Pierre-Elouan Réthoré

Pierre-Elouan Réthoré
Technical University of Denmark | DTU · Department of Wind Energy

PhD, MSc

About

102
Publications
57,583
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,566
Citations

Publications

Publications (102)
Article
Full-text available
Leading-edge erosion (LEE) can significantly impact the aerodynamic performance of wind turbines and thereby the overall efficiency of a wind farm. Typically, erosion is modeled for individual turbines where aerodynamic effects only impact the energy production through degraded power curves. For wind farms, aerodynamic deficiency has the potential...
Article
Full-text available
Energy losses due to wind farm clustering and wind farm interaction are rarely well represented in the wind farm design process because of the lack of fast models that can accurately account for neighboring wind farm wakes. A recently developed solution is the actuator wind farm (AWF) model, which is a Reynolds-averaged Navier-stokes (RANS) based w...
Article
Full-text available
Artificial Neural Networks (ANNs) are being applied as a faster alternative to Computational Fluid Dynamics (CFD) for wind turbine engineering wake models. Unfortunately, ANNs can fail to generalize if the data is insufficient. Physics-Informed Neural Networks (PINNs) can improve convergence while lowering the required data amounts. This paper inve...
Article
Full-text available
Leading edge erosion on wind turbine blades can reduce aerodynamic efficiency and cause increased maintenance costs, potentially impacting the overall economic viability. Erosion-safe operation is the concept of reducing the blade tip speed during periods of heavy rain, thereby significantly reducing the erosion development and progression. This st...
Article
Full-text available
Modern wind turbines are large and slender dynamical structures with a fatigue loading profile of complex nature. The guarantee of their structural integrity is paramount for materializing cost efficient and more reliable wind energy. The measurement of the global dynamic response and loads of wind turbines is fundamental for achieving this goal. H...
Article
Full-text available
Wind farm layout optimization is usually subjected to boundary constraints of irregular shapes. The analytical expressions of these shapes are rarely available, and, consequently, it can be challenging to include them in the mathematical formulation of the problem. This paper presents a new methodology to integrate multiple disconnected and irregul...
Article
Full-text available
As the use of wind energy expands worldwide, the wind energy industry is considering building larger clusters of turbines. Existing computational methods to design and optimize the layout of wind farms are well suited for medium-sized plants; however, these approaches need to be improved to ensure efficient scaling to large wind farms. This work in...
Preprint
Full-text available
Leading edge erosion (LEE) can significantly impact the aerodynamic performance of wind turbines and thereby the overall efficiency of a wind farm. Typically, erosion is modeled for individual turbines where aerodynamic effects are only impacting the energy production through degraded power curves. For wind farms, the aerodynamic deficiency has the...
Article
Full-text available
It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this optimization, atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured data, which are propagated through engineering wake models to estimate the annual energy production (AEP). Th...
Preprint
Full-text available
As the use of wind energy expands worldwide, the wind energy industry is considering building larger clusters of turbines. Existing computational methods to design and optimize the layout of wind farms are well suited for medium-sized plants; however, these approaches need to be improved to ensure efficient scaling to large wind farms. This work in...
Article
Full-text available
A new wake surrogate model based on Reynolds-averaged Navier-Stokes (RANS) single rotor simulations is presented. The model relies on a series of three-dimensional pre-calculated deficit and added turbulence intensity flow fields, stored in a look-up table (LUT) as a function of the thrust coefficient and the ambient turbulence intensity. For any c...
Article
Full-text available
Inside wind farms, wake effects are the primary source of turbine interactions, and as such, they constitute one of the most important aspects of wind farm operations. The two most widespread methods for calculating the wind farm wake flow are computational fluid dynamics (CFD) methods and engineering models. Both methods have drawbacks; CFD method...
Article
Full-text available
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses; hence, there is a need for numerical models that can properly simulate wind farm interaction. This work proposes a Reynolds-averaged Navier–Stokes (RANS) method to efficiently simulate the effect of neighboring wind farms on...
Article
Full-text available
This article presents a method for performing noise-constrained optimization of wind farms by changing the operational modes of the individual wind turbines. The optimization is performed by use of the TopFarm optimization framework and wind farm flow modelling in PyWake as well as two sound propagation models: the ISO 9613-2 model and the paraboli...
Preprint
Full-text available
Wind farm layout optimization is usually subjected to boundary constraints of irregular shapes. The analytical expressions of these shapes are rarely available, and consequently, it can be challenging to include them in the mathematical formulation of the problem. This paper presents a new methodology to integrate multiple disconnected and irregula...
Preprint
Full-text available
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses; hence, there is a need for numerical models that can properly simulate wind farm interaction. This work proposes a Reynolds-averaged Navier-Stokes (RANS) method to efficiently simulate the effect of neighboring wind farms on...
Preprint
Full-text available
It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this optimization, atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured data, and these conditions are propagated through engineering wake models to estimate the annual energy produ...
Preprint
Full-text available
This article presents a method for performing noise constrained optimization of wind farms by changing the operational modes of the individual wind turbines. The optimization is performed by use of the TopFarm framework and the PyWake wind farm modeling as well as two sound propagation models: the ISO 9613-2 model and the Parabolic Equation model,...
Article
Full-text available
Optimization of the Levelized Cost of Energy (LCoE) in wind farms helps ensure profitability and competitiveness of the project. Recent work has explored driving down LCoE by allowing multiple wind turbines in a single wind farm - with different hub heights, rotor diameters, and rated powers. In this work, we performed optimization of the Lillgrund...
Article
Full-text available
Numerical wind resource modelling across scales from the mesoscale to the turbine scale is of increasing interest due to the expansion of offshore wind energy. Offshore wind farm wakes can last several tens of kilometres downstream and thus affect the wind resources of a large area. So far, scale-specific models have been developed but it remains u...
Article
Full-text available
Wind farm Annual Energy Production (AEP) calculations are required to design energy efficient wind farm layouts. We investigate methods that can reduce the computational effort of AEP calculations using Reynolds-averaged Navier-Stokes simulations of an idealized atmospheric wind farm setup. In addition, we introduce a generalized wind turbine model...
Preprint
Full-text available
Numerical wind resource modelling across scales from mesoscale to turbine scale is of increasing interest due to the expansion of offshore wind energy. Offshore, wind farm wakes can last several tens kilometres downstream and thus affect the wind resources of a large area. So far, scale-specific models have been developed and it remains unclear, ho...
Conference Paper
Full-text available
Minimizing the cost of energy of a wind farm is a difficult task, which involves reducing the wake effects while satisfying several constraints. Due to its multidisciplinary nature, this problem is usually solved through numerical optimisers. TOPFARM is one of these tools, and in this paper, we have added to it a constraint on the fatigue loads. Th...
Article
Full-text available
A simple wind-speed-independent actuator disk control method is proposed that can be applied to speed up annual energy production calculations of wind farms using Reynolds-averaged Navier–Stokes simulations. The new control method allows the user to simulate the effect of different wind speeds in one simulation by scaling a calibrated thrust coeffi...
Article
Full-text available
A simple wind speed independent actuator disk control method is proposed that can be applied to speed up annual energy production calculations of wind farms using Reynolds-averaged Navier–Stokes simulations. The new control method allows the user to simulate the effect of different wind speeds in one simulation by scaling a calibrated thrust coeffi...
Article
Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric conditions. The variability caused by different turbulent inflow fields are captured by creating independent surrogates for the mean and standard devi...
Article
Full-text available
A research agenda is described to further encourage the application of Multidisciplinary Design Analysis and Optimisation (MDAO) methodologies to wind energy systems. As a group of researchers closely collaborating within the International Energy Agency (IEA) Wind Task 37 for Wind Energy Systems Engineering: Integrated Research, Design and Developm...
Article
Full-text available
The article presents an approach to combine wake models of multiple levels of fidelity, which is capable of giving accurate predictions with only a small number of high fidelity samples. The G. C. Larsen and k-ε-fP based RANS models are adopted as ensemble members of low fidelity and high fidelity models, respectively. Both the univariate and multi...
Article
Full-text available
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear co...
Article
The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant c...
Article
Full-text available
Wind turbine wakes are one of the most important aspects in wind power meteorology because they decrease the power production and increase the loading of downstream wind turbines. Therefore, there is a continuous need to find a ‘good’ wake model to properly plan wind power plant-level control strategies, predict the performance and understand the f...
Article
Full-text available
The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k–ϵ turbulence model. One of the main modeling differences between the two solvers is the wall-function approach. T...
Article
Full-text available
The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-Averaged Navier–Stokes k–ε turbulence model. One of the main modeling differences between the two solvers is the wall-function approach. T...
Article
Vortex generators (VGs) are used increasingly by the wind turbine industry as flow control devices to improve rotor blade performance. According to experimental observations, the vortices generated by VGs have previously been observed to be self-similar for both the axial (uz) and azimuthal (uθ) velocity components. Furthermore, the measured vortic...
Article
This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when solving the finite volume discretized Navier-Stokes equations with discrete body forces in a collocated grid arrangement. The proposed method is a modification of the Rhie-Chow algorithm where the force in a cell is spread on neighboring cells by applyi...
Article
Full-text available
A Reynolds-averaged Navier-Stokes code is used to simulate the interaction of two neighboring wind farms. The influence of the Coriolis force is investigated by modeling the atmospheric surface/boundary layer with three different methodologies. The results show that the Coriolis force is negligible for a single wind turbine, small for a single wind...
Article
Full-text available
SCADA data, recorded on the downstream wind farm, has been used to identify flow cases with visible clustering effects. The inflow condition is derived from a partly undisturbed wind turbine, due to lack of mast measurements. The SCADA data analysis concludes that centre of the deficit for the downstream wind farm with disturbed inflow has a distin...
Article
Full-text available
Wind farm flow models have advanced considerably with the use of large eddy simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main limitation of these techniques is their high computational time requirements; which makes their use for wind farm annual energy production (AEP) predictions expensive. The objective of the p...
Article
Full-text available
We present a methodology to process wind turbine wake simulations, which are closely related to the nature of wake observations and the processing of these to generate the so-called wake cases. The method involves averaging a large number of wake simulations over a range of wind directions and partly accounts for the uncertainty in the wind directi...
Article
Full-text available
A new integrated design tool for optimization of offshore wind farm clusters is under development in the European Energy Research Alliance – Design Tools for Offshore wind farm Cluster project (EERA DTOC). The project builds on already established design tools from the project partners and possibly third-party models. Wake models have been benchmar...
Conference Paper
A wind farm layout optimization framework based on a multi-fidelity model approach is applied to the offshore test case of Middelgrunden, Denmark. While aesthetic considerations have heavily influenced the famous curved design of Middelgrunden wind farm, this work focuses on testing a method that optimizes the profit of offshore wind farms based on...
Article
Full-text available
This article presents a review of the state of the art of the Wind Farm Design and Optimization (WFDO) problem. The WFDO problem refers to a set of advanced planning actions needed to extremize the performance of wind farms, which may be composed of a few individual Wind Turbines (WTs) up to thousands of WTs. The WFDO problem has been investigated...
Article
The newly developed k-ε-fP eddy viscosity model is applied to double wind turbine wake configurations in a neutral atmospheric boundary layer, using a Reynolds-Averaged Navier–Stokes solver. The wind turbines are represented by actuator disks. A proposed variable actuator disk force method is employed to estimate the power production of the interac...
Conference Paper
We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range of westerly wind directions observed at the wind farm. S...
Article
Full-text available
The recently developed k-ϵ-fP eddy-viscosity model is applied to one on-shore and two off-shore wind farms. The results are compared with power measurements and results of the standard k-ϵ eddy-viscosity model. In addition, the wind direction uncertainty of the measurements is used to correct the model results with a Gaussian filter. The standard k...
Article
Full-text available
This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT). The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework cons...
Article
Full-text available
Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post-processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 m...
Article
An improved k- ϵ turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind turbine wake. The modified k- ϵ model is compared w...
Article
Wind turbine wake can be studied in computational fluid dynamics with the use of permeable body forces (e.g. actuator disc, line and surface). This paper presents a general flexible method to redistribute wind turbine blade forces as permeable body forces in a computational domain. The method can take any kind of shape discretization, determine the...
Article
The wake of the 5MW reference wind turbine designed by the National Renewable Energy Laboratory (NREL) is simulated using computational fluid dynamics with a fully resolved rotor geometry, an actuator line method and an actuator disc method, respectively. Simulations are carried out prescribing both uniform and turbulent inflows, and the wake prope...
Article
In the present paper, Reynolds-averaged Navier–Stokes predictions of the flow field around the MEXICO rotor in yawed conditions are compared with measurements. The paper illustrates the high degree of qualitative and quantitative agreement that can be obtained for this highly unsteady flow situation, by comparing measured and computed velocity prof...
Article
Full-text available
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D flow model (CFD) for a number of sites in very complex...
Article
Full-text available
The linear k − ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results compared to the linear model, however, high turbulen...
Article
Full-text available
TOPFARM takes the investors perspective and performs an economical optimization of a wind farm layout throughout the lifetime of the wind farm. The economical optimization approach of wind farm layout differs significantly from the traditional power output optimization. The major differences are highlighted, and the TOPFARM platform is described in...
Article
For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat transport, are mostly ignored. In order to decrease the...
Conference Paper
Full-text available
Designing offshore wind farms next to existing or planned wind farm clusters has recently become a common practice in the North Sea. These types of projects face unprecedented challenges in term of wind energy siting. The currently ongoing European project FP7 EERA-DTOC (Design Tool for Offshore wind farm Clusters) is aiming at providing a new type...
Article
Full-text available
The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information a...
Chapter
The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [1] to design slats for 0:1 > r=R > 0:3 for the DTU 10 MW reference rotor [2]. For the slatted c...
Article
In most of the present yield estimation models the inflow to offshore wind farm clusters is predicted to be uniform and exactly the same as the free, undisturbed wind far upstream from turbine locations (for winds coming from the sea). However, it has been observed that for certain wind directions the average wind speeds measured at turbine locatio...
Article
3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine is compared to wind tunnel measurements on the same...
Article
This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades' action on the wind (actuator disc/line), to model forests and to model turbulent inflows. Many CFD codes are designed with collocated var...