Such variability might
even affect effective radiative forcing (ERF) (Lewis & Curry 2014). Likewise, it is desirable to
avoid volcanic periods, as feedbacks from volcanic forcing are likely dissimilar from those due to
greenhouse gases (Forster & Gregory 2006, Lewis & Curry 2014, Merlis et al. 2014). Lewis &
Curry (2014) and Otto et al. (2013) showed how poor choices over base periods can lead to biases
in ECS of a few tenths of a degree. Masters (2014) took a different approach and evaluated many
different base and “current” periods between 1955 and 2011, and thereby avoided the need to make
an estimate of preindustrial baselines. The approaches taken by Schwartz (2012) and Bengtsson
& Schwartz (2013) avoided the need for a baseline by using regression over the past 50 years, a
similar technique to that employed in the short-timescale analyses. These techniques have their
own issues (see Section 5). Schwartz (2007) employed the most novel technique, avoiding the need

www.annualreviews.org • Climate Sensitivity and Earth’s Energy Budget 93

Changes may still occur before final publication online and in print

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
16

.4
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

L
ee

ds
 o

n 
05

/0
6/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EA44CH05-Forster ARI 16 April 2016 13:53

for a forcing term by using N and T data sets to determine both the heat capacity and time constant
of the Earth system through an analysis of autocorrelation. This method derives a low value of
ECS, but it is doubtful whether a model of Earth with a fixed heat capacity and time constant is
appropriate (Flato et al. 2013).

4.2. Earth’s Energy Imbalance Data

The primary data come from measurements of ocean temperature changes in the top 700 m of the
ocean. Satellite-based estimates, when used, are typically matched to ocean heat-content changes
(Loeb et al. 2012). For a more globally representative energy imbalance, most estimates in Table 1
combine upper ocean data with deep ocean heat-content data and other assumptions regarding
heat-content changes from nonocean reservoirs. Levitus et al. (2012) provide ocean heat-content
data between 700 and 2,000 m depth; data reported by Balmaseda et al. (2013) and in AR5 also
take heating within the abyssal ocean into account. The AR5 data add components of heating due
to ice melt and changes to the land and atmosphere; see box 3.1 in chapter 3 of AR5 (Rhein et al.
2013). Data from AR5 and Domingues et al. (2008) indicate a present-day imbalance of around
0.7 Wm−2. Box 3.1 in chapter 3 of AR5 (Rhein et al. 2013) gives a 24% uncertainty range for the
1993–2010 heat uptake, which would translate to a range of N values that is very similar to that used
in the studies described in Table 1. For completeness many studies also account for a small energy
imbalance of around 0.1 Wm−2 at the end of the nineteenth century that has been identified within
climate models (Gregory et al. 2002, Lewis & Curry 2014, Otto et al. 2013). This acts to slightly
reduce N, leading to a slightly smaller estimate of ECS. Differences in the assumed N account for
most of the spread in sensitivity estimates between the studies listed in Table 1 (see also Figure 3
and Lewis & Curry 2014). Examining estimates on N for the extreme ECS estimates identified in
Table 1, we find that Lewis & Curry (2014) assumed a present-day (∼2000–2009) imbalance of
0.51 Wm−2, and a preindustrial offset was applied to give a relatively small estimate of the change in
N. In contrast, Kummer & Dessler (2014) and Lin et al. (2010) assumed an imbalance greater than
0.7 Wm−2 and did not apply a preindustrial offset to estimate N. We evaluated energy imbalance
trends from the Coupled Model Intercomparison Project phase 5 (CMIP5) models for this paper
and found them to be similar to those employed in the long-timescale analyses in Table 1.
Uncertainty in both the present and baseline energy imbalance contributes an uncertainty of
roughly ± 0.3 K to the overall ECS estimate diagnosed from the long-term 1880–2012 record
(Figure 3).1

4.3. Choice of Temperature Data

The data sets of global temperature have slight differences in their trends caused by a number
of factors (Hartmann et al. 2013, Karl et al. 2015). Two uncertainties are particularly important
in the context of estimating ECS. There is difficulty in defining (a) a preindustrial baseline and
(b) the degree to which the 1998–2014 apparent hiatus in surface warming is a manifestation of data
errors in the observations. The Arctic has warmed considerably since 2000, but some data sets,
such as Hadley Centre–Climatic Research Unit version 4 (HadCRUT4), may not have adequately
captured its contribution to global trends (Cowtan & Way 2014). Comparing the National Oceanic
and Atmospheric Administration trends to the standard HadCRUT4 data without the correction

1The change in N was quantified from the climate models, comparing their 2000–2012 energy imbalance with their 1860–
1880 energy imbalance, using integrations of the RCP6.0 scenario from the 25 model. Across the models the median N value
was 0.67 Wm−2, with a 0.33 to 1.04 Wm−2 5% to 95% uncertainty range.
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applied would slightly increase ECS estimates ( Johansson et al. 2015). Only one temperature data
set extends prior to 1880 due to the poor spatial coverage in the early record, which makes it
difficult to estimate trends from a preindustrial baseline. Accounting for both these sources of
uncertainty, AR5 placed an overall uncertainty in the 1880–2012 linear trend of 0.85 K with a 5%
to 95% uncertainty range of 0.65 to 1.06 K; this leads to an uncertainty of roughly ±0.5 K in
ECS diagnosed from long-term trends (Figure 3).

4.4. Choice of Forcing Data

Uncertainty in the radiative forcing, and particularly that due to aerosol and aerosol cloud interac-
tions, is widely taken to be the single biggest contributor to uncertainty in ECS diagnosed from the
historical record (Bindoff et al. 2013, Stevens 2015). This uncertainty does not manifest itself in
the range of best estimates shown in Table 1, as most recent studies employ similar best estimates
of radiative forcing changes, taken either from AR5 (Myhre et al. 2013), CMIP5 (Forster et al.
2013), or Goddard Institute for Space Studies (GISS) (Hansen et al. 2007) data analysis. Aside
from aerosols, there are four other important sources of uncertainty to consider:

1. The level of volcanic forcing. There were several large explosive volcanic eruptions in the
early record, such as the eruption of Krakatau in 1883. These were of uncertain magnitude
and affect the overall forcing trend. The α associated with volcanic response may also be quite
different than that due to CO2 (Forster & Gregory 2006). Lewis & Curry (2014) managed
this uncertainty by choosing to compare present and past periods of similar volcanic forcing
(see Section 4.1) and/or by assuming a reduced efficacy for volcanic forcing (see item 3,
below).

2. The effect of rapid adjustments. Equation 1 splits the energy budget into one part associ-
ated with the forcing and another part due to global surface temperature change; therefore,
any change in imbalance caused by forcing that is unrelated to global temperature change
needs to be accounted for in F. This means that F not only accounts for the traditional strato-
spheric adjusted radiative forcing as defined in AR4 (Forster et al. 2007), but also needs to
include any rapid adjustments to this forcing that would affect the top-of-atmosphere energy
imbalance (Boucher et al. 2013, Sherwood et al. 2015). Rapid adjustments could come from
atmospheric stability changes affecting clouds and/or changes in patterns of land-surface
heating. Such adjustments have been calculated in models for an increase in carbon diox-
ide and some aerosol changes but not for the other forcing terms (Sherwood et al. 2014).
Further, we have as yet not been able to find real-world measurements of rapid adjustment
to check the model response. Generally, rapid adjustments could add both uncertainty and
systematic bias to the evaluation of F.

3. The role of efficacy in evaluating the forcing response. An uncertainty closely related
to rapid adjustments is the role of efficacy, which tells one how effectively a given watts
per square meter forcing by one mechanism triggers a global mean temperature response,
compared with a watts per square meter forcing from a CO2 increase. Efficacies are used
to account for how α might vary across different forcing mechanisms. By including rapid
adjustments efficacies should be closer to 1, making the assumption of using a single α

more applicable (Forster et al. 2013, Sherwood et al. 2015). However, this is not true of very
regionally confined forcings, such as black carbon on snow (Bond et al. 2013). The efficacy of
volcanic forcing could be less than 1, and this could lead to a possible overestimate of ECS if
analysis periods are not chosen carefully (Lewis & Curry 2014). In contrast, Shindell (2014)
and Shindell et al. (2015) have suggested that aerosol forcing may have a larger transient
response or short-term efficacy, due to cooling Northern Hemisphere land surfaces at a faster
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rate than a more globally distributed forcing such as CO2 might. Ignoring such an aerosol
efficacy would underestimate the ECS diagnosed from the historical record (Kummer &
Dessler 2014). This theory is expanded in Section 4.5.

4. The assumed radiative forcing for a doubling of carbon dioxide. In calculating ECS
from α, a forcing for a doubling of CO2 needs to be applied. F2×CO2 is typically taken to be
3.7 Wm−2, and its uncertainty is often ignored in estimates of ECS (Lewis & Curry 2014).
Otto et al. (2013) used a lower forcing value of 3.44 Wm−2 to account for rapid adjustments
based on model results of the ERF. More generally, Myhre et al. (2013) took the uncertainty
in ERF for F2×CO2 to be ±20%. This uncertainty in the numerator of Equation 2 is somewhat
compensated by CO2 uncertainty contributing to the uncertainty in F, appearing in the
denominator of Equation 2.

The forcing uncertainty range shown in Figure 3 assumes that uncertainties from sources
1, 2, and 3 are implicitly already included within the broad AR5 forcing estimate. The role of
F2×CO2 uncertainty is assessed separately for ECS. Historical forcing uncertainty leads to a 50%
change in α and to a broad range of possible ECS values. F2×CO2 contributes a further uncertainty,
but only to ECS. Unknown rapid adjustments or efficacy effects could lead to important potential
sources of bias. Note that quantifying all four of the above uncertainty sources relies on climate
models, emphasizing the fallacy that energy budget estimates are independent of models.

4.5. Discussion

Figure 3 uses data solely from the long-term changes quantified in AR5 to illustrate the role of
various uncertainties in α and ECS. The illustrative best estimates of α and ECS are 1.88 Wm−2

K−1 and 1.97 K, respectively. The simple error analysis employs the IPCC uncertainty ranges and
assumes errors are Gaussian and add in quadrature. Overall, 5% to 95% error ranges for ECS
are roughly between 1.0 and 5.0 K, slightly broader than the AR5 canonical range. Recent range
estimates tend to have relatively low 95% upper bounds for ECS: Otto et al. (2013) estimated
a 3.9 K upper bound, Lewis & Curry (2014) estimated 4.1 K, and Kummer & Dessler (2014)
estimated 4.1 K (excluding efficacy effects). By contrast, Masters (2014) determined an upper
bound of 5.1 K. The analysis in Figure 3 is cruder than that employed in these cited studies, but
note that the high ECS uncertainty is very sensitive to the best estimate. For example, if we applied
the same percentage uncertainty ranges to an ECS best estimate of 1.7 K, we would restrict the
95% upper bound to 3.5 K. The large variation in the 95% range estimate with the best estimate
is due to the reciprocal relationship between α and ECS. This highlights the fact that the 95%
upper bound for ECS from energy budget studies is not that robust.

The range of ECS presented in Figure 3 and the best estimates from the multidecadal analyses
shown in Figure 1 and Table 1 are consistent, but they are at the low end of the AR5 assessed range.
Their ∼2 K best estimates may well prove correct, especially as research is converging on a better
constrained and somewhat more modest value for the globally averaged aerosol forcing (Boucher
et al. 2013). Nevertheless, the best estimates and the lower bound on ECS remain considerably
smaller when compared with recent estimates that employ other methods of diagnosing ECS (e.g.,
Sherwood et al. 2014). This discrepancy has prompted researchers to return to the question of
whether it is a good approximation to assume that α over the historical period is the same as that
associated with a doubling of carbon dioxide, referred to here as the effective sensitivity question.

It is clear that for large temperature changes the simple linear relationship between forc-
ing and temperature breaks down (Caballero & Huber 2013). Nonlinearity also becomes more
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pronounced at high ECS (Bloch-Johnson et al. 2015). Nonlinear behavior may also appear for
∼1 K global temperature changes as some models exhibit a time dependence in their effective
sensitivity (Andrews et al. 2014, Armour et al. 2013, Collins et al. 2013, Winton et al. 2013).
Masters (2014) had to make assumptions about historical forcings but suggested that the α de-
rived from the IPCC Special Report on Emissions Scenario (SRES) A1B in CMIP3 models was
1.09 ± 0.2 times larger than the α for a doubling of carbon dioxide, implying that the true ECS
is on average slightly higher than its effective sensitivity, but this result is not that conclusive. An-
drews et al. (2014) found 23 of 27 CMIP5 models exhibit increasing effective sensitivity (smaller
α) through time. An analysis of the 1% per year CO2 integrations from 18 models suggested the
true ECS could be 20–40% larger than the effective ECS (K. Armour, personal communication).
The latest generation of models also show increased water vapor feedback and ECS at higher
base temperatures (Meraner et al. 2013). Generally, models exhibit regional variation in feedbacks
(Crook et al. 2011), and as the spatial distribution of surface temperature evolves, it affects the
time evolution of α (Armour et al. 2013). Changing ocean heat uptake has also been implicated
(Block & Mauritsen 2013, Geoffroy et al. 2013, Koll & Abbot 2013, Rose et al. 2014, Winton et al.
2013). Rose et al. (2014) suggested ocean heat uptake changes drive differences in shortwave cloud
feedback, affecting sensitivity. Taken together, these studies suggest that ECS diagnosed from the
twentieth-century record may significantly underestimate the ECS for a doubling of carbon diox-
ide. However, even complex atmosphere-ocean coupled climate models can be remarkably linear
in their response (Andrews et al. 2012), so the degree of underestimation remains uncertain.

Shindell (2014) suggested that a higher transient efficacy of aerosol forcing could cause an
underestimate of ECS in the historical record. Depending on the efficacy assumed for the aerosol
forcing, the underestimate of ECS could be as much as 1.1 K (Kummer & Dessler 2014). The
Shindell (2014) and Shindell et al. (2015) studies could only draw speculative conclusions due to
a lack of forcing information within the historical CMIP5 model integrations analyzed. Marvel
et al. (2015) explored this properly by computing efficacies and ERFs for individual forcing terms.
They showed that within the GISS model, accounting for efficacies in the historical response could
raise the implied best estimate of ECS from the historical period from around 2.0 K to around
3.0 K. However, my preliminary investigations (not shown) could not find any evidence of this
effect in dedicated aerosol and carbon dioxide perturbation experiments within two climate models
[Community Climate System Model version 4 (CCSM4) and Hadley Centre Global Environment
Model version 2 (HadGEM2)]. Nevertheless, it could still be important, as the efficacies of different
ERF mechanisms have not been properly assessed across models. The groundbreaking efficacy
study by Hansen et al. (2005) needs updating: Efficacies need evaluating across other models and
for transient change.

In summary, long-term energy budget analysis suggests a best estimate of effective ECS
around 2.0 K, lower than the ECS estimates suggested by other methods. Energy budget analyses
can usefully constrain α to between 0.6 and 3.1 Wm−2 K−1 (Figure 3). A viable likely uncertainty
range for effective ECS is 1–5 K, consistent with the IPCC range. ERF uncertainty dominates the
uncertainty in both α and ECS derived from such methods. The range for ECS is broader than
some of the published ranges from studies listed in Table 1, which have claimed relatively tight
constraints on ECS using such approaches (not shown). This is principally because the high-end
estimates of ECS range are not that robust due to the reciprocal relationship between ECS and α.
The effective ECS diagnosed from these methods may be systematically different than that
associated with long-term changes in CO2. There is emerging evidence that it could be biased
significantly toward the low end due to the way feedbacks are expected to evolve through time.
This could be due to spatial evolution of feedbacks related to surface temperature pattern
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evolution. There is also speculation that transient aerosol cooling is underestimated in such
approaches, and this could also contribute to a biased-low best estimate of ECS from historical
energy budget analysis. Allowing for the translation of effective ECS to actual ECS would
increase the best estimate and the range estimates shown in Figure 3.

5. EQUILIBRIUM CLIMATE SENSITIVITY FROM INTERANNUAL DATA

Approaches that employ shorter-term interannual data sets shown in Table 1 have a different
pedigree than the long-term energy budget analyses. They have evolved from early satellite inves-
tigations into the greenhouse effect, cloud forcing, and feedbacks (e.g., Ramanathan et al. 1989).
They invariably concentrate on diagnosing α rather than estimating ECS, and all acknowledge
that an α diagnosed employing a short-term record may not be representative of its longer-term
value. The field is more fragmented than the longer-timescale-based estimates: Findings often sit
as standalone estimates in relative isolation, as there are fewer comparisons between different pub-
lished estimates. Erroneous estimates of α have been published using these approaches, and there
is no agreed methodology of data analysis. Consequently, the best estimates quoted in Table 1
cover a very wide range of α values. As in Section 4, differences arise due to the choice of data and
method used. These are discussed below and illustrated in Figure 4.

5.1. Data Choices

Unlike in the case of multidecadal change, forcing plays a much smaller role on interannual time
periods unless there is significant volcanic activity. Instead time series are dominated by variability.
There is also less coherence between surface temperature data sets. Surface and free tropospheric
temperatures have both previously been used to derive α values (Trenberth et al. 2015).

A major source of uncertainty in α comes from uncertainty in estimates of Earth’s energy
imbalance and its changes through time. Interannual changes in ocean heat content are not to be
trusted (Church et al. 2013), so studies depend on the net radiative flux estimates from satellites.
Two related data sets exist. The Earth Radiation Budget Experiment (ERBE) instruments flew on
three satellites launched in the mid-1980s, and data were collected by the nonscanner instruments
between 60◦N and 60◦S, providing 15 years of data from 1985 to 1999 (Wong et al. 2006).
These data have gone through several version controls, especially to account for the drift in
shortwave radiation measurements, which greatly affected decadal variability. For example, Forster
& Gregory (2006) and Murphy et al. (2009) used different versions of ERBE data when diagnosing
α (Table 1). ERBE was followed by Clouds and the Earth’s Radiant Energy Systems (CERES)
instruments flying on a number of satellites beginning in 2000. These data have again undergone
a series of corrections. The latest Energy Balanced and Filled data set, edition 2.8 (CERES EBAF
2.8), uses infilling to obtain global coverage and ocean heat uptake analyses to calibrate net flux

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4
An illustration of how data and methodological choices affect the diagnosis of the climate feedback parameter, α. The reference
estimate is shown in the top left panel using monthly 2001–2013 Clouds and the Earth’s Radiant Energy Systems Energy Balanced and
Filled edition 2.8 (CERES EBAF 2.8) data (Loeb et al. 2009), Goddard Institute for Space Studies (GISS) temperature data (Hansen
et al. 2007), and Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5) forcing data (Stocker et al. 2013). Other
panels change either one element of the data (right panels), or one element of the method (left panels). In this instance the maximum
correlation was found when N lagged the T anomaly by 4 months (bottom right panel ). The blue line in each panel shows the least
squares linear regression straight line fit to the data. The gradient of this fit gives the estimate of α and its uncertainty indicated in the
bottom right of the panel.
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estimates (Loeb et al. 2009). Because of data revisions and improvements, and due to the increase
in the record length, estimates from studies that employ the latest data sets may be more robust
than some earlier estimates.

5.2. Methods

An important consideration is that data should be as near global as possible. Studies based on
tropical analyses (Lindzen & Choi 2009, 2011; Spencer & Braswell 2008) are confounded by
meridional heat transport and do not provide a representative estimate of α (Chung et al. 2010,
Murphy 2010).

Estimates of α are typically derived from a regression analysis of N versus T, or by taking
differences in N and T across two periods. Choosing specific periods to compare (Lindzen &
Choi 2009, 2011) is prone to bias and can lead to unrepresentative estimates of α (Trenberth et al.
2010). Another error in several studies is that they neglect the role of forcing entirely (see Table 1);
this leads to biases in diagnosing α (Chung et al. 2010, Murphy & Forster 2010). It is especially
important to include ERF trends when considering volcanic periods (Forster & Gregory 2006).
However, volcanic forcing has changed little since 2000. When analyzing this period, excluding
the forcing term likely leads to only minimal bias in α, less than 0.1 Wm−2 K−1, and making this
approximation can be seen as a legitimate choice (Trenberth et al. 2015). A number of other specific
analysis errors were also identified in the Lindzen & Choi (2009, 2011) publications (Dessler 2011,
Trenberth et al. 2010).

Generally studies with obvious errors in approach can be ignored. However, other method-
ological choices also affect results and possibly create biases. These choices principally concern
themselves with treatment of the seasonal cycle and the method used for regression. Diagnos-
ing α from regression using Equation 1 ignores the possibility that random changes in flux (γ )
might also change T. This leads to a systematic underestimation of α (Spencer & Braswell 2008),
although any underestimation is likely small (∼0.05 Wm−2 K−1) for realistic cases (Murphy &
Forster 2010). Flux changes are typically regressed against surface temperatures, as to first order
it is likely that surface temperature changes drive top-of-atmosphere fluxes on these timescales.
However, as energy imbalance changes also drive temperature changes, the argument for this
regression choice is not clear cut. Using total least squares regression, for example, would lead to a
significant increase in estimates of α (Forster & Gregory 2006). Likewise, including or excluding
the seasonal cycle leads to different values of α (Forster & Gregory 2006, Murphy et al. 2009).
Lagging the N data before regressing it against T might improve estimates, but this approach has
not been properly explored.

The two recent estimates of α from short-timescale analysis both use monthly CERES data
with the annual cycle removed, assuming zero lag. Donohoe et al. (2014) include the F term, but
Trenberth et al. (2015) do not. The two groups also employ slightly different surface temperature
data. Nevertheless, both studies find similar α values, around 1.2 Wm−2 K−1 (Table 1). These
are also similar to α values derived from annual data using a slightly different gain factor method
(Tsushima & Manabe 2013) and to those derived from using regression to evaluate feedbacks in
reanalysis data (Dessler 2013).

5.3. Discussion

Figure 4 illustrates how some of the data and methodological choices affect α. Choosing different
data for T, N, and F affects estimates of feedback. The diagnosed feedback is relatively robust
to choice of T and F. Lagging N by a few months appears to slightly improve the correlation,
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but this is not a strong dependence. It is not well understood why annual regressions give very
different α values. This could be an artifact of the short time series, a result of different physical
feedbacks operating on intraannual and interannual time series, or an issue with the CERES time
series. Unlike the long-term energy budget changes, forcing uncertainty does not dominate the
derivation of α from short-term energy budget changes. The methodological choice accounts for
most of the spread between published best estimates (Table 1 and Figure 4). As there is only one
quality-controlled measure for interannual variations in N, it is difficult to accurately gauge its con-
tribution to uncertainty. For comparison, an earlier incarnation of the CERES data (edition 2.6r)
that spans 2001–2011 is shown. This would indicate a relatively small uncertainty arising from
the N term. However, the true contribution from uncertainty in N is likely considerably larger.
Having other groups analyze the satellite record to make an independent estimate of N would be
extremely useful.

Model feedback analyses and regression analyses over longer periods of model data for various
models and scenarios are also presented in Table 1. These studies find long-term α values between
0.6 and 1.4 Wm−2 K−1. These model results appear to agree with the recent estimates of α derived
from the observations. However, as the relationship between short-timescale and long-timescale
feedbacks has not yet been thoroughly tested in models, the apparent agreement may be fortuitous
(see Section 6).

It is unclear how to relate the short-term values of α to their longer-term or equilibrium
counterparts. Dessler (2013) suggested that 10 years of data may be sufficient. Gordon et al.
(2013) examined CMIP5 models and found that 10 years of data is really the minimum needed for
a regression-based estimate of a given model’s water vapor feedback to agree with its long-term
values; for some models several decades of data were required. In the CERES data, as the annual
data is better correlated than the monthly data with surface temperature and the types of averaging
give such different sensitivities, it is hard to be convinced that recent published estimates of α are
representative of the long-term response even though they appear to quantitatively agree with
model analyses. In ECS terms, annual data would suggest an ECS greater than 1 K and monthly
data an ECS greater than 3 K. Without understanding why these are so different, it becomes
impossible to gauge which to trust more.

6. THE WAY FORWARD

There are multi-million-dollar work programs under way that continually improve our observa-
tional capability. Continuous Argo float measurements are expanding to include measurements at
ocean depths below 2,000 m to properly understand ocean heat uptake. Refinements to CERES
satellite products are beginning to constrain the net top-of-atmosphere radiation imbalance. Like-
wise, research groups around the world are improving estimates of surface temperature trends and
working hard on constraining aerosol forcing. These efforts should help improve the data input
into energy budget analyses of ECS. The most pressing need is to translate estimates of effective
ECS derived from such energy budget analyses into the actual ECS. We need to remember that
models are needed to make this translation, so no estimate employing observations can be said to
be independent of a climate model.

Masters (2014) made the most sophisticated attempt to date to evaluate the use of Equation 1
in models. Masters compared α values derived from Equation 1 over the past 50 years with the
α value derived by comparing the preindustrial period with 2100 under IPCC Representative
Concentration Pathway 4.5 (RCP4.5) (following Soden & Held 2006). As forcing data for either
period were not available from the models, he assumed models had identical forcings taken
from standard data sets. With these assumed forcings, a reasonably good agreement between the
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THE RADIATIVE FORCING MODEL INTERCOMPARISON PROJECT

The Radiative Forcing Model Intercomparison Project (RFMIP) is part of the World Climate Research Pro-
gramme’s Coupled Model Intercomparison Project phase 6 (CMIP6). It is being led by Robert Pincus, Bjorn
Stevens, and myself. Modeling groups are encouraged to sign up and commit to providing effective radiative forc-
ing (ERF) estimates from their models. Details can be found at http://www.wcrp-climate.org/modelling-wgcm-
mip-catalogue/modelling-wgcm-mips/418-wgcm-rfmip.

short- and long-term α values in found. However, the derived α is slightly larger for the longer
period (1.44 Wm−2 K−1) than for the 50-year period (1.18 Wm−2 K−1).

Masters’ (2014) study was not a perfect model test, as it had to make gross assumptions about the
forcing. Because of the move to interactive aerosol schemes, CMIP3 and CMIP5 models did not
typically perform double radiation calls, and their forcings had to be backed out from inverting
Equation 1 assuming constant α (Forster et al. 2013, Forster & Taylor 2006). Neglecting to
output a forcing diagnostic severely limits the use of models for understanding important aspects
of climate response. Perfect model tests would allow many outstanding questions over approaches
for diagnosing ECS over the instrumental record to be swiftly laid to rest. In contrast to the effort
that is being put into improving observations, the request is simple: All we need to do is to diagnose
historical ERF changes from the models. As rapid adjustments need to be included in these
estimates, the most straightforward way to diagnose ERF is from fixed sea-surface temperature
experiments, where forcings are changed (Sherwood et al. 2015). There will be a concerted effort
for CMIP6 to diagnose forcings within the models: the Radiative Forcing Model Intercomparison
Project (RFMIP) (see sidebar). Having this forcing information would allow us to thoroughly test
methods of diagnosing ECS from the historical record and lay many skeletons to rest.

A second important need is to understand rapid adjustments and ERF in more detail, including
any forcing-related efficacy. Rapid adjustments to clouds may well be important for nonaerosol
forcings, and these will influence how forcings affect Earth’s energy budget. The ERF for explo-
sive volcanic eruptions, for example, could be quite different, and possibly much smaller, than its
stratospherically adjusted forcing (Gregory et al. 2016). The ERF for other forcings, including
CO2, has not been properly evaluated to date. RFMIP will estimate some of these adjustments
with CMIP6 models, but we need high-resolution model tests and cleverly designed observational
analyses and/or campaigns to test the models’ representation of rapid adjustments and forcing in
general.

The ECS diagnosed from the historical record may point to a low best estimate, but it could
also simply mean that our forcing estimates are wrong or that sensitivity increases with time. A
lack of knowledge about ERF and our remiss in diagnosing it within climate models are hampering
progress. Improved ERF knowledge will enable much tighter constraints on ECS, and TCR will
help create a robust basis for climate policy decision-making. The way forward is clear, and it
would be a dereliction of duty if future model integrations did not diagnose forcings and were
solely used to determine overall climate response.
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