Pierre Goloubinoff

Pierre Goloubinoff
University of Lausanne | UNIL · Department of Plant Molecular Biology

PhD

About

145
Publications
24,423
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,558
Citations
Citations since 2016
36 Research Items
4736 Citations
20162017201820192020202120220200400600
20162017201820192020202120220200400600
20162017201820192020202120220200400600
20162017201820192020202120220200400600
Additional affiliations
January 2006 - December 2012
École Polytechnique Fédérale de Lausanne
January 2005 - present
January 2004 - December 2012
University of Lausanne

Publications

Publications (145)
Article
Full-text available
Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluor...
Article
Full-text available
Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth’s history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields...
Article
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+Dna...
Article
Full-text available
The 2021 Nobel prize was awarded for the discovery of the animal thermosensory channel TRPV1. We highlight notable shared features with the higher plant thermosensory channel CNGC2/4. Both channels respond to temperature-induced changes in plasma membrane fluidity, leading to hyperphosphorylation of the HSF1 transcription factor via a specific heat...
Preprint
Full-text available
A detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the detailed characterization of the aggregates, which are typically heterogeneous. To tackle this problem, we designed here a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase core, flanked by stres...
Preprint
Full-text available
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+DnaJ+ATP (...
Article
Full-text available
Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it m...
Article
Full-text available
Significance Across the Tree of Life, life’s phenotypic diversity has been accompanied by a massive expansion of the protein universe. Compared with simple prokaryotes that harbor thousands of proteins, plants and animals harbor hundreds of thousands of proteins that are also longer, multidomain, and comprise a variety of folds and fold combination...
Article
Full-text available
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG...
Article
Full-text available
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesi...
Article
Full-text available
ClpB is a tightly regulated AAA+ disaggregation machine. Each ClpB molecule is composed of a flexibly attached N-terminal domain (NTD), an essential middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains. The NTD is not well-characterized structurally and is commonly considered to serve as a dispensable substra...
Article
Full-text available
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defenses that can keep heat‐labile membranes and proteins functional. A gradual morning pre‐exposure to increasing sub‐damaging temperatures induces heat‐shock proteins (HSPs) that are central to the onset of plant ac...
Preprint
Full-text available
ClpB is an ATP-dependent protein disaggregation machine that is activated on demand by co-chaperones and by aggregates caused by heat shock or mutations. The regulation of ClpB’s function is critical, since its persistent activation is toxic in vivo . Each ClpB molecule is composed of an auxiliary N-terminal domain (NTD), an essential regulatory mi...
Article
Full-text available
Mortality in COVID-19 patients predominantly results from an acute respiratory distress syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the HSP70 chaperone. A natural rise of body temperature during mild fever can naturally accumul...
Preprint
Full-text available
Across the Tree of Life (ToL), the complexity of proteomes varies widely. Our systematic analysis depicts that from the simplest archaea to mammals, the total number of proteins per proteome expanded ~200-fold. Individual proteins also became larger, and multi-domain proteins expanded ~50-fold. Apart from duplication and divergence of existing prot...
Article
In eukaryotes, Hsp110s are unambiguous cognates of the Hsp70 chaperones, in primary sequence, domain organization and structure. Hsp110s function as nucleotide exchange factors (NEFs) for the Hsp70s although their apparent loss of Hsp70‐like chaperone activity, nature of inter‐domain communication and breadth of domain functions, are still puzzling...
Article
Full-text available
Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), prop...
Article
Full-text available
Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain cont...
Preprint
Full-text available
Whereas in eukaryotic cells, the Hsp90s are profusely-studied molecular chaperones controlling protein homeostasis together with Hsp70s, in bacteria, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains unknown. To uncover physiological processes depending on HtpG and DnaK, we performed comparative quantitative proteomic ana...
Article
The "Bioénergétique et Ingénierie des Protéines (BIP)" laboratory, CNRS (France), organized its first French workshop on molecular chaperone proteins and protein folding in November 2017. The goal of this workshop was to gather scientists working in France on chaperone proteins and protein folding. This initiative was a great success with excellent...
Article
Full-text available
During and after protein translation, molecular chaperones require ATP hydrolysis to favor the native folding of their substrates and, under stress, to avoid aggregation and revert misfolding. Why do some chaperones need ATP, and what are the consequences of the energy contributed by the ATPase cycle? Here, we used biochemical assays and physical m...
Article
Full-text available
Photosynthesis is performed by large complexes, composed of subunits encoded by the nuclear and chloroplast genomes. Assembly is assisted by general and target-specific chaperones, but their mode of action is yet unclear. We formerly showed that ZnJ2 is an algal chaperone resembling BSD2 from land plants. In algae, it co-migrates with the rbcL tran...
Article
Full-text available
Cadmium is a highly poisonous metal and a human carcinogen, but the molecular mechanisms underlying its cellular toxicity are not fully understood. Recent findings in yeast cells indicate that cadmium exerts its deleterious effects by inducing widespread misfolding and aggregation of nascent proteins. Here, we discuss this novel mode of toxic heavy...
Article
Full-text available
Cadmium is a highly poisonous metal and is classified as a human carcinogen. While its toxicity is undisputed, the underlying in vivo molecular mechanisms are not fully understood. Here, we demonstrate that cadmium induces aggregation of cytosolic proteins in living yeast cells. Cadmium primarily targets proteins in the process of synthesis or fold...
Preprint
Full-text available
Protein homeostasis, namely the ensemble of cellular mechanisms collectively controlling the activity, stability and conformational states of proteins, depends on energy-consuming processes. De novo protein synthesis requires ATP hydrolysis for peptide bond formation. Controlled degradation by the chaperone-gated proteases requires ATP hydrolysis t...
Article
Full-text available
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ab...
Article
Forceful unfolding by entropic pulling is the general mechanism by which Hsp70 and Hsp110 chaperones control the oligomeric states, structures and activities of cellular proteins.
Article
Full-text available
Studies in young mammals on the molecular effects of food restriction leading to prolong adult life are scares. Here, we used high-throughput quantitative proteomic analysis of whole rat livers to address the molecular basis for growth arrest and the apparent life-prolonging phenotype of the food restriction regimen. Over 1800 common proteins were...
Article
Full-text available
When emerging from the ribosomes, new polypeptides need to fold properly, eventually translocate, and then assemble into stable, yet functionally flexible complexes. During their lifetime, native proteins are often exposed to stresses that can partially unfold and convert them into stably misfolded and aggregated species, which can in turn cause ce...
Article
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and further use ATP to dissoci...
Article
Full-text available
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) a...
Article
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) a...
Article
Full-text available
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 1...
Chapter
Khat (Catha edulis Forsk., Celastraceae) is a flowering perennial shrub with a long history of use and cultivation in East Africa and the Arabian Peninsula. Young khat leaves are traditionally chewed in social gatherings to attain special states of mind, aimed especially at awakeness and enhanced mind focus. Since khat chewing contains amphetamine-...
Article
Full-text available
The role of bacterial Hsp40, DnaJ, is to co-chaperone the binding of misfolded or alternatively folded proteins to bacterial Hsp70, DnaK, which is an ATP-fuelled unfolding chaperone. In addition to its DnaK targeting activity, DnaJ has a weak thiol-reductase activity. In between the substrate-binding domain and the J-domain anchor to DnaK, DnaJ has...
Article
Full-text available
The role of bacterial Hsp40, DnaJ, is to co-chaperone the binding of misfolded or alternatively folded proteins to bacterial Hsp70, DnaK, which is an ATP-fuelled unfolding chaperone. In addition to its DnaK targeting activity, DnaJ has a weak thiol-reductase activity. In between the substrate-binding domain and the J-domain anchor to DnaK, DnaJ has...
Article
Full-text available
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of S...
Chapter
Anfinsen demonstrated that under optimal conditions, artificially unfolded proteins can spontaneously refold into their native conformation without requiring external assistance from other molecules. This seminal finding implied that the amino acid sequence of a polypeptide suffices to determine its native biologically active conformation (Anfinsen...
Article
Full-text available
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client pr...
Article
Full-text available
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable...
Article
Stress-denatured or de novo synthesized and translocated unfolded polypeptides can spontaneously reach their native state without assistance of other proteins. Yet, the pathway to native folding is complex, stress-sensitive and prone to errors. Toxic misfolded and aggregated conformers may accumulate in cells and lead to degenerative diseases. Memb...
Article
Full-text available
Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca2+ channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) th...
Article
Full-text available
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the euk...
Article
Full-text available
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock fa...
Article
Full-text available
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chape...
Article
Full-text available
Several metals and metalloids profoundly affect biological systems, but their impact on the proteome and mechanisms of toxicity are not fully understood. Here, we demonstrate that arsenite causes protein aggregation in Saccharomyces cerevisiae. Various molecular chaperones were found to be associated with arsenite-induced aggregates indicating that...
Article
Full-text available
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel...
Article
Full-text available
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing e...
Article
In plants, the heat stress response (HSR) is highly conserved and involves multiple pathways, regulatory networks and cellular compartments. At least four putative sensors have recently been proposed to trigger the HSR. They include a plasma membrane channel that initiates an inward calcium flux, a histone sensor in the nucleus, and two unfolded pr...
Article
Full-text available
The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exc...
Article
Full-text available
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond...
Article
During mild heat-stress, a native thermolabile polypeptide may partially unfold and transiently expose water-avoiding hydrophobic segments that readily tend to associate into a stable misfolded species, rich in intra-molecular non-native beta-sheet structures. When the concentration of the heat-unfolded intermediates is elevated, the exposed hydrop...
Article
Full-text available
Aggregation-prone polyglutamine (polyQ) expansion proteins cause several neurodegenerative disorders, including Huntington disease. The pharmacological activation of cellular stress responses could be a new strategy to combat protein conformational diseases. Hydroxylamine derivatives act as co-inducers of heat-shock proteins (HSPs) and can enhance...
Chapter
Full-text available
Heavy metal ions such as Cd2+, Hg2+ and Pb2+ as well as metalloid arsenic(III) species very efficiently inhibit the refolding of chemically denatured proteins (IC50 values in nanomolar range). In their presence, the proteins misfold and aggregate. Denatured proteins appear to be much more susceptible to form high-affinity pluridentate complexes wit...
Article
Full-text available
Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder marked by the loss of dopaminergic neurons (in particular in the substantia nigra) causing severe impairment of movement coordination and locomotion, associated with the accumulation of aggregated α-synuclein (α-Syn) into proteinaceous inclusions named Lewy bodies. Various...
Article
Full-text available
α-Synuclein aggregation and accumulation in Lewy bodies are implicated in progressive loss of dopaminergic neurons in Parkinson disease and related disorders. In neurons, the Hsp70s and their Hsp40-like J-domain co-chaperones are the only known components of chaperone network that can use ATP to convert cytotoxic protein aggregates into harmless na...