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Abstract
A growing range of generative statistical models are such the numerical evaluation of their likelihood

functions is intractable. Approximate Bayesian computation and indirect inference have become popular
approaches to overcome this issue, simulating synthetic data given parameters and comparing summaries
of these simulations with the corresponding observed values. We propose to avoid these summaries and
the ensuing loss of information through the use of Wasserstein distances between empirical distributions
of observed and synthetic data. We describe how the approach can be used in the setting of dependent
data such as time series, and how approximations of the Wasserstein distance allow the method to scale
to large data sets. In particular, we propose a new approximation to the optimal assignment problem
using the Hilbert space-filling curve. We provide an in-depth theoretical study, including consistency in
the number of simulated data sets for a fixed number of observations and posterior concentration rates.
The approach is illustrated on various examples, including a multivariate g-and-k distribution, a toggle
switch model from systems biology, a queueing model, and a Lévy-driven stochastic volatility model.

1 Introduction
The likelihood function plays a central role in modern statistics. However, for many models of interest,
the likelihood cannot be numerically evaluated. It might be possible to generate synthetic data sets given
parameters, in which case the model is said to be generative. A popular approach to Bayesian inference in
generative models is approximate Bayesian computation (ABC, Beaumont et al., 2002; Marin et al., 2012).
Approximate Bayesian computation relies on simulating parameters and synthetic data sets. The parameters
are then kept if the associated synthetic data sets are close enough to the observed data set, forming an
approximation of the posterior distribution. Measures of similarity between data sets are often based on
summary statistics, such as sample moments. In other words, data sets are considered close if some distance
between their summaries is small. If, instead, one were to define a point estimator by minimizing the distance
between summaries as a function of the parameters, the resulting method would be an example of indirect
inference (Gouriéroux et al., 1993). Connections between these two approaches to parameter inference are
discussed in Forneron and Ng (2015). The resulting ABC and indirect inference estimators have proven
extremely useful, but can lead to systematic losses of information compared to the posterior distribution
and maximum likelihood estimator respectively, due to the summaries being non-sufficient in many cases of
interest.

We propose to view data sets as empirical distributions and to use the Wasserstein distance between
synthetic and observed data sets. The Wasserstein distance, also called the Gini, Mallows or Kantorovich
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distance, defines a metric on the space of probability distributions, and has been increasingly popular in
statistics and machine learning (e.g. Cuturi, 2013; Srivastava et al., 2015; Montavon et al., 2016; Ramdas
et al., 2017; Arjovsky et al., 2017; Wu and Tabak, 2017; Sommerfeld and Munk, 2017), due to its appealing
computational and statistical properties. We will show that the resulting ABC posterior, which we term
the Wasserstein ABC (WABC) posterior, can approximate the standard posterior distribution arbitrarily
well in the limit of the number of simulations from the model, while by-passing the choice of summaries
completely. Furthermore, we provide concentration rates as the number of observations goes to infinity,
highlighting the impact of the dimension of the observation space and the effect of model misspecification.
The WABC posterior is a particular case of a coarsened posterior, and our results are complementary to
those of Miller and Dunson (2015). We will also discuss the consistency and asymptotic distributions of
several point estimators derived by minimizing the Wasserstein distance between the empirical distribution
and the model, or approximations thereof, extending the work of Bassetti et al. (2006).

Viewing data sets as empirical distributions raises issues in the case of dependent data. We develop two
strategies to deal with time series, noting that spatial data could be treated similarly. In the first approach,
which we term curve matching, each data point is augmented with the time at which it was observed. A
new ground metric is defined on this extended observation space, which in turn allows for the definition
of a Wasserstein distance between time series. The second approach involves transforming the time series
such that its empirical distribution contains enough information for parameter estimation. We refer to such
transformations as reconstructions and discuss two generic choices.

The calculation of Wasserstein distances is fast for empirical distributions in one dimension. For multi-
variate data sets, we can leverage the rich literature on the computation and approximation of Wasserstein
distances. We propose a new distance, termed the Hilbert distance, based on the Hilbert space-filling curve
(Sagan, 1994). The proposed distance can be computed orders of magnitude faster than the exact Wasser-
stein distance, and we provide theoretical support for its use in ABC and minimum distance estimation
settings.

Our contributions are structured as follows: the proposed approaches to point estimation and Bayesian
inference in generative models using the Wasserstein distance are described in Sections 2 and 3 respectively,
methods to handle time series are proposed in Section 4, a theoretical study of the proposed minimum
Wasserstein estimators and Wasserstein ABC posterior is detailed in Section 5, computational challenges of
calculating Wasserstein distances and new solutions are described in Section 6, and numerical illustrations
in Section 7. The experiments include a multivariate quantile g-and-k distribution, a toggle switch model
from system biology, a M/G/1 queueing model, and a Lévy-driven stochastic volatility model. The code
and tutorials are available on GitHub at github.com/pierrejacob/winference. The supplementary materials
include additional theoretical results and details on the computational aspects, as referenced in the present
article.

1.1 Setting and notation

Throughout this work we consider a probability space (Ω,F ,P), with associated expectation operator E, on
which all the random variables are defined. The set of probability measures on a space X is denoted by P(X ).
The data take values in Y, a subset of Rdy for dy ∈ N. We observe n ∈ N data points, y1:n = y1, . . . , yn,
that are distributed according to µ(n)

? ∈ P(Yn). For stationary data-generating processes, we denote by µ?
the marginal distribution of y1. The empirical distribution of the data y1:n is µ̂n = n−1∑n

i=1 δyi , where δy
is the Dirac distribution with mass on y ∈ Y.
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A model refers to a collection of distributions on Y, denoted by M = {µθ : θ ∈ H} ⊂ P(Y), where
H ⊂ Rdθ is the parameter space, endowed with a distance ρH and of dimension dθ ∈ N. We assume that
models generate i.i.d. observations from µθ, with joint distribution µ(n)

θ , until Section 4 where we elaborate
on non-i.i.d. models. A model is well-specified if there exists θ? ∈ H such that µ? = µθ? ; otherwise it
is misspecified. Parameters are identifiable if θ = θ′ is implied by µθ = µθ′ . A sequence of measures µn
converging weakly to µ is denoted by µn ⇒ µ.

We consider parameter inference for purely generative models: it is possible to generate observations
z1:n from µ

(n)
θ , for all θ ∈ H, but it is not possible to numerically evaluate the associated likelihood. In

some cases, z1:n is obtained as gn(u, θ), where gn is a known deterministic function and u some known fixed-
dimensional random variable independent of θ. Some methods require access to gn and u (e.g. Gouriéroux
et al., 1993; Prangle et al., 2017; Graham and Storkey, 2017). We will be explicit about where assumptions
on the data-generating process are needed.

1.2 Wasserstein distance

We propose to use the Wasserstein distance as a discrepancy between pairs of data sets, viewing each data
set as an empirical distribution. As described in the following sections, this new perspective enables a variety
of methodological and theoretical improvements over the standard ABC and minimum distance approaches.

Let ρ be a distance on the observation space Y, referred to as the ground distance. Let Pp(Y) with p ≥ 1
(e.g. p = 1 or 2) be the set of distributions µ ∈ P(Y) with finite p-th moment: there exists y0 ∈ Y such
that

∫
Y ρ(y, y0)pdµ(y) <∞. The space Pp(Y) is referred to as the p-Wasserstein space of distributions on Y

(Villani, 2008). The p-Wasserstein distance is a finite metric on Pp(Y), defined by the transport problem

Wp(µ, ν)p = inf
γ∈Γ(µ,ν)

∫
Y×Y

ρ(x, y)pdγ(x, y), (1)

where Γ(µ, ν) is the set of probability measures on Y×Y with marginals µ and ν respectively; see the notes in
Chapter 6 of Villani (2008) for a brief history of this distance and its central role in optimal transport. We also
write Wp(y1:n, z1:m) for Wp(µ̂n, ν̂m), where µ̂n and ν̂m stand for the empirical distributions n−1∑n

i=1 δyi and
m−1∑m

i=1 δzi . In particular, the Wasserstein distance between two empirical distributions with unweighted
atoms takes the form

Wp(y1:n, z1:m)p = inf
γ∈Γn,m

n∑
i=1

m∑
j=1

ρ(yi, zj)pγij (2)

where Γn,m is the set of n × m matrices with non-negative entries, columns summing to m−1, and rows
summing to n−1. An important special case is when n = m, for which it is known (see e.g. the introductory
chapter in Villani, 2003) that the solution to the optimization problem γ? corresponds to an assignment
matrix, with only one non-zero entry per row and column, equal to n−1. The Wasserstein distance can thus
be represented as

Wp(y1:n, z1:n)p = inf
σ∈Sn

1
n

n∑
i=1

ρ(yi, zσ(i))p, (3)

where Sn is the set of permutations of {1, . . . , n}. Computing the Wasserstein distance between two samples
of the same size can therefore be thought of as an optimal matching problem; see Section 6.
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2 Point estimation with the Wasserstein distance

2.1 Minimum distance estimation

Minimum distance estimation (MDE) refers to the idea of minimizing, over the parameter θ ∈ H, a distance
between the empirical distribution µ̂n and the model distribution µθ (Wolfowitz, 1957; Basu et al., 2011).
In these broad terms, it encompasses the spirit of various statistical paradigms: for instance, the maximum
likelihood approach asymptotically minimizes the Kullback-Leibler (KL) divergence between µ? and µθ,
defined as KL(µ?|µθ) =

∫
log(dµ?/dµθ)dµ?. The empirical likelihood method minimizes the KL divergence

between the empirical distribution and a model supported on the observed data under moment conditions
(Owen, 2001). The generalized method of moments consists in minimizing a weighted Euclidean distance
between moments of µ̂n and µθ (Hansen, 1982). Any choice of distance, or pseudo-distance measuring the
similarity between two distributions, yields an associated minimum distance estimator. Denoting by D a
distance or divergence on P(Y), the associated minimum distance estimator can be defined as

θ̂n = argmin
θ∈H

D(µ̂n, µθ). (4)

This raises multiple statistical and computational questions. First, the distance D needs to be a meaningful
notion of similarity between distributions, including empirical distributions with unequal discrete supports.
This precludes some distances, such as the total variation distance. Statistically, the estimator θ̂n should
preferably satisfy some desirable properties, under conditions on D, the data-generating distribution µ?, and
the modelM. Particularly important properties include existence and measurability of θ̂n, uniqueness and
consistency when n→∞. Further interesting aspects include rates of convergence, asymptotic distributions,
and robustness to outliers.

The distance D needs to be computable, at least up to a certain accuracy, so that we can realistically
envision the above optimization program. Since the data might be multivariate (dy > 1), some familiar
distances such as the Kolmogorov–Smirnov distance might prove computationally inconvenient. Finally, in
the context of purely generative models, it will often be more convenient to consider the alternative estimator

θ̂n,m = argmin
θ∈H

E [D(y1:n, z1:m)] . (5)

where the expectation is taken over distribution of the sample z1:m ∼ µ(m)
θ . When n is fixed and m is large,

or when n = m and n is large, we expect the expectation to be close to D(µ̂n, µθ), and the two estimators
to have similar properties.

2.2 Minimum Wasserstein estimators

By plugging Wp in place of D in Eqs. (4) and (5), we obtain the minimum Wasserstein estimator (MWE)
and minimum expected Wasserstein estimator (MEWE) of order p, denoted θ̂n and θ̂n,m respectively. Some
properties of the MWE have been studied in Bassetti et al. (2006), for well-specified models and i.i.d. data;
we propose new results in Section 5. Intuitively, under some conditions we can expect µ̂n to converge to
µ?, in the sense that Wp(µ̂n, µ?) → 0. Consequently, the minimum of θ 7→ Wp(µ̂n, µθ) might converge to
the minimum of θ 7→ Wp(µ?, µθ), denoted by θ?, assuming its existence and unicity. In the well-specified
case, θ? coincides with the data-generating parameter. In the misspecified case, θ? is typically different from
the limit of the maximum likelihood estimator (MLE), which is the minimizer of KL(µ?|µθ). While the KL
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divergence is a central notion in information theory, and is defined irrespective of the metric on the data
space Y, the Wasserstein distance is related to optimal transport theory, depends on the choice of metric ρ,
and is a proper distance between probability measures.

2.3 Optimization

The exact computation of the MWE θ̂n is in general intractable, if only because of the intractability of
Wp(µ̂n, µθ). We can envision the approximation of this distance based on synthetic samples generated
given θ. Assume for the moment that a synthetic data set z1:m can be sampled from µ

(m)
θ by setting

z1:m = gm(u, θ), where gm is a deterministic function of the parameter θ and a fixed-dimensional random
variable u independent of θ. Given u, the approximate distance Wp(y1:n, gm(u, θ)) is a deterministic function
of θ which can be numerically optimized.

In order to reduce the variability of the distance approximation, one could average over k ≥ 1 repli-
cate datasets, effectively optimizing the approximate distance k−1∑k

i=1 Wp(y1:n, gm(u(i), θ)), where u(i) are
i.i.d. Variations of this approach were discussed already in the context of indirect inference (Section 2 of
Gouriéroux et al., 1993). In the limit k → ∞, k−1∑k

i=1 Wp(y1:n, gm(u(i), θ)) → E[Wp(µ̂n, µ̂θ,m)] almost
surely. The resulting estimator then acts as an approximation to the MEWE when k is large. This can be
made precise by viewing the above optimization as a step within a Monte Carlo Expectation-Maximization
algorithm (Wei and Tanner, 1990). Convergence results for such algorithms, as both the number of iterations
and the value of k go to infinity, are reviewed in Neath et al. (2013).

If m is large, the empirical distribution of z1:m = gm(u, θ) is expected to be close to µθ, so that we
expect the MEWE to be close to the MWE with large probability. The supplementary materials contain
a result showing that the MEWE θ̂n,m indeed converges to the MWE θ̂n as m → ∞, and converges to θ?
as min{m,n} → ∞. However, the rate of convergence of an empirical distribution ν̂m to its limit ν in the
Wasserstein distance is known to depend adversely on the dimension of Y, and is in general slower than

√
m

(see e.g. Remark 4.4 in Del Barrio and Loubes, 2017). As a consequence, it might be that the estimators
discussed here are quite different from the MWE for small m. The effects of k and m on the estimators are
illustrated in Section 2.4.1, Figure 2.

The incremental cost of increasing k is typically lower than that of increasing m, due in part to the
potential for parallelization when calculating the distances Wp(y1:n, gm(θ, u(i))) for a given θ, and in part to
the algorithmic complexity in m, which might be super-linear. In Section 6, we briefly discuss alternative
minimum distance estimators based on other approximations of the Wasserstein distance to reduce the
computational cost.

In the spirit of Monte Carlo optimization, we can alternatively modify the sampling algorithms used
for the ABC approach described in Section 3.3 to approximate the point estimator θ̂n,m. This has the
added benefit of not requiring the synthetic data to be generated via a deterministic function gm. Related
discussions can be found in Wood (2010); Rubio et al. (2013). Approximations of the MWE and MEWE
are computed on toy examples in the following section, illustrating some of the theoretical properties to
be proved in Section 5. However, due to the lack of a satisfactory general solution to solve the minimum
distance optimization problems, we focus on the ABC method in the computational methods and numerical
experiments of Sections 6 and 7, leaving an empirical study of the point estimators for future research.

Remark 2.1. The article Montavon et al. (2016) proposes an approximation of the gradient of the function
that maps θ to an entropy-regularized Wasserstein distance (see Section 6.4) between µ̂n and µθ. Unfortu-
nately, it is not applicable in the setting of purely generative models, as it involves point-wise evaluations of
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the derivative of the log-likelihood.

2.4 Illustrations

In Section 2.4.1, we compare the distribution of the MEWE with that of the MLE in a simple misspecified
setting. We also investigate the effect of k and m on the distribution of the approximate MEWE. In Section
2.4.2, we consider a heavy-tailed data-generating process and highlight the robustness of the MEWE with
p = 1.

2.4.1 Gamma data fitted with a Normal model

Let µ? = Gamma(10,5) (parametrized by shape and rate) and M = {N(µ, σ2) : µ ∈ R, σ > 0}. Figure
1 compares the sampling distributions of the MLE and approximations of the MEWE of order 1, over
M = 1, 000 experiments. The MEWE converges at the same

√
n rate as the MLE, albeit to a distribution

that is centered at a different location. For the MEWE, we have used m = 104 and k = 20.

(a) MLE. (b) MEWE.
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(d) Estimators of σ.

Figure 1: Gamma data fitted with a Normal model, as described in Section 2.4.1. Figures 1a and 1b show the
sampling distributions of the MLE and MEWE of order 1 respectively, as n ranges from 50 to 104 (colors from red to
white to blue). Figures 1c and 1d show the marginal densities of the estimators of µ and σ respectively, for n = 104;
the MLEs are shown in dashed lines and the MEWE in full lines. For the MEWE, we have used m = 104 and k = 20.

In Figure 2, we fix an observed data set of size n = 100, and compute M = 500 instances of the
approximate MEWE for 8 different values of k and m, ranging from 1 to 1, 000 and 10 to 10, 000 respectively.
In Figure 2a, we plot the estimators obtained for all the levels of k, given 4 different values of m. In Figure
2b, we plot the estimators obtained for all the levels of m, given 4 different values of k. The axis scales are
different for each subplot. In both figures, black points correspond to the “true” MWE, calculated using a
very large value of m (m = 108). For low values of m, the estimators might be significantly different from
the MWE, as can be seen from the lower-right sub-plots of Figure 2b. When m increases, the estimators
converge to the MWE. Increasing k reduces variation in the estimator. The changes in k and m had no
significant impact on the number of evaluations of the objective required to locate the maximum using the
optim function in R (R Core Team, 2015).

2.4.2 Cauchy data fitted with a Normal model

Let µ? be Cauchy with median zero and scale one, and consider the modelM = {N(µ, σ2) : µ ∈ R, σ > 0}.
Neither the MLE nor the MEWE of order p ≥ 2 converges in this setting. We explore the behavior of the
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(a) Approximate MEWE for increasing k (colors from
red to white to blue), for different values of m.

(b) Approximate MEWE for increasing m (colors
from red to white to blue), for different values of k.

Figure 2: Gamma data with n = 100, fitted with a Normal model, as described in Section 2.4.1. MEWEs are
obtained for different values of m (from 10 to 10, 000) and k (from 1 to 1, 000), M = 500 times independently. The
black dots represent the “exact” MWE computed with m = 108.

MEWE of order 1, over M = 1, 000 repeated experiments. Figure 3 shows its sampling distributions, for n
ranging from 50 to 104. The marginal distribution of the estimator of µ concentrates around 0, the median
of µ?. The marginal distribution of the estimator of σ also concentrates, around a value between 2 and
2.5. The concentration occurs at rate

√
n, as shown by the marginal densities of the rescaled estimators of

µ in Figure 3b. Robustness properties of general minimum distance estimators were discussed in Parr and
Schucany (1980), and of the MWE in location models in particular in Bassetti and Regazzini (2006).

3 ABC with the Wasserstein distance
In this section we introduce Approximate Bayesian computation, first with a generic distance D between
data sets in Section 3.1, before focusing on the Wasserstein distance from Section 3.2 onwards.

3.1 Approximate Bayesian computation

Introduce a prior distribution π on the parameter θ. Consider the following algorithm, where ε > 0 is
referred to as the threshold, and D denotes a discrepancy measure between two data sets y1:n and z1:n,
taking non-negative values.

1. Draw a parameter θ from the prior distribution π, and a synthetic dataset z1:n ∼ µ(n)
θ .

2. If D(y1:n, z1:n) ≤ ε, keep θ, otherwise reject it.

7



(a) Estimators of (µ, σ).
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(b)
√
n-rescaled estimators of µ.

Figure 3: Cauchy data fitted with a Normal model, as described in Section 2.4.2. Sampling distributions of MEWE
as n ranges from 50 to 104 (colors from red to white to blue, left). The marginals of MEWE of µ, rescaled by

√
n,

are shown on the right.

The accepted samples are drawn from the ABC posterior distribution

πε(dθ|y1:n) =
π(dθ)

∫
Yn 1 (D(y1:n, z1:n) ≤ ε)µ(n)

θ (dz1:n)∫
H π(dθ)

∫
Yn 1 (D(y1:n, z1:n) ≤ ε)µ(n)

θ (dz1:n)
, (6)

where 1 is the indicator function. A more sophisticated algorithm to approximate ABC posteriors is described
in Section 3.3, and will be used throughout the numerical experiments of Section 7.

Suppose that D is chosen as the Euclidean distance between the vectors y1:n and z1:n. Then, the resulting
ABC posterior can be shown to converge to the standard posterior as ε → 0 (Prangle et al., 2017, see also
Proposition 5.1). However, the approach tends to be impractical due to the large variation of D(y1:n, z1:n)
over repeated samples from µ

(n)
θ . An example of practical use of ABC with the Euclidean distance is given

in Sousa et al. (2009). A large proportion of the ABC literature is devoted to studying ABC posteriors in
the setting where D is the Euclidean distance between summaries, i.e. D(y1:n, z1:n) = ‖η(y1:n) − η(z1:n)‖,
where η : Yn → Rdη for some small dη. Using summaries can lead to a loss of information: the resulting
ABC posterior converges, at best, to the conditional distribution of θ given η(y1:n), as ε → 0. A trade-off
ensues, where using more summaries reduces the information loss, but increases the variation in the distance
over repeated model simulations (Fearnhead and Prangle, 2012).

3.2 Wasserstein ABC

The distribution πε (dθ|y1:n) of Eq. (6), with D replaced by Wp, is referred to as the Wasserstein ABC
(WABC) posterior.

In some cases, the WABC posterior coincides with more familiar ABC posterior distributions. For
instance, consider the case where Y ⊂ R. Then, as discussed in Section 6, the WABC posterior corresponds
to the ABC posterior based on order statistics. Using order statistics as a choice of summary within ABC has
been suggested multiple times in the literature, see e.g. Sousa et al. (2009); Fearnhead and Prangle (2012),
without explicitly making the link to the Wasserstein distance. The connection to the Wasserstein distance
justifies that choice and leads to methodological extensions in multivariate and dependent data settings.

In Section 5.2, we will show that, in some generality, the WABC posterior converges to the standard

8



posterior as ε → 0. We will also consider the asymptotic behavior of πε(dθ|y1:n) when both n → ∞ and
ε→ ε?, for some minimal value ε?, and study its concentration around θ? = argmin θ∈HWp(µ?, µθ), assuming
it is well-defined. The WABC posterior is also a special case of the coarsened posterior, as introduced in
Miller and Dunson (2015), and, as such, might benefit from robustness to model misspecification; see Section
5.2.2.

3.3 Sampling sequentially from the WABC posterior

Instead of the rejection sampler of Section 3.1, we will target the WABC posterior using a sequential Monte
Carlo (SMC) approach, with N particles exploring the parameter space (Del Moral et al., 2012). The
algorithm starts with a threshold ε0 = +∞, for which the WABC posterior is the prior. Given the Monte
Carlo approximation of the WABC posterior for εt−1, the next value εt is chosen so as to maintain a number of
unique particles of at least αN , with α set to 50% by default. Upon choosing εt, resampling and rejuvenation
steps are triggered and the algorithm proceeds. In the experiments we will run the algorithm until a fixed
budget of model simulations is reached. At the end of the run, the algorithm provides N parameter samples
and synthetic data sets, associated with a threshold εT .

The algorithm is parallelizable over the N particles, and thus over equally many model simulations and
distance calculations. Any choice of MCMC kernel can be used within the rejuvenation steps. In particular,
we use the r-hit kernel of Lee (2012), shown to be advantageous compared to standard ABC-MCMC kernels
in Lee and Łatuszyński (2014). We choose the number of hits to be 2 by default. For the proposals of the
MCMC steps, we use a mixture of multivariate Normal distributions, with 5 components by default. These
default tuning parameters are used throughout all the experiments of this article. Full details on the SMC
algorithm are given in the supplementary materials.

3.4 Illustration on a Normal location model

In a simple numerical experiment, we compare the WABC posterior with two other methods: ABC using
the Euclidean distance between the data sets, and ABC using sufficient statistics. The three ABC posteriors
converge to the standard posterior as ε→ 0.

Consider 100 observations generated from a bivariate Normal distribution. The mean components are
drawn from a standard Normal distribution, and the generated values are approximately −0.59 and 0.03.
The covariance is equal to 1 on the diagonal and 0.5 off the diagonal. The parameter θ is the mean vector, and
is assigned a centered Normal prior with variance 25 on each component. All methods are run for a budget
of 106 model simulations with the SMC approach of Section 3.3, using N = 1, 024 particles. Approximations
of the marginal posterior distributions of both parameters are given in Figures 4a and 4b, illustrating that
ABC methods with Wasserstein and with summaries both approximate the posterior accurately.

To quantify the difference between the obtained ABC samples and posterior samples, we use, again, the
Wasserstein distance. That is, we sample 1, 024 times independently from the posterior distribution, and
compute the Wasserstein distance between these samples and the WABC samples produced by SMC using
N = 1, 024 particles. We plot the resulting distances against the number of model simulations in Figure
4c, in log-log scale. As expected, ABC with sufficient statistics converges fastest to the posterior. The
proposed WABC approach requires more model simulations to yield comparable results. Finally, the ABC
approach with the Euclidean distance struggles to approximate the posterior accurately. Extrapolating from
the plot, it would seemingly take billions of model simulations for the latter ABC approach to approximate
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the posterior as accurately as the other two methods. On the other hand, computing Euclidean distances
between data sets is faster than computing Wasserstein distances; see Section 6.

(a) Posteriors of θ1. (b) Posteriors of θ2. (c) W1-distance to posterior, versus
number of model simulations (log-log
scale).

Figure 4: ABC in the bivariate Normal location model of Section 3.4. ABC approximations of the posterior after
106 model simulations (left and middle), for three different distances. On the right, the Wasserstein distance between
ABC posterior samples and exact posterior samples is plotted against the number of model simulations (in log-log
scale). In principle, the three ABC approximations converge to the posterior as ε → 0. Yet, for a given number of
model simulations, the quality of the ABC approximation is sensitive to the choice of distance.

4 Time series
Viewing data sets as empirical distributions requires some additional care in the case of dependent data,
which are common in settings where ABC and indirect inference methods are useful. A naïve approach
consists in ignoring dependencies and computing distances between marginal empirical distributions. This
might be enough to estimate all parameters in some cases, as illustrated in Section 7.3. However, in general,
ignoring dependencies might prevent some parameters from being identifiable, as illustrated in Example 4.1.

Example 4.1. Consider an autoregressive process of order 1, written AR(1), where y1 ∼ N (0, σ2/(1−φ2)),
for some σ > 0 and φ ∈ (−1, 1). For each t ≥ 2, let yt = φyt−1 + σwt, where wt ∼ N (0, 1) are independent.
The marginal distribution of each yt is N (0, σ2/(1−φ2)). Furthermore, by an ergodic theorem, the empirical
distribution µ̂n of the time series converges to this marginal distribution. The two parameters (φ, σ2) are
not identifiable from the limit N (0, σ2/(1 − φ2)). Figure 6a shows WABC posterior samples derived while
ignoring time dependence, obtained for decreasing values of ε. The prior is uniform on [−1, 1] for φ, and
standard Normal on log(σ). The data are generated using φ = 0.7, log(σ) = 0.9 and n = 1, 000. The WABC
posteriors concentrate on a ridge of values with constant σ2/(1− φ2).

We propose two main routes to extend the proposed methodology to time series.

4.1 Curve matching

Visually, we might consider two time series to be similar if their curves are similar, in a trace plot of the
series in the vertical axis against the time indices on the horizontal axis. The Euclidean vector distance
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between curves sums the vertical differences between pairs of points with identical time indices. We can
instead introduce the points ỹt = (t, yt) and z̃t = (t, zt) for all t ∈ 1 : n, viewing the trace plot as a
scatter plot. The distance between two points, (t, yt) and (s, zs), can be measured by a weighted distance
ρλ ((t, yt), (s, zs)) = ‖yt−zs‖+λ|t−s|, where λ is a non-negative weight, and ‖y−z‖ refers to the Euclidean
distance between y and z. Intuitively, the distance ρλ takes into account both vertical and horizontal
differences between points of the curves, λ tuning the relative importance of horizontal to vertical differences.
We can then define the Wasserstein distance between two empirical measures supported by ỹ1:n and z̃1:n, with
ρλ as a ground distance on the observation space {1, . . . , n} × Y. Since computing the Wasserstein distance
can be thought of as solving an assignment problem, a large value of λ implies that yt will be assigned to
zt, for all t. The transport cost will then be n−1∑n

t=1 ‖yt − zt‖, corresponding to the Euclidean distance
(up to a scaling factor). If λ is smaller, (t, yt) is assigned to some (s, zs), for some s possibly different than
t. If λ goes to zero, the distance coincides with the Wasserstein distance between the marginal empirical
distributions of y1:n and z1:n, where the time element is entirely ignored.

For any λ > 0, we will discuss in Section 5.2 how the WABC posterior converges to the standard posterior
distribution as ε→ 0. The choice of λ is open, but a simple heuristic for univariate time series goes as follows.
Consider the aspect ratio of the trace plot of the time series (yt), with horizontal axis spanning from 1 to
t, and vertical axis from mint∈1:n yt to maxt∈1:n yt. For an aspect ratio of H : V , one can choose λ as
((maxt∈1:n yt −mint∈1:n yt)/V ) × (H/n). This corresponds to the Euclidean distance in a rectangular plot
with the given aspect ratio.

The proposed curve matching distance shares similarities with dynamic time warping (Berndt and Clif-
ford, 1994), with the Skorokhod distance between curves (Majumdar and Prabhu, 2015) and with the Fréchet
distance between polygons (Buchin et al., 2008), in which yt would be compared to zr(t), where r is a retiming
function to be optimized.

Example 4.2. Consider a cosine model where yt = A cos(2πωt + φ) + σwt, where wt ∼ N (0, 1), for all
t ≥ 1, are independent. Information about ω and φ is mostly lost when considering the marginal empirical
distribution of y1:n. In Figure 5, we compare the ABC posteriors obtained either with the Euclidean distance
between the series, or with curve matching, with an aspect ratio of one; in both cases the algorithm is run for
106 model simulations. The figure also shows an approximation of the exact posterior distribution, obtained
via Metropolis–Hastings. The prior distributions are uniform on [0, 1/10] and [0, 2π] for ω and φ respectively,
and standard Normal on log(σ) and log(A). The data are generated using ω = 1/80, φ = π/4, log(σ) = 0
and log(A) = log(2), with n = 100. We see that curve matching yields a more satisfactory estimation of σ
in Figure 5c, and a similar approximation for the other parameters. By contrast, an ABC approach based
on the marginal distribution of y1:n would fail to identify φ.

4.2 Reconstructions

Our second approach consists in transforming the time series to define an empirical distribution µ̃n from
which parameters can be estimated.

4.2.1 Delay reconstruction

In time series analysis, the lag-plot is a scatter plot of the pairs (yt, yt−k)nt=k+1, for some lag k ∈ N, from
which one can inspect the dependencies between lagged values of the series. Similarly, delay reconstructions
can be defined as ỹt = (yt, yt−τ1 , . . . , yt−τk) for some integers τ1, . . . , τk. The sequence, denoted ỹ1:n after
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(a) Posteriors of ω. (b) Posteriors of φ.

(c) Posteriors of log(σ). (d) Posteriors of log(A).

Figure 5: ABC posterior samples in the cosine model of Example 4.2, using either the Euclidean distance or curve
matching, with an aspect ratio of one, after 106 model simulations; and posterior distribution, obtained by Metropolis–
Hastings. The standard deviation of the noise σ is better estimated with curve matching than with the Euclidean
distance between time series.

relabelling and redefining n, inherits many properties from the original series, such as stationarity. Therefore,
the empirical distribution of ỹ1:n, denoted by µ̃n, might converge to a limit µ̃?. In turn, µ̃? might capture
enough of the dependency structure of original series for the model parameters to be identified. Delay
reconstructions (or embeddings) play a central role in dynamical systems (Kantz and Schreiber, 1997), for
instance in Takens’ theorem and variants thereof (Stark et al., 2003). The Wasserstein distance between the
empirical distributions of delay reconstructions has previously been proposed as a way of measuring distance
between time series (Moeckel and Murray, 1997; Muskulus and Verduyn-Lunel, 2011), but not as a device
for parameter inference. In the ABC and MDE settings, we propose to construct the delay reconstructions of
each synthetic time series, and to compute the Wasserstein distance between their empirical distribution and
the empirical distribution of ỹ1:n. We refer to this approach as WABC and MWE with delay reconstruction
respectively.

Denote by µ̃θ the marginal distribution of delay reconstructions under the model distribution given θ,
assuming that the model generates strictly stationary time series. Denote by µ̃θ,m the empirical distribution
of z̃1:m. Then, provided that the empirical distribution µ̃θ,m converges to µ̃θ, we are back in a setting where
we can study the behavior of the MWE and the WABC posterior. Define θ̃? = argmin θ∈HWp(µ̃?, µ̃θ),
assuming existence and uniqueness. In well-specified settings, if θ̃? is unique, then it must correspond to the
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data-generating parameters.
When the entries of the vectors y1:n and z1:n are all unique, which happens with probability one when

µ
(n)
? and µ

(n)
θ are continuous distributions, then Wp(ỹ1:n, z̃1:n) = 0 if and only if y1:n = z1:n. To see this,

consider the setting where ỹt = (yt, yt−1), and z̃t = (zt, zt−1). For the empirical distributions of ỹ1:n and
z̃1:n to be equal, we require that for every t there exists a unique s such that ỹt = z̃s. However, since the
values in y1:n and z1:n are unique, the values y1 and z1 appear only as the second coordinates of ỹ2 and
z̃2 respectively. It therefore has to be that y1 = z1 and ỹ2 = z̃2. In turn, this implies that y2 = z2, and
inductively, yt = zt for all t ∈ 1 : n. A similar reasoning can be done for any k ≥ 2 and 1 ≤ τ1 < . . . < τk.
This property is important in establishing that the WABC posterior based on delay reconstruction converges
to the true posterior as ε→ 0, which will be proved in Section 5.2.

In practice, for a non-zero value of ε, the obtained ABC posteriors might be different from the posterior,
but still identify the parameter θ̃? with a reasonable accuracy, as illustrated in Example 4.3. Similar reasoning
holds for approximations of the MWE. Since the order of the original data is only partly reflected in delay
reconstructions, some model parameters might be difficult to estimate with delay reconstruction, such as the
phase shift φ in Example 4.2.

Example 4.3 (Example 4.1 continued). Using k = 1, we consider ỹt = (yt, yt−1) for t ≥ 2. The recon-
structions are then sub-sampled to 500 values, ỹ2 = (y2, y1), ỹ4 = (y4, y3), . . . , ỹ1000 = (y1000, y999); similar
results were obtained with the 999 reconstructed values, but sub-sampling leads to computational gains in the
Wasserstein distance calculations; see Section 6. The stationary distribution of ỹt is given by

N

((
0
0

)
,

σ2

1− φ2

(
1 φ

φ 1

))
. (7)

Both parameters σ2 and φ can be identified from a sample approximating the above distribution. Figure 6b
shows the WABC posteriors obtained with delay reconstruction, concentrating around the data-generating
values as ε decreases.

4.2.2 Residual reconstruction

Another approach to handle dependent data is advocated in Mengersen et al. (2013), in the context of ABC
via empirical likelihood. In various time series models, the observations are modeled as transformations
of some parameter θ and residual variables w1, . . . , wn. Then, given a parameter θ, one might be able to
reconstruct the residuals corresponding to the observations. In Example 4.2, one can define wt = (yt −
A cos(2πωt + φ))/σ. In Example 4.1, one can define wt = (yt − φyt−1)/σ; other examples are given in
Mengersen et al. (2013). Once the residuals have been reconstructed, their empirical distribution can be
compared to the distribution that they would follow under the model, e.g. a standard Normal in Examples
4.1 and 4.2.

5 Theoretical properties
For the point estimators based on the Wasserstein distance, we establish conditions for the existence, measur-
ability and consistency. Bassetti et al. (2006) study these questions for estimators derived from minimizing
a class of optimal transport costs that contains the MWE as the most important special case, but only for
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(a) WABC using the Wasserstein distance between
marginal distributions.

(b) WABC using the Wasserstein distance between
empirical distributions of delay reconstructions.

Figure 6: WABC posteriors of (φ, log(σ)) in the AR(1) example (colors from red to white to blue as ε decreases),
corresponding to Examples 4.1 and 4.3. On the left, using the marginal empirical distribution of the series, WABC
posteriors concentrate around a ridge of values such that σ2/(1−φ2) is constant. On the right, using delay reconstruc-
tion with lag k = 1, the WABC posteriors concentrate around the data-generating parameters, φ = 0.7, log(σ) = 0.9,
indicated by full lines.

well-specified models with i.i.d data. We give a new proof that extends their results to cover misspecified
models and certain types of non-i.i.d. data. Beyond consistency, a study of asymptotic distributions is pre-
sented in Bassetti and Regazzini (2006) for location-scale models on R, in the case where p = 1, the metric
is Euclidean, and the model is well-specified. We extend these results to cover generic models under similar
conditions. Results for the minimum expected Wasserstein estimator are presented in the supplementary
materials.

Next, we study the behavior of the Wasserstein ABC posterior under different regimes. First, we give
conditions on a discrepancy measure for the associated ABC posterior to converge to the true posterior as the
threshold ε goes to zero, while keeping the observed data fixed. We then discuss the behavior of the WABC
posterior as n → ∞ for fixed ε > 0. Finally, we establish rates of concentration of the WABC posterior
around θ? = argmin θ∈HWp(µθ, µ?), provided this parameter is well-defined, as the data size n grows and
the threshold ε shrinks, similarly to Frazier et al. (2016) in the case of summary-based ABC. Proofs are
deferred to the supplementary materials.

5.1 On MWE and MEWE

5.1.1 Existence, measurability, and consistency

Importantly, we assume that for any θ, the synthetic data-generating process µ(n)
θ defines an identifiable

distribution µθ, informally referred to as the model. In the i.i.d. setting, µ? and µθ are simply the marginal
distributions of the observed and synthetic data. In non-i.i.d. settings, they might be the stationary or
limiting marginal distributions of reconstructions, denoted by µ̃? and µ̃θ in Section 4. As such, in this
section, we take Y to denote a generic space in which our (potentially reconstructed) observations lie.
Further assumptions are listed below.

Assumption 5.1. The data-generating process is such that Wp(µ̂n, µ?)→ 0, P-almost surely as n→∞.
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Assumption 5.2. The map θ 7→ µθ is continuous in the sense that ρH(θn, θ)→ 0 implies µθn ⇒ µθ.

Assumption 5.3. For some ε > 0, the set B?(ε) = {θ ∈ H : Wp(µ?, µθ) ≤ ε? + ε} is bounded.

Theorem 5.1 (Existence and consistency of the MWE). Under Assumptions 5.1-5.3, there exists a set
E ⊂ Ω with P(E) = 1 such that, for all ω ∈ E, infθ∈HWp(µ̂n(ω), µθ)→ infθ∈HWp(µ?, µθ), and there exists
n(ω) such that, for all n ≥ n(ω), the sets argmin θ∈HWp(µ̂n(ω), µθ) are non-empty and form a bounded
sequence with

lim sup
n→∞

argmin
θ∈H

Wp(µ̂n(ω), µθ) ⊂ argmin
θ∈H

Wp(µ?, µθ).

For a generic function f , let ε- argmin x f = {x : f(x) ≤ ε + infx f}. Theorem 5.1 also holds with
εn- argmin θ∈HWp(µ̂n(ω), µθ) in place of argmin θ∈HWp(µ̂n(ω), µθ), for any sequence εn → 0. If θ? =
argmin θ∈HWp(µ?, µθ) is unique, the result can be rephrased as θ̂n → θ?, P-almost surely.

Theorem 5.2 (Measurability of the MWE). Suppose that H is a σ-compact Borel measurable subset of Rdθ .
Under Assumption 5.2, for any n ≥ 1 and ε > 0, there exists a Borel measurable function θ̂n : Ω → H that
satisfies

θ̂n(ω) ∈

argmin θ∈HWp(µ̂n(ω), µθ) if this set is non-empty,

ε- argmin θ∈HWp(µ̂n(ω), µθ) otherwise.

Similar results for the MEWE are stated in supplementary materials, along with a few additional as-
sumptions. Another result therein gives conditions for the MEWE to converge to the MWE as m→∞.

5.1.2 Asymptotic distribution

Under conditions guaranteeing the consistency of the minimum Wasserstein estimator, we study its asymp-
totic distribution in the case where p = 1, Y = R, and ρ(x, y) = |x− y|. Under this setup, it can be shown
that W1(µ, ν) =

∫ 1
0 |F

−1
µ (s) − F−1

ν (s)|ds =
∫
R|Fµ(t) − Fν(t)|dt (e.g. Ambrosio et al., 2005, Theorem 6.0.2),

where Fµ and Fν denote the cumulative distribution functions (CDFs) of µ and ν respectively. We also
assume that the model is well-specified, and that H is endowed with a norm: ρH(θ, θ′) = ‖θ − θ′‖H.

Our approach to derive asymptotic distributions follows Pollard (1980). Let Fθ, F? and Fn denote
the CDFs of µθ, µ? and µ̂n respectively. Informally speaking, we will show that

√
nW1(µ̂n, µθ) can be

approximated by
∫
R|
√
n(Fn(t)−F?(t))−〈

√
n(θ−θ?), D?(t)〉|dt near θ?, for someD? ∈ (L1(R))dθ , with 〈θ, u〉 =∑dθ

i=1 θiui. Results in del Barrio et al. (1999) and Dede (2009) give conditions under which
√
n(Fn − F?)

converges to a zero mean Gaussian process G? with given covariance structure, for both independent and
certain classes of dependent data. Heuristically, the distribution of

√
n(θ̂n − θ?) is then close to that of

argmin u∈H
∫
R|G?(t) − 〈u,D?(t)〉|dt. We only state the result for i.i.d. data, but also prove it for certain

classes of non-i.i.d. data in the supplementary materials. First, we give another assumption, which is stated
with general p and under potential model misspecification. We will rely on this general form later, but for
the moment only need it for p = 1 and well-specified models.

Assumption 5.4. For all ε > 0, there exists δ > 0 such that

inf
θ∈H:ρH(θ,θ?)≥ε

Wp(µ?, µθ) >Wp(µ?, µθ?) + δ.
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This assumption is akin to those made in the study of the asymptotic properties of the maximum
likelihood estimator, where θ? is defined in terms of the KL divergence. A result in the supplementary
materials gives conditions under which this assumption holds.

Theorem 5.3. Suppose Yi ∼ µ? = µθ? i.i.d. for θ? in the interior of H, and that
∫∞

0

√
P(|Y0| > t)dt <∞.

Suppose that there exists a non-singular D? ∈ (L1(R))dθ such that∫
R
|Fθ(t)− F?(t)− 〈θ − θ?, D?(t)〉|dt = o(‖θ − θ?‖H),

as ‖θ − θ?‖H → 0. Under Assumptions 5.1-5.4 and if argmin u∈H
∫
R|G?(t) − 〈u,D?(t)〉|dt is almost surely

unique, the MWE of order 1 satisfies

√
n(θ̂n − θ?)⇒ argmin

u∈H

∫
R
|G?(t)− 〈u,D?(t)〉|dt,

as n→∞, where G? is a zero mean Gaussian process with EG?(s)G?(t) = min{F?(s), F?(t)} − F?(s)F?(t).

The theorem aligns with the concentration of the estimators observed in Figures 1-3, but does not fully
explain their behavior in those models, because of misspecification. Computing confidence intervals using
the asymptotic distribution is hard, due in part to its dependence on unknown quantities. The bootstrap
appears as a practical alternative. We leave further discussion of the bootstrap for future research.

The condition
∫∞

0

√
P(|Y0| > t)dt <∞ implies the existence of second moments, and is itself implied by

the existence of moments of order 2 + ε for some ε > 0 (see e.g. Section 2.9 in Wellner and van der Vaart,
1996). The uniqueness assumption on the argmin can be relaxed by considering convergence to the entire set
of minimizing values, as in Section 7 of Pollard (1980). Still, uniqueness can sometimes be established, using
e.g. Cheney and Wulbert (1969). This approach is taken in Bassetti and Regazzini (2006), who directly
show that Theorem 5.3 holds when M is a location-scale family supported on a bounded open interval.
The existence and form of D? can in many cases be derived if the model is differentiable in quadratic mean
(Le Cam, 1970), which is elaborated upon in the supplementary materials.

Theorem 5.3 also holds for approximations of the MWE, say θ̃n, provided that θ̃n = θ̂n + oP(1/
√
n), as

can be seen from the proof. In light of the convergence of the MEWE to the MWE as m→∞ illustrated in
the supplementary materials, there exists a sequence m(n) (depending on ω) such that the MEWE θ̂n,m(n)

satisfies the conclusion of the theorem, provided that m(n) increases sufficiently fast.
A similar result can be derived when p = 2 using results in Del Barrio et al. (2005). Extensions of

the theorem to multivariate settings is left for future research; the main difficulty stems from the lack of
convenient representations of the Wasserstein distance in such settings.

5.2 On WABC posteriors

We study the behavior of the Wasserstein ABC posterior under different regimes. First, we give conditions
on a discrepancy measure for the associated ABC posterior to converge to the true posterior as the threshold
ε goes to zero, while keeping the observed data fixed. We then discuss the behavior of the WABC posterior
as n → ∞ for fixed ε > 0. Finally, we establish rates of concentration of the WABC posterior around
θ? = argmin θ∈HWp(µ?, µθ), as the data size n grows and the threshold ε shrinks, similarly to Frazier et al.
(2016) in the case of summary-based ABC. Proofs are deferred to the appendix.
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5.2.1 Behavior as ε→ 0 for fixed observations

The following result establishes some conditions under which a non-negative measure of discrepancy between
data sets D yields an ABC posterior that converges to the true posterior as ε → 0, while the observations
are kept fixed.

Proposition 5.1. Assume that the posterior distribution is well-defined, and suppose that µ(n)
θ has a con-

tinuous density f (n)
θ , satisfying

sup
y1:n∈Yn,θ∈H

f
(n)
θ (y1:n) <∞.

Suppose also that D is continuous in the sense that, for any y1:n, D(y1:n, z1:n) → D(y1:n, x1:n) whenever
z1:n → x1:n component-wise in the ground metric ρ. Suppose that either

1. f (n)
θ is n-exchangeable, such that f (n)

θ (y1:n) = f
(n)
θ (yσ(1:n)) for any σ ∈ Sn, and D(y1:n, z1:n) = 0 if

and only if z1:n = yσ(1:n) for some σ ∈ Sn, or

2. D(y1:n, z1:n) = 0 if and only if z1:n = y1:n.

Then, keeping y1:n fixed, the ABC posterior converges strongly to the posterior as ε→ 0.

The Wasserstein distance applied to unmodified data satisfiesW(y1:n, z1:n) = 0 if and only if z1:n = yσ(1:n)

for some σ ∈ Sn, making condition (a) of Proposition 5.1 applicable. Furthermore, taking D to be the
Wasserstein distance applied to delay reconstructed or curve matched data, condition (b) of the proposition
holds.

5.2.2 Behavior as n→∞ for fixed ε

5.2.3 Concentration as n increases and ε decreases

A sequence of distributions πy1:n on H, depending on the data y1:n, is consistent at θ? if, for any δ >

0, E[πy1:n ({θ ∈ H : ρH(θ, θ?) > δ})] → 0, where the expectation is taken with respect to µ
(n)
? . Finding

rates of concentration for πy1:n involves finding the fastest decaying sequence δn > 0 such that the limit
above holds. More precisely, we say that the rate of concentration of πy1:n is bounded above by δn if
E[πy1:n ({θ ∈ H : ρH(θ, θ?) > δn})]→ 0.

We establish rates of concentration of the sequence of WABC posteriors around θ? = argmin θ∈HWp(µθ, µ?),
as the data size n grows and the threshold shrinks towards ε? = Wp(µθ? , µ?) at a rate dependent on n. Al-
though we focus on the Wasserstein distance in this section, the reasoning holds for other metrics on P(Y);
see Section 6 and the supplementary materials.

As with the MWE, we assume that for any θ, the synthetic data-generating process µ(n)
θ defines an

identifiable distribution µθ, informally referred to as the model, and take Y to denote a generic space in
which our (potentially reconstructed) observations lie. Further assumptions are listed below, starting with
a slightly weaker version of Assumption 5.1.

Assumption 5.5. The data-generating process is such that Wp(µ̂n, µ?)→ 0, in P-probability, as n→∞.

The moment and concentration inequalities of Fournier and Guillin (2015) can be used to verify the above
assumption, as well as the next assumption for i.i.d. data and certain classes of dependent processes.

17



Assumption 5.6. For any ε > 0, µ(n)
θ (Wp(µθ, µ̂θ,n) > ε) ≤ c(θ)fn(ε), where fn(ε) is a sequence of

functions that are strictly decreasing in ε for fixed n and fn(ε) → 0 for fixed ε as n → ∞. The function
c : H → R+ is π-integrable, and satisfies c(θ) ≤ c0 for some c0 > 0, for all θ such that, for some δ0 > 0,
Wp(µ?, µθ) ≤ δ0 + ε?.

For well-specified models, Assumption 5.6 implies Assumption 5.5. The next assumption states that the
prior distribution puts enough mass on the sets of parameters θ that yield distributions µθ close to µ? in the
Wasserstein distance.

Assumption 5.7. There exist L > 0 and cπ > 0 such that, for all ε small enough,

π ({θ ∈ H : Wp(µ?, µθ) ≤ ε+ ε?}) ≥ cπεL.

Under Assumption 5.4, note that the last part of Assumption 5.6 is implied by c(θ) ≤ c0 for all θ with
Wp(µθ? , µθ) ≤ δ0, for some δ0 > 0. Indeed, Wp(µθ? , µθ) ≤ δ0 implies that Wp(µθ, µ?) −Wp(µ?, µθ?) ≤ δ0.
Since ε? = Wp(µ?, µθ?), the argument follows. By the same reasoning, Assumption 5.7 is implied by
π ({θ ∈ H : Wp(µθ? , µθ) ≤ ε}) ≥ cπεL, for some cπ > 0 and L > 0.

Theorem 5.4. Under Assumptions 5.5-5.7, consider a sequence (εn)n≥0 such that, as n → ∞, εn → 0,
fn(εn) → 0, and P(Wp(µ̂n, µ?) ≤ εn) → 1. Then, the WABC posterior with threshold εn + ε? satisfies, for
some 0 < C <∞ and any 0 < R <∞,

πεn+ε?
(
{θ ∈ H : Wp(µ?, µθ) > ε? + 4εn/3 + f−1

n (εLn/R)} |y1:n
)
≤ C

R
,

with P-probability going to 1 as n→∞.

The assumptions that fn(εn)→ 0 and that P(Wp(µ̂n, µ?) ≤ εn)→ 1 imply that εn has to be the slowest
of the two convergence rates: that of µ̂n to µ? and that of µ̂θ,n to µθ. We can further relate concentration
on the sets {θ : Wp(µθ, µ?) < δ′ + ε?}, for some δ′ > 0, to concentration on the sets {θ : ρH(θ, θ?) < δ},
for some δ > 0, assuming the parameter θ? = argmin θ∈HWp(µ?, µθ) is well-defined. In turn, this leads to
concentration rates of the WABC posteriors. To that end, consider the following assumption.

Assumption 5.8. There exist K > 0, α > 0 and an open neighborhood U ⊂ H of θ?, such that, for all
θ ∈ U ,

ρH(θ, θ?) ≤ K(Wp(µθ, µ?)− ε?)α.

Corollary 5.1. Under Assumptions 5.4-5.8, consider a sequence (εn)n≥0 such that, as n → ∞, εn → 0,
fn(εn) → 0, f−1

n (εLn) → 0 and P(Wp(µ̂n, µ?) ≤ εn) → 1. Then the WABC posterior with threshold εn + ε?

satisfies, for some 0 < C <∞ and any 0 < R <∞,

πεn+ε?
(
{θ ∈ H : ρH(θ, θ?) > K(4εn/3 + f−1

n (εLn/R))α} |y1:n
)
≤ C

R
,

with P-probability going to 1.

This result gives concentration rates through the expression K(4εn/3 + f−1
n (εLn/R))α. We verify the

assumptions and derive explicit rates for certain classes of models and data-generating processes in the
supplementary materials. The main messages are: the concentration rate is sensitive to the dimension of the
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observation space Y, to the choice of the order p of the Wasserstein distance, and to the misspecification of
the model.

However, it is unclear what happens when εn decays to a value smaller than ε? at a rate faster than that
prescribed by Corollary 5.1. For example, as shown in Proposition 5.1, the WABC posterior converges to
the true posterior when ε→ 0 for n fixed. The posterior itself is known to concentrate around the point in
H minimizing the KL divergence between µ? and µθ (e.g. Müller, 2013).

6 Distance calculations
Here we discuss algorithms and costs associated with computing the Wasserstein distance, and possible ways
of reducing these costs using approximations and alternative distances. The supplementary materials feature
theoretical results validating the use of these alternative distances, as referenced below.

6.1 Exact Wasserstein distance

Computing the Wasserstein distance between the distributions µ̂n = n−1∑n
i=1 δyi and ν̂n = n−1∑n

i=1 δzi
reduces to a linear sum assignment problem, as in Eq. (3). In the univariate case, finding the optimal
permutation can be done by sorting the vectors y1:n and z1:n in increasing order, obtaining the orders σy(i)
and σz(i) for i ∈ {1, . . . , n}. Then, one associates each yi with zσ(i) where σ(i) = σz ◦ σ−1

y (i). The cost of
the Wasserstein distance computation is thus of order n logn.

In multivariate settings, Eq. (3) can be solved by the Hungarian algorithm for a cost of order n3. Other
algorithms have a cost of order n2.5 log(nCn), with Cn = max1≤i,j≤n ρ(yi, zj), and can therefore be more
efficient when Cn is small (Burkard et al., 2009, Section 4.1.3). In our numerical experiments, we use the
short-list method presented in Gottschlich and Schuhmacher (2014) and implemented in Schuhmacher et al.
(2017). This simplex algorithm-derived method also solves the more general Eq. (2), which is needed when
approximating the MEWE form 6= n. In general, simplex algorithms come without guarantees of polynomial
running times, but Gottschlich and Schuhmacher (2014) show empirically that their method tends to have
sub-cubic cost.

The cubic cost of computing Wasserstein distances in the multivariate setting can be prohibitive for large
data sets. However, some applications of ABC and indirect inference involve relatively small numbers of
observations from complex models which are expensive to simulate, while the cost of computing distances
is model-free. Note that the dimension dy of the observation space only enters the ground distance ρ, and
thus the cost of computing the Wasserstein distance under a Euclidean ground metric is linear in dy. For
cases where the cubic cost in n is prohibitive, one can resort to various approximations of the Wasserstein
distance, as described in the following sections.

6.2 Hilbert distance

The assignment problem in Eq. (3) can be solved in n logn in the univariate case by sorting samples.
We propose a new distance generalizing this idea when dy > 1, by sorting samples according to their
projection via the Hilbert space-filling curve. As shown in Gerber and Chopin (2015); Schretter et al.
(2016), transformations through the Hilbert space-filling curve and its inverse preserve a notion of distance
between probability measures. The Hilbert curve H : [0, 1] → [0, 1]dy is a Hölder continuous mapping from
[0, 1] into [0, 1]dy . One can define a measurable pseudo-inverse h : [0, 1]dy → [0, 1] verifying h(H(x)) = x for
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all x ∈ [0, 1]. We assume in this subsection that Y ⊂ Rdy is such that there exists a mapping ψ : Y → (0, 1)dy
verifying, for y = (y1, . . . , ydy ) ∈ Y, ψ(y) =

(
ψ1(y1), ..., ψdy (ydy )

)
where the ψi’s are continuous and strictly

monotone. For instance, if Y = Rdy , one can take ψ to be the component-wise logistic transformation; see
Gerber and Chopin (2015) for more details. By construction, the mapping hY := h ◦ ψ : Y → (0, 1) is
one-to-one. For two vectors y1:n and z1:n, denote by σy and σz the permutations obtained by mapping the
vectors through hY and sorting the resulting univariate vectors in increasing order. We define the Hilbert
distance Hp between the empirical distributions of y1:n and z1:n by

Hp(y1:n, z1:n)p = 1
n

n∑
i=1

ρ
(
yi, zσ(i)

)p
, (8)

where σ(i) = σz ◦ σ−1
y (i) for all i ∈ {1, . . . , n}.

Proposition 6.1. For any integer n ≥ 1 and real number p ≥ 1, Hp defines a distance on the space of
empirical distributions of size n.

The Hilbert distance can be computed at a cost in the order of n logn and an implementation is pro-
vided by the function hilbert_sort in The CGAL Project (2016). From a practical point of view, this
implementation has the attractive property of not having to map the samples to (0, 1)dy and hence having
to choose a specific mapping ψ. Instead, this function directly constructs the Hilbert curve around the input
point set.

The Hilbert distance approximates the assignment problem of Eq. (3). Therefore, it is always greater than
the Wasserstein distance, which minimizes such sums. This property plays an important role in analyzing
the associated ABC posterior. In the supplementary materials, we provide a version of Theorem 5.4 that
holds for the ABC posterior based on the Hilbert distance, assuming that the model is well-specified. A
theoretical analysis of this approach under milder conditions is left for future research.

6.3 Swapping distance

Viewing the Wasserstein distance calculation as the assignment problem in Eq. (3), Puccetti (2017) proposed
a swapping algorithm to approximate the optimal assignment. Consider an arbitrary permutation σ of
{1, . . . , n}, and the associated transport cost

∑n
i=1 ρ(yi, zσ(i))p. The swapping algorithm consists in checking,

for all 1 ≤ i < j ≤ n, whether ρ(yi, zσ(i))p + ρ(yj , zσ(j))p is less or greater than ρ(yi, zσ(j))p + ρ(yj , zσ(i))p.
If it is greater, then one swaps σ(i) and σ(j), resulting in a decrease of the transport cost. One can repeat
these sweeps over 1 ≤ i < j ≤ n, until the assignment is left unchanged, and denote it by σ̃. Each sweep
has a cost of order n2 operations. There is no guarantee that the resulting assignment σ̃ corresponds to the
optimal one. Note that we can initialize the algorithm with the assignment obtained by Hilbert sorting for
a negligible cost of n logn. We refer to the resulting distance (n−1∑n

i=1 ρ(yi, zσ̃(i))p)1/p as the swapping
distance.

The swapping distance between y1:n and z1:n takes values that are, by construction, between the Wasser-
stein distance Wp(y1:n, z1:n) and the Hilbert distance Hp(y1:n, z1:n). Thanks to this important property,
the associated ABC posterior can be analyzed using results obtained for the Wasserstein and the Hilbert
distances. A version of Theorem 5.4 for the swapping distance is provided in the supplementary materials.
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6.4 Other distances

Recent articles introduce other algorithms to approximate the Wasserstein distance in a cost of n2 (Cuturi,
2013; Genevay et al., 2016; Ye et al., 2017), or n logn using random projections (Rabin et al., 2011). In
particular, Cuturi (2013) convexifies the optimization problem of Eq. (2) using an entropic constraint on the
joint distribution γ. Consider the regularized version of Eq. (3) γζ = argmin γ∈Γn,n

∑n
i,j=1 ρ(yi, zj)pγij +

ζ
∑n
i,j=1 γij log γij , which includes a penalty on the entropy of γ, and define the dual-Sinkhorn divergence

Sζp(y1:n, z1:n)p =
∑n
i,j=1 ρ(yi, zj)pγζij . The regularized problem can be solved iteratively by Sinkhorn’s algo-

rithm, which involves matrix-vector multiplications resulting in a total cost of order n2. If ζ goes to zero, the
dual-Sinkhorn divergence goes to the Wasserstein distance. More properties of the dual-Sinkhorn divergence
are discussed in Cuturi (2013).

Following Ramdas et al. (2017), one can show that the so-called Energy Distance (ED) and Maximum
Mean Discrepancy (MMD) arise as the respective limits, as ζ → ∞, of S̃ζ1 (y1:n, z1:n) = 2Sζ1 (y1:n, z1:n) −
Sζ1 (y1:n, y1:n) − Sζ1 (z1:n, z1:n), under the ground distances ρ(x, y) and ρ̃(x, y) = 1 − exp(−ρ(x, y)2/(2s2)),
where s is a tuning parameter. The ED takes the form

S̃∞1 (y1:n, z1:n) = 2
n2

n∑
i,j=1

ρ(yi, zj)−
1
n2

n∑
i,j=1

ρ(yi, yj)−
1
n2

n∑
i,j=1

ρ(zi, zj), (9)

which in the limit n → ∞ converges to 2E[ρ(X,Y )] − E[ρ(Y, Y )] − E[ρ(X,X)]. The same expressions hold
for the MMD, with ρ̃ in place of ρ. For both ground distances, the latter quantity is zero if and only if X
and Y have the same distribution. The cost of computing the ED and MMD is of order n2. The article
Park et al. (2016) proposes to use a variant of the MMD as a discrepancy between empirical distributions
in ABC, and heuristics to choose the parameter s. A numerical comparison between ABC based on various
distances is provided in Section 7.1.

Contrarily to the Hilbert and the swapping distances, the distances mentioned here either are not proper
distances or do not upper bound the Wasserstein distance. This complicates the analysis of the associated
ABC posterior distributions and minimum distance estimators.

6.5 Choosing and combining distances

Since we have theoretical support for ABC and minimum distance estimation with Hilbert, swapping and
exact Wasserstein distances, we suggest to choose among these three according to the size of the data set.
They can be calculated in a cost of order n logn, n2 and n3 respectively. We compare the three distances in
the numerical experiments of Section 7.1. In univariate settings, these three distances coincide, and we then
refer to all as the Wasserstein distance (e.g. in Sections 7.2 and 7.3).

It might be useful to combine distances. For instance, one might want to start exploring the parameter
space with the Hilbert distance, and switch to the exact Wasserstein distance in a region of interest; or
use the Hilbert distance to save computations in a delayed acceptance scheme within ABC. One might also
combine a transport distance with a distance between summaries. We can combine distances in the ABC
framework by introducing a threshold for each distance, and define the ABC posterior as in Eq. (6), with a
product of indicators corresponding to each distance.

In the minimum distance estimation setting, we can initialize the optimization of one distance with the
minimum distance estimator based on another. The optimization could either be constrained to parameters
yielding distances in the initial metric that are smaller than some threshold, or it could be unconstrained.

21



The first option might be particularly useful when combining transport distances with summaries. Other
options include defining a new distance as a weighted average of two or more other distances. We explore
the combination of distances in the numerical experiments of Section 7.4.

Any of the aforementioned distances can be computed faster by first sub-samplingm < n points from y1:n

and z1:n, and then computing the distance between the resulting distributions. This increases the variance
of the resulting distances, introducing a trade-off with computation time. In the case of the Wasserstein
distance, this could be studied formally using the results of Sommerfeld and Munk (2017). Other multiscale
approaches could also be used to accelerate computation (Mérigot, 2011).

7 Numerical experiments
As outlined in Section 2.3, the application of Monte Carlo Expectation-Maximization to approximate the
MEWE is limited to models that generate synthetic data according to an equation of the form z1:m =
gm(u, θ). We therefore choose to focus on the WABC approach in the numerical experiments, which does
not make such assumptions. In the spirit of Monte Carlo optimization, the algorithms we use to approximate
the WABC posterior could be modified to give approximations of the MEWE.

7.1 Quantile “g-and-k” distribution

We start by illustrating the proposed approach on an example where the likelihood can be approximated
with high precision, which allows comparisons between the standard posterior and WABC approximations.
We also compare the use of the Wasserstein distance with some of the other distances from Section 6.

A classical example used in the ABC literature is the g-and-k distribution (see e.g. Fearnhead and Prangle,
2012; Mengersen et al., 2013), whose quantile function is given by

r ∈ (0, 1) 7→ a+ b

(
1 + 0.81− exp(−gz(r)

1 + exp(−gz(r)

)(
1 + z(r)2)k z(r), (10)

where z(r) refers to the r-th quantile of the standard Normal distribution. Sampling from the g-and-k
distribution can be done by plugging standard Normal variables into Eq. (10) in place of z(r). We consider
the bivariate extension of the g-and-k distribution (Drovandi and Pettitt, 2011), where one generates bivariate
Normals with mean zero, variance one, and correlation ρ, and plugs them in place of z(r) in Eq. (10), with
parameters (ai, bi, gi, ki) for each component i ∈ {1, 2}. We generate n = 500 observations from the model
using a1 = 3, b1 = 1, g1 = 1, k1 = 0.5, a2 = 4, b2 = 0.5, g2 = 2, k2 = 0.4, ρ = 0.6, as in Section 5.2 of Drovandi
and Pettitt (2011). The parameters (ai, bi, gi, ki) are assigned a uniform prior on [0, 10], for i ∈ {1, 2}, and
ρ a uniform prior on [−1, 1].

The probability density function is intractable but can be numerically calculated with high precision
since it only involves one-dimensional inversions and differentiations of the quantile function of Eq. (10),
as described in Rayner and MacGillivray (2002). Therefore, Bayesian inference can be carried out with e.g.
Markov chain Monte Carlo. We run 8 Metropolis–Hastings chains for 100, 000 iterations to approximate
the posterior distribution, and discard the first 10, 000 as burn-in. For the WABC approximation, we use
N = 1, 024 particles and run the sequential algorithm of Section 3.3 until 2×106 simulations from the model
have been performed.

Figure 7 shows the marginal posterior and WABC posterior distributions of the nine parameters (Figure
7a-7i). The WABC approximation is accurate for the marginals of a1, b1, g1, k1, but less so for a2, b2, g2, k2.
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In particular, the WABC marginal posterior of g2 seems very similar to the prior. In Figure 7j, the last 10
WABC approximations are shown, overlaid with a horizontal line indicating the prior density. According
to the plot, the WABC posterior of g2 starts concentrating around the data-generating value (indicated by
a vertical line), but more simulations from the model would be necessary to accurately approximate the
posterior.

Figure 7k shows the W1-distance between the WABC posterior samples, obtained with various distances,
and a sample of 1, 024 points thinned out from the Markov chains targeting the posterior. This distance is
plotted against the number of model simulations. It shows that all distances yield WABC posteriors getting
closer to the actual posterior. On the other hand, for a finite number of model simulations, all WABC
posteriors are significantly different from the actual posterior. For comparison, the W1-distance between
two samples of size 1, 024 thinned out from the Markov chains is on average 0.08. In this particular example,
it appears that the MMD leads to ABC posteriors that are not as close to the posterior as the other distances.
The Hilbert distance provides a particularly cheap and efficient approximation to the Wasserstein distance
in this bivariate case.

For data sets of size n = 500 simulated using the data-generating parameter, the average wall-clock times
to compute distances between simulated and observed data, on an Intel Core i7-5820K (3.30GHz), are as
follows: 0.002s for the Hilbert distance, 0.01s for the MMD, 0.03s for the swapping distance, and 0.22s
for the exact Wasserstein distance; these average times were computed on 1, 000 independent data sets. In
this example, simulating from the model takes a negligible time, even compared to the Hilbert distance.
Calculating the likelihood over 1, 000 parameters drawn from the prior, we find an average compute time of
0.05s.

7.2 Toggle switch model

We borrow the system biology “toggle switch” model used in Bonassi et al. (2011); Bonassi and West (2015),
inspired by studies of dynamic cellular networks. This provides an example where a sophisticated design
of summaries can be replaced by the Wasserstein distance between empirical distributions. For i ∈ 1 : n
and t ∈ 1 : T , let (ui,t, vi,t) denote the expression levels of two genes in cell i at time t. Starting from
(ui,0, vi,0) = (10, 10), the evolution of (ui,t, vi,t) is given by

ui,t+1 = ui,t + α1/(1 + vβ1
i,t)− (1 + 0.03ui,t) + 0.5ξi,1,t,

vi,t+1 = vi,t + α2/(1 + uβ2
i,t)− (1 + 0.03vi,t) + 0.5ξi,2,t,

where α1, α2, β1, β2 are parameters, and ξ’s are standard Normal variables, truncated so that (ui,t, vi,t) only
takes non-negative values. For each cell i, we only observe a noisy measurement of the terminal expression
level ui,T . Specifically, the observations yi are assumed to be independently distributed as Normal variables
with mean µ + ui,T and standard deviation µσ/uγi,T , where µ, σ, γ are parameters. We generate n = 2, 000
observations using α1 = 22, α2 = 12, β1 = 4, β2 = 4.5, µ = 325, σ = 0.25, γ = 0.15. A histogram of the
data is shown in Figure 8a.

We consider the task of estimating the data-generating values, using uniform prior distributions on [0, 50]
for α1, α2, on [0, 5] for β1, β2, on [250, 450] for µ, [0, 0.5] for σ and on [0, 0.4] for γ. These ranges are derived
from Figure 5 in Bonassi and West (2015). Instead of using 11-dimensional tailor-made summaries as in
Bonassi et al. (2011); Bonassi and West (2015), we use the Wasserstein distance with p = 1. The SMC
sampler is run with N = 2, 048, for a total number of 106 model simulations.
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The seven marginal ABC posterior distributions, obtained for decreasing values of ε, are shown in Figure
8. We find that the marginal WABC posterior distributions concentrate at different rates depending on the
parameters, similarly to the results of Bonassi and West (2015), Figure 5. Comparing the results, we see
that the design of custom summaries can be by-passed thanks to the use of a distance between empirical
distributions: the resulting posterior approximations are very similar, while our proposed approach is fully
black-box and guaranteed to retrieve the exact posterior distribution in the limit of the number of model
simulations.

7.3 Queueing model

We turn to the M/G/1 queueing model, which has appeared as a test case in the ABC literature, see
e.g. Fearnhead and Prangle (2012). It provides an example where the data are dependent, but where the
parameters can be identified from the marginal distribution of the data. In the model, customers arrive
at a server with independent interarrival times wi, exponentially distributed at rate θ3. Each customer is
served with independent service times ui, taken to be uniformly distributed on [θ1, θ2]. We observe only
the interdeparture times yi, given by the process yi = ui + max{0,

∑i
j=1 wj −

∑i−1
j=1 yj}. The prior on

(θ1, θ2 − θ1, θ3) is Uniform on [0, 10]2 × [0, 1/3].
We use the data set given in Shestopaloff and Neal (2014), which was generated using the parameters

(θ1, θ2, θ3) = (4, 7, 0.15) and n = 50. The WABC posterior based on the empirical distribution of y1:n

is approximated using the SMC algorithm of Section 3.3, with N = 1, 024, for more than 3 × 107 model
simulations. The actual posterior distribution is approximated with a particle marginal Metropolis–Hastings
(PMMH) run (Andrieu et al., 2010), using 4, 096 particles and 105 iterations. The use of PMMH was
suggested in Shestopaloff and Neal (2014), as an alternative to their proposed, model-specific Markov chain
Monte Carlo algorithm.

Upon observing y1:n, θ1 has to be less than mini∈1:n yi, which is implicitly encoded in the likelihood, but
not in an ABC procedure. One can add this constraint explicitly, rejecting parameters that violate it, which
is equivalent to redefining the prior on θ1 to be uniform on [0,mini∈1:n yi]. Figure 9 shows the marginal
distributions of the parameters obtained with PMMH and with WABC, with or without the additional
constraint. Overall, the WABC approximations are very close to the posterior, in comparison to the relatively
vague prior distribution on (θ1, θ2). Furthermore, we see that incorporating the constraint helps estimating
θ1, without much effect on the other parameters. Similar results were found for the other two data sets
considered in Shestopaloff and Neal (2014) (not shown).

7.4 Lévy-driven stochastic volatility model

We consider a Lévy-driven stochastic volatility model (e.g. Barndorff-Nielsen and Shephard, 2002), used in
Chopin et al. (2013) as a challenging example of parameter inference in state space models. We demonstrate
how ABC with transport distances can identify some of the parameters in a black-box fashion, and can
be combined with summaries to identify the remaining parameters. The observation yt at time t is the
log-return of a financial asset, assumed Normal with mean µ + βvt and variance vt, where vt is the actual
volatility. Together with the spot volatility zt, the pair (vt, zt) constitutes a latent Markov chain, assumed
to follow a Lévy process. Starting with z0 ∼ Γ(ξ2/ω2, ξ/ω2) (where the second parameter is the rate), and
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an arbitrary v0, the evolution of the process goes as follows:

k ∼ Poisson
(
λξ2/ω2) , c1:k

i.i.d.∼ U(t, t+ 1) , e1:k
i.i.d.∼ Exp

(
ξ/ω2) ,

zt+1 = e−λzt +
k∑
j=1

e−λ(t+1−cj)ej , vt+1 = 1
λ

[zt − zt+1 +
k∑
j=1

ej ]
(11)

The random variables (k, c1:k, e1:k) are generated independently for each time period, and 1 : k is the empty
set when k = 0. The parameters are (µ, β, ξ, ω2, λ). We specify the prior as Normal with mean zero and
variance 2 for µ and β, Exponential with rate 0.2 for ξ and ω2, and Exponential with rate 1 for λ.

We generate synthetic data with µ = 0, β = 0, ξ = 0.5, ω2 = 0.0625, λ = 0.01, which were used also in the
simulation study of Barndorff-Nielsen and Shephard (2002); Chopin et al. (2013), of length n = 10, 000. We
use delay reconstruction with a lag k = 1, and the Hilbert distance Hp of Section 6.2 with p = 1. Given the
length of the time series, the cost of computing the Hilbert distance is much smaller than that of the other
distances discussed in Section 6. The algorithm is run with N = 1, 024 particles until 105 data sets have been
simulated in total. Figure 10 shows the resulting quasi-posterior marginals for (µ, β), (ξ, ω2), and λ. The
parameters (µ, β, ξ, ω2) are accurately identified, from a vague prior to a region close to the data-generating
values. On the other hand, the approximation of λ is barely different from the prior distribution. Indeed,
the parameter λ represents a discount rate which impacts the long-range dependencies of the process, and
is thus not captured by the bivariate marginal distribution of (yt, yt−1).

Hoping to capture long-range dependencies in the series, we define a summary η(y1:n) as the sum of the
first 50 sample autocorrelations among the squared observations. For each of the parameters obtained with
the first run of WABC described above, we compute the summary of the associated synthetic data set. We
plot the summaries against λ in Figure 11a. The dashed line indicates the value of the summary calculated
on the observed data. It appears from the plot that the summaries closest to the observed summary are those
obtained with the smallest values of λ. Therefore, we might be able to learn more about λ by combining the
previous Hilbert distance with a distance between summaries.

Denote by H1(ỹ1:n, z̃1:n) the Hilbert distance between delay reconstructions, and by εh the threshold
obtained after the first run of the algorithm. A new distance between data sets is defined as |η(y1:n)−η(z1:n)|
if H1(ỹ1:n, z̃1:n) < εh, and +∞ otherwise. We then run the SMC sampler of Section 3.3, starting from the
result of the first run, and using the new distance. In this second run, a new threshold is introduced and
adaptively decreased, keeping the first threshold εh fixed. One could also decrease both thresholds together
or alternate between decreasing either. Note that the Hilbert distance and the summaries could have been
combined in other ways, for instance in a weighted average.

We run the algorithm with the new distance for an extra 2 × 105 model simulations. Figures 11b and
11c show the evolution of the WABC posterior distributions of ω2 and λ during the second run, using
the summary. The WABC posteriors concentrate closer to the data-generating values, particularly for λ;
for (µ, β, ξ), the effect is minimal and not shown. The WABC posterior could then be used to initialize a
particle MCMC algorithm (Andrieu et al., 2010) targeting the posterior. The computational budget of 3×105

model simulations, as performed in total by the WABC procedure in this section, would be equivalent to 300
iterations of particle MCMC with 1, 000 particles at each iteration, in terms of number of model transitions.
Therefore, the cost of initializing a particle MCMC algorithm with the proposed ABC approach is likely to
be negligible. The gains could be considerable given the difficulty of initializing particle MCMC algorithms,
mostly due to the large variance of the likelihood estimator for parameters located away from the posterior
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mode. This is for instance illustrated in Figure 2 (c) of Murray et al. (2013).

8 Discussion
Using the Wasserstein distance in approximate Bayesian computation and minimum distance estimation leads
to principled ways of inferring parameters in generative models, by-passing the choice of summaries. The
approaches can also be readily used for deterministic models. We have demonstrated how the proposed ABC
approach identifies high posterior density regions, in settings of multivariate (Section 7.1) and dependent
data (Section 7.3). In the toggle switch model of Section 7.2, we have obtained posterior approximations
similar to those obtained with sophisticated and case-specific summaries. Furthermore, we have shown how
summaries and transport distances can be fruitfully combined in Section 7.4.

We have proposed multiple ways of defining meaningful empirical distributions of time series data, in
order to identify model parameters. The proposed approaches have tuning parameters, such as λ in the
curve matching approach of Section 4.1 or the lag k in delay reconstruction in Section 4.2. The choice
of these parameters would deserve further research, leveraging the literature on Skorokhod distances for λ
(Majumdar and Prabhu, 2015), and dynamical systems for k (Moeckel and Murray, 1997; Stark et al., 2003).
Similar ideas could be explored in the setting of spatial data.

We have discussed some asymptotic properties of the minimum Wasserstein and minimum expected
Wasserstein estimators, establishing existence, measurability and consistency under model misspecification
and certain classes of dependent data, generalizing the results of Bassetti et al. (2006). The asymptotic
distribution of the estimators can be derived in certain special cases, but deserves more research. One could
also study the point estimators associated with the various distances of Section 6.

We have also established some properties of the WABC posterior distribution as the threshold goes to
zero for a fixed number of observations n, and as n goes to infinity with a decreasing sequence εn. Our
results on concentration rates highlight the impact of the order p of the Wasserstein distance, of model
misspecification, and of the dimension of the observation space. These results add to the existing literature
on asymptotic properties of ABC posteriors (Frazier et al., 2016; Li and Fearnhead, 2015). However, little
is known about the ABC posterior for fixed ε. Viewing it as a coarsened posterior (Miller and Dunson,
2015), one can justify the use of the ABC posterior in terms of robustness to model misspecification. On
the other hand, we do not claim that the WABC posterior for a fixed ε yields conservative statements about
the actual posterior. For instance, Figure 5c shows that ABC posteriors can have little overlap with the
actual posterior, for a fixed threshold ε, despite having shown signs of concentration away from the prior
distribution.

As Wasserstein distance calculations scale super-quadratically with the number of observations n, we
have introduced a new distance based on the Hilbert space-filling curve, computable in order n logn, which
can be used to initialize a swapping distance with a cost of order n2. We have derived posterior concentration
results for the ABC posterior distributions using the Hilbert and swapping distances, similarly to Theorem 5.4
obtained for the Wasserstein distance. Avenues of research include weakening the assumptions of these results,
and investigating comparable results for the ABC posterior associated with the dual-Sinkhorn divergence
and the Maximum Mean Discrepancy.
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(a) Posteriors of a1. (b) Posteriors of b1. (c) Posteriors of g1. (d) Posteriors of k1.

(e) Posteriors of a2. (f) Posteriors of b2. (g) Posteriors of g2. (h) Posteriors of k2.

(i) Posteriors of ρ. (j) Posteriors of g2 over last
10 steps.

(k) W1-distance to posterior sample, versus number of
model simulations (log-log scale).

Figure 7: 7a-7i: posterior marginals in the g-and-k example of Section 7.1 (black, obtained via exact MCMC), and
approximations by Wasserstein ABC (blue), for a budget of 2 × 106 model simulations. 7j: WABC posterior of g2
over the last 10 steps of the algorithm, with prior density as horizontal line, and data-generating value as vertical
line. 7k: W1-distance between ABC posterior samples, obtained with various distances, and exact posterior samples
against the number of model simulations (in log-log scale).
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(a) Observations. (b) Posteriors of α1. (c) Posteriors of α2. (d) Posteriors of β1.

(e) Posteriors of β2. (f) Posteriors of µ. (g) Posteriors of σ. (h) Posteriors of γ.

Figure 8: Histogram of observations (8a), and WABC marginal posteriors in the toggle switch model (all others).
Data-generating values are indicated by vertical lines. Different values of ε, automatically obtained over 39 steps of
the SMC sampler of Section 3.3, are indicated by different colored full lines (colors from light red to dark blue as ε
decreases).

(a) Posteriors of θ1. (b) Posteriors of θ2. (c) Posteriors of θ3.

Figure 9: ABC posteriors of parameters in queueing model. Fifty observations were generated with θ1 = 4, θ2 = 7
and θ3 = 0.15, indicated by vertical lines. The actual posterior is obtained by particle marginal Metropolis–Hastings.
The ABC approach is run with the Wasserstein distance between the marginal empirical distributions of synthetic
and observed data. The additional constraint that θ1 has to be less than mini∈1:n yi can be encoded in the prior (“W
+ constraint”).
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(a) Posteriors of (µ, β). (b) Posteriors of (ξ, ω2) (in log-log
scale).

(c) Posteriors of λ (in log scale).

Figure 10: ABC approximations in the Lévy-driven stochastic volatility model, using the Hilbert distance between
delay reconstructions with lag k = 1. The plots show the bivariate marginals of (µ, β) (left), (ξ, ω2) (middle), and the
marginal distributions of λ (right). These are obtained for up to 105 model simulations. Data-generating parameter
values are indicated by full lines.

(a) Summary against λ. (b) Distributions of ω2. (c) Distributions of λ (log-scale).

Figure 11: Left: summary, defined as the sum of the first 50 sample autocorrelations of the squared series, against λ,
computed for the output of the WABC algorithm using the Hilbert distance between delay reconstructions. Middle
and right: approximations of ω2 and λ, from the second run of WABC using the Hilbert distance between delayed
reconstructions combined with the summary. The horizontal axis in the right plot is on the log-scale, illustrating the
significant concentration of the ABC posterior on the data-generating value of λ.
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