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Abstract 1 

Inhalation exposures to ozone commonly encountered in photochemical smog, cause airway 2 

injury and inflammation.  Elevated ambient ozone concentrations have been epidemiologically 3 

associated with nasal airway activation of neutrophils and eosinophils.  In the present study, we 4 

elucidated the temporal onset and lymphoid cell dependency of eosinophilic rhinitis and 5 

associated epithelial changes in mice repeatedly exposed to ozone.  Lymphoid-cell-sufficient, 6 

C57BL/6 mice were exposed to 0 or 0.5 ppm ozone for 1, 2, 4, or 9 consecutive weekdays (4 7 

h/day).  Lymphoid-cell-deficient, Rag2(-/-)Il2rg(-/-) mice were similarly exposed for 9 8 

weekdays.  Nasal tissues were taken at 2 h or 24 h post-exposure for morphometric and gene 9 

expression analyses.  C57BL/6 mice exposed to ozone for 1 day had acute neutrophilic rhinitis 10 

with airway epithelial necrosis and overexpression of mucosal Ccl2 (MCP-1), Ccl11 (eotaxin), 11 

Cxcl1 (KC), Cxcl2 (MIP-2), Hmox1, Il1b, Il5, Il6, Il13 and Tnf mRNA.  In contrast, 9-day-ozone 12 

exposure elicited type 2 immune responses in C57BL/6 mice with mucosal mRNA overexpression 13 

of Arg1, Ccl8 (MCP-2), Ccl11, Chil4 (Ym2), Clca1 (Gob5), Il5, Il10, and Il13, increased density 14 

of mucosal eosinophils, and nasal epithelial remodeling (e.g., hyperplasia/hypertrophy, mucous 15 

cell metaplasia, hyalinosis, and increased YM1/YM2 proteins).  Rag2(-/-)Il2rg(-/-) mice exposed 16 

to ozone for 9 days, however, had no nasal pathology or overexpression of transcripts related to 17 

type 2 immunity.  These results provide a plausible paradigm for the activation of eosinophilic 18 

inflammation and type 2 immunity found in the nasal airways of nonatopic individuals subjected 19 

to episodic exposures to high ambient ozone. 20 

Key Words: Ozone, rhinitis, type 2 immunity, mice  21 
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Introduction 1 

Ozone (O3) is a common secondary air pollutant that is formed in the troposphere through the 2 

photochemical interaction of nitrogen oxides, volatile organic compounds, and sunlight. 3 

Exposures to elevated ambient concentrations of this gaseous oxidant pollutant are associated 4 

with increases in both human morbidity and mortality (1, 2), respiratory health effects that 5 

include impairment of pulmonary function (3, 4) and exacerbations of chronic respiratory 6 

diseases, such as asthma and allergic rhinitis (5, 6).  Lim et al. (7) have estimated that 7 

approximately 2.5 million disability-adjusted life years were attributable to ambient ozone 8 

exposure alone in 2010 worldwide.  Unfortunately with predicted future climate changes, 9 

ambient ozone concentrations will likely increase rather than decline, resulting in more 10 

exposure-related health effects (8, 9). 11 

 12 

High levels of ozone also cause airway epithelial injury and inflammation in the upper and lower 13 

respiratory tract of laboratory animals (10-14) and human subjects (15-20).  The magnitude of 14 

ozone-induced airway epithelial injury (e.g., cell necrosis and loss of airway cilia) and acute 15 

inflammation (e.g., influx of neutrophils) are exposure- (concentration, duration, frequency) and 16 

species-dependent.  For example, it takes approximately 4 to 5 times the concentration of ozone 17 

to induce pulmonary inflammation in rodents that is equivalent to that documented in exercising 18 

human subjects under similar controlled exposure conditions (21).  19 

 20 

Long-term ozone exposures cause marked remodeling of the airway epithelium lining nasal and 21 

pulmonary airways in rats (22-24) and nonhuman primates (10, 11).  Remodeling of nasal airway 22 

epithelium is characterized by hyperplasia/hypertrophy and mucous cell metaplasia, and is most 23 
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severe in the proximal portions of the nasal passages.  At these intranasal locations, the airways 1 

are normally lined by pseudostratified epithelium that contains sparse numbers of ciliated cells 2 

and goblet cells, and is principally composed of non-ciliated, cuboidal and basal cells (i.e., nasal 3 

transitional epithelium) (25).   4 

 5 

Rapidly after ozone-induced injury of nasal epithelium, there is an acute influx of neutrophils in 6 

the nasal mucosa of rats (14, 26), nonhuman primates (27, 28), and human subjects (19, 29).  7 

Elevated levels of neutrophil chemotactic factors, such as chemokine (C-X-C motif) ligand 8 

(CXCL) 8 (alternatively known as IL-8) in humans (30) and CXCL2 (also known as macrophage 9 

inflammatory protein 2 or MIP-2) in mice (31) are also measured in airway lining fluid after 10 

acute ozone exposures.  On the other hand, the nasal inflammatory cell and cytokine responses to 11 

more long-term exposures (e.g., repeated daily exposures for weeks or months) have not been 12 

thoroughly characterized.  Interestingly, epidemiological studies have reported associations of 13 

elevated ambient ozone concentrations with increases in eosinophil-derived proteins in nasal 14 

lavage or urine of atopic and nonatopic children, supporting the hypothesis that elevated ambient 15 

ozone exposures may be directly associated with eosinophilic inflammation in the airways (32-16 

35).   17 

 18 

To further elucidate granulocyte responses to repeated daily exposures to ozone, we designed the 19 

present study to examine the nasal airways of mice that received daily ozone exposures for 1, 2, 20 

4, or 9 consecutive weekdays.  We report the quantitative pathology that occurs in nasal airways 21 

with increasing daily exposures to ozone, along with exposure-related mRNA expression 22 

changes in nasal mucosa (Study 1).  We found that mice repeatedly exposed to ozone develop 23 
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type 2 immune responses in their nasal airways without any previous or concurrent inhalation 1 

exposures to an aeroallergen.  Based on our initial findings, we further explored the role of 2 

lymphoid cells in the development of eosinophilic rhinitis and nasal epithelial remodeling (Study 3 

2).  We further found that the nasal lesions caused by 9 days of ozone exposure were lymphoid 4 

cell dependent. 5 

 6 

Materials and Methods 7 

Animals.  Male C57BL/6 mice (6–8 weeks of age; 12 mice/group; Charles River Laboratories, 8 

Portage, MI) were used to determine the development of ozone-induced rhinitis over 9 days of 9 

exposure (Study 1).  Male C57BL/6 and Rag2(-/-)Il2rg(-/-) mice (8 weeks of age; 12 mice/group; 10 

Taconic, Hudson, NY) were used to determine the lymphoid cell dependency of ozone-induced 11 

nasal lesions after 9 days of exposure (Study 2).   12 

 13 

Inhalation Exposures.  After an acclimatization period for one week, mice were exposed to 14 

filtered air (air controls) or 0.5 ppm ozone in the whole-body ozone chambers for 1, 2, 4 or 9 15 

consecutive weekdays (4 h/day, 5 days/week, n = 12/group).  Ozone was generated with an 16 

OREC Model O3VI-O ozonizer (Ozone Research and Equipment Corp., Phoenix, AZ).  The 17 

chamber ozone concentration was monitored throughout the exposure with Dasibi 1003 AH 18 

ozone monitors (Dasibi Environment Corp., Glendale, CA).   19 

 20 

Histopathology.  Heads from mice designated for histopathology (n = 6/group) were collected 2 21 

h or 24 h after the single exposure or 24 h after the end of exposure.  After fixation and 22 

decalcification, the nasal cavity was sectioned at T1–T4 (Figure E1) (25).  Paraffin sections were 23 

stained with Alcian Blue (pH 2.5)/Periodic Acid Schiff (AB/PAS) as well as hematoxylin and 24 
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eosin (H&E).  Sections were immunostained with antibodies specific for major basic protein 1 

(MBP) (clone MT-14.7, Mayo Clinic, Scottsdale, AZ) to identify eosinophils, Ly-6B.2 2 

alloantigen (clone 7/4, AbD Serotec, Raleigh, NC) to identify neutrophils, and chitinase-like 3 3 

(CHIL3 or YM1)/chitinase-like 4 (CHIL4 or YM2) (kindly provided from Dr. Shioko Kimura of 4 

National Cancer Institute, Bethesda, MD) (36).   5 

 6 

Nasal Morphometry.  Tissue sections were digitized with a slide scanner (VS110, Olympus 7 

America, Center Valley, PA).  The nasal mucosa lining the lateral wall in T1 was evaluated via 8 

morphometric methods using the newCAST software (VisioPharm, Hoersholm, Denmark).  9 

Morphometric methods were used to measure the density of neutrophils and eosinophils in the 10 

nasal mucosa, thickness and epithelial cell density of nasal airway epithelium, and intraepithelial 11 

density of mucosubstances and YM1/YM2 proteins. 12 

 13 

Quantitative Real-time Polymerase Chain Reaction (RT-PCR).  The nasal cavities from mice 14 

designated for gene expression analysis (n = 6/group) were immersed in RNAlater 15 

(SigmaAldrich, St.Louis, MO) at the time of necropsy and stored in the solution at -20ºC until 16 

further processing.  Nasal mucosa lining the nasoturbinates, maxilloturbinates, and lateral walls 17 

from the proximal aspects between T1 and T2 were excised.  Total RNA isolation and cDNA 18 

synthesis were performed as described previously (37).  Quantitative RT-PCR was performed 19 

using ABI PRISM 7900 HT Sequence Detection using Taqman Gene Expression Assay reagents 20 

(Applied Biosystems, Foster City, CA).  The data were relatively quantified using the ∆∆CT 21 

method normalized to Rn18s, Gapdh, and Actb.   22 

 23 
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Statistical Analysis.  A Grubbs outlier test was performed on morphometric data.  Two group 1 

comparisons were performed by a Student's or Welch's t-test.  Multiple comparisons were 2 

performed using a one-way analysis of variance (ANOVA) followed by a Dunnett’s test, or a 3 

one-way ANOVA on ranks followed by a Dunn’s test.  Significance was assigned to p values ≤ 4 

0.05.  5 

 6 

Results 7 

Study 1. Nasal Inflammatory and Epithelial Lesions over 9 Days of Ozone Exposure. 8 

Mice exposed to ozone had nasal histopathology that was restricted to the mucosa lining the 9 

lateral meatus in the proximal portion of each nasal passage (T1 section; Figure E1).  The 10 

morphologic character of ozone-induced lesions changed over the course of the 9 days of 11 

exposure (Figures 1 and 2).  Two h after a single exposure to ozone, there was a strong influx of 12 

neutrophils in the lamina propria of the nasal mucosa (Figure 1).  There were focal areas of 13 

vacuolar degeneration, necrosis and exfoliation of predominantly widely scattered ciliated cells 14 

in the nasal transitional epithelium lining the proximal lateral wall and lateral surfaces of the 15 

naso- and maxillo-turbinates.  16 

 17 

By 24 h after the single day of ozone exposure, neutrophilic influx had attenuated along with the 18 

degenerative and necrotizing epithelial lesions.  After 2 and 4 days of ozone exposure, the 19 

neutrophilic infiltration had waned considerably with the mucosal density of neutrophils being 20 

statistically similar to that of air control mice (Figure 1).  The nasal transitional epithelium of 21 

mice exposed to ozone for 2 or 4 days contained few, if any, degenerating or necrotic epithelial 22 

cells and was characterized by a thin, more basophilic, reparative epithelium (Figure 1). 23 

 24 
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After 9 days exposure to ozone, mice had a marked inflammatory cell influx composed 1 

predominantly of eosinophils (Figure 1).  Approximately 6% of the nasal mucosa lining the 2 

lateral wall in 9-day ozone exposed mice was infiltrated with eosinophils, compared to less than 3 

1 % in air control (Figure 1).  With this longer ozone exposure, the nasal epithelium was also 4 

thicker (Figure 1) due to hyperplasia and hypertrophy of epithelial cells (conspicuously more and 5 

larger apical cells, as well as more basal cells).  Eosinophilic, hyaline globules were also 6 

conspicuous in the cytoplasm of some of the nonciliated cells (i.e., epithelial hyalinosis). 7 

 8 

Few to no AB/PAS-positive mucous cells were present in mice exposed to filtered air or ozone 9 

for only 1, 2 or 4 days (Figure 2).  Thickened nasal epithelium in mice exposed to ozone for 9 10 

days contained increased numbers of AB/PAS-stained mucous cells (i.e., mucous cell 11 

metaplasia) with a significant increase in the density of intraepithelial mucosubstances, as 12 

compared to air control (Figure 2).  13 

 14 

YM1/YM2 proteins in the nasal epithelium of air control mice were minimal and limited to the 15 

apical surface of ciliated cells (Figure 2).  In contrast, there was marked YM1/YM2 proteins 16 

throughout the hyperplastic/hypertrophic nasal transitional epithelium of 9-day ozone exposed 17 

mice (Figure 2).  YM1/YM2 proteins were cytoplasmically located in both apical and basal 18 

epithelial cells (ciliated and nonciliated) and larger amounts were associated with the hyaline 19 

globules.  Morphometrically, there was markedly more intraepithelial YM1/YM2 in 9-day ozone 20 

exposed mice compared to air control (Figure 2). 21 

 22 

Study 1. Ozone-induced Changes in Nasal mRNA Expression over 9 Days of Exposure. 23 
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Fold increases of nasal mucosal mRNA in ozone-exposed mice relative to air-exposed mice 1 

changed dramatically with increasing days of ozone exposure (Figure 3 and Table E1).  Two h 2 

after ozone exposure there were statistically significant increases in mRNA expression of 3 

chemokine (C-C motif) ligand 2 (Ccl2), Cxcl1, Cxcl2, heme oxygenase 1 (Hmox1), Il1b, Il6, and 4 

tumor necrosis factor (Tnf).  In addition, Il1b and Cxcl2 mRNA was overexpressed 24 h after 1 5 

day exposure of ozone and 24 h after 1 day and 2 days exposure of ozone, respectively. 6 

 7 

Over-expression of these acute inflammatory transcripts was, however, lost with repeated ozone 8 

exposures.   9 

In contrast, 9 days of exposure to ozone caused a marked overexpression of another cluster of 10 

transcripts including arginase 1 (Arg1), Ccl8, Ccl11, Chil4, chloride channel calcium activated 1 11 

(Clca1), Il5, Il10, and Il13, respectively.  Significant overexpression, but at lower relative fold 12 

increases of mRNA, was also found 24 h after 2 and 4 days of exposure for Arg1 and Ccl8, and 13 

1, 2, and 4 days of exposure for Chil4 and Clca1.  Interestingly, we found significant mRNA 14 

overexpression for Il5 and Il13 at all examined time points after exposure (i.e., 2 and 24 h after 1 15 

day of exposure and 24 h after 1, 2 and 4 days of exposure).  A significant overexpression of 16 

mucin 5, subtypes A and C, tracheobronchial/gastric (Muc5ac) transcript was also detected 24 h 17 

after 1 day of ozone exposure. 18 

 19 

Study 2. No Ozone-induced Nasal Lesions in Lymphoid Cell-deficient Mice after 9 Days of 20 

Exposure. 21 

We further explored the role of lymphoid cells in the pathogenesis of ozone-induced eosinophilic 22 

rhinitis and nasal epithelial remodelling in C57BL/6 and Rag2(-/-)Il2rg(-/-) mice after 9 days of 23 
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ozone exposure.  The nasal lesions in C57BL/6 mice exposed to ozone for 9 days were 1 

comparable to those in Study 1 (Figures 1 and 4).  These mice also had significantly greater total 2 

epithelial cell densities (i.e., epithelial nuclear profiles per length of basal lamina) as compared to 3 

their respective air-exposed control mice.  In contrast, ozone-exposed Rag2(-/-)Il2rg(-/-) mice 4 

had no nasal inflammatory or epithelial lesions (Figure 4). 5 

 6 

Study 2: No Ozone-induced Changes in Nasal mRNA Expression of Lymphoid Cell-deficient 7 

Mice after 9 Days of Exposure. 8 

Marked overexpression of these transcripts related to tissue recruitment and persistence of 9 

eosinophils (Ccl11, Il5), mucous cell metaplasia (Il13, Muc5ac) and mucus hypersecretion 10 

(Clca1) were found in the nasal mucosa of the C57BL/6 mice after 9 days of ozone exposure 11 

(Figure 5).  Conversely, no relative fold increases in these transcripts were found in the Rag2(-/-12 

)Il2rg(-/-) mice exposed to ozone.  Likewise, relative fold increases of mRNA for Arg1, Ccl8, 13 

Chil4, Il10, and Muc5b were present in the nasal mucosa of ozone-exposed C57BL/6 mice, but 14 

not in ozone-exposed Rag2(-/-)Il2rg(-/-) mice (Table E2). 15 

 16 

Discussion 17 

The principal focus of the present study was to better understand the inflammatory cell and 18 

cytokine responses to repeated exposures to ozone in the nasal airways of mice.  In this regard, 19 

two novel findings were uncovered.  The first finding was that ozone-induced nasal 20 

inflammation switches from a predominantly neutrophilic to an eosinophilic rhinitis with 21 

increasing days of exposure.  The onset of eosinophilic rhinitis after 9 days of ozone exposure 22 

was associated with epithelial remodeling that was characterized by hyperplasia/hypertrophy, 23 
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mucous cell metaplasia, hyalinosis and cytoplasmic expression of YM1/YM2.  These later 1 

inflammatory and epithelial responses to continued daily exposure were preceded by, or 2 

concomitant with, an overexpression of type 2 cytokine mRNA (e.g., Il5, Il13) and other 3 

transcripts associated with airway mucus hypersecretion and mucous cell metaplasia (i.e., Clca1, 4 

Muc5ac), and YM2 protein production (i.e., Chil4).  Our second major finding was that both 5 

nasal inflammatory and epithelial lesions after 9 days of ozone exposure were lymphoid cell 6 

dependent.   7 

 8 

Eosinophilic rhinitis is more commonly associated with nasal allergy that affects 15–30% of 9 

patients in the United States (38).  Allergic rhinitis is initiated by IgE-mediated reactions to 10 

inhaled allergens (aeroallergens), like house dust mite antigen, and has a type 2 cytokine profile 11 

(39).  Though ozone is not considered an aeroallergen, exposure to this irritating gaseous air 12 

pollutant has been reported to exacerbate or trigger pre-existing allergic airway diseases such as 13 

allergic rhinitis and asthma in laboratory animals (40-42) and humans (43, 44).  In the current 14 

study, we similarly found that ozone-exposed mice, without pre-existing allergic airway disease, 15 

develop eosinophilic inflammation in the nasal airways after repeated daily exposure.  This 16 

provides for the first time an experimental animal model to further elucidate the underlying 17 

mechanisms and potential therapeutic interventions for ozone-induced eosinophil airway 18 

inflammation in humans.   19 

 20 

Recent studies have suggested new roles for eosinophils in both health and disease, which 21 

include a modulating role in tissue remodeling and in the resolution of acute neutrophilic 22 

inflammation (45).  For example, Jacobsen et al. (46), by using eosinophil-deficient mice, have 23 
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shown that eosinophils are instrumental in blocking allergen-induced recruitment and 1 

accumulation of airway neutrophils.  They also found that with eosinophil deficiency there was a 2 

marked attenuation or loss of allergen-induced increases in type 2 cytokines (e.g., IL-5, IL-13), T 3 

cells, and airway mucous cell metaplasia in the lungs.  Together these findings demonstrated 4 

important eosinophil-dependent immunoregulatory mechanisms in allergic airway disease in 5 

mice.  In the present study, we observed that the influx of eosinophils in mice coincided with 6 

nasal epithelial remodeling, overexpression of type 2 cytokine mRNA, and the resolution of 7 

neutrophilic inflammation.  Our study, however, was not designed to elucidate the role of 8 

eosinophils in the development of other nasal responses to ozone.  Future studies will have to be 9 

conducted to determine if eosinophils play similar modulating roles in ozone-induced rhinitis as 10 

it does in allergen-induced rhinitis or asthma. 11 

 12 

We did, however, explore the role of lymphoid cells in the development of ozone-induced 13 

eosinophilic rhinitis by comparing the nasal pathology after 9 days of ozone exposure in 14 

C57BL/6 mice and Rag2(-/-)Il2rg(-/-) mice.  Rag2(-/-)Il2rg(-/-) mice are consequently devoid of 15 

all lymphoid cells (i.e., T cells, B cells, and innate lymphoid cells) (47-49).  Overexpression of 16 

type 2 cytokines and chemokines, eosinophilic infiltration, and epithelial remodelling were 17 

completely absent in the nasal mucosa of ozone-exposed Rag2(-/-)Il2rg(-/-) mice.  The lack of 18 

response in the lymphoid cell depleted mice is most likely due to the absence of 19 

cytokine/chemokine responses such as IL-5 and CCL11 and may emanate from Th2 cells or type 20 

2 innate lymphoid cells (ILC2s) (50).  It is less likely to be due to a deficiency of eosinophils in 21 

Rag2(-/-)Il2rg(-/-) mice, since microscopically the bone marrow in the skull of mice was replete 22 

with MBP-positive eosinophils, like that in C57BL/6 mice (Figure E2).   23 
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 1 

Our laboratory has previously reported that mucous cell metaplasia is a prominent cellular 2 

change in the nasal transitional epithelium of nonhuman primates (10) and rats (26) after 3 

repeated daily exposures to concentrations of ozone, ranging from as low as 0.15 ppm in 4 

nonhuman primates and 0.5 ppm in rats.  In these species, the histochemically detected onset of 5 

mucous cell metaplasia was as early as 4–6 days after the start of the repeated exposures.  In rats, 6 

increased expression of the mucin gene, Muc5ac, was detected in nasal mucosa as early as 24 h 7 

after a single 8 h exposure.  C57BL/6 mice in the present study had a similar early onset of 8 

overexpression for airway mucus-associated genes and mucous cell metaplasia after daily 9 

exposures to 0.5 ppm ozone after 1 day or 9 days, respectively.  We also found that  10 

Rag2(-/-)Il2rg(-/-) mice exposed to ozone clearly lacked mucous cell metaplasia and 11 

overexpression of Clca1 and Il13 mRNA.  IL-13, which can emanate from Th2 cells and ILC2s, 12 

has also been shown to induce CLCA1 that mediates mucous cell metaplasia in the pulmonary 13 

conducting airways of mice sensitized and challenged with allergen (51).  The lack of Th2 cells 14 

or ILC2s in the Rag2(-/-)Il2rg(-/-) mice may be responsible for the lack of mucous cell 15 

metaplasia in these mice repeatedly exposed to ozone for 9 days.   16 

 17 

The current study was also not designed to identify which lymphoid cell type(s) plays a role in 18 

ozone-induced development of eosinophilic rhinitis and nasal epithelial remodeling.  Since we 19 

observed a strong correlation among mRNA overexpression of type 2 cytokines and epithelial 20 

factors (e.g., Clca1, Ym2) and nasal histopathology after the 9 days of ozone exposure, it is likely 21 

that Th2 lymphocytes and/or ILC2s, both known to secrete IL-5 and IL-13, play major roles in 22 

the pathogenesis of these nasal lesions.  The early overexpression of transcripts for Il5 and Il13 23 
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in the nasal mucosa after ozone exposure suggests that ILC2s may play a critical role in this 1 

toxicant-induced nasal pathology.   2 

 3 

It was interesting, that by light microscopy, lymphocytes (as well as other mononuclear 4 

leukocytes) were sparsely seen among the numerous granulocytic neutrophils and eosinophils in 5 

the affected nasal mucosa of ozone-exposed C57BL/6 mice, at 1 and 9 days of exposure, 6 

respectively.  However, prominent focal aggregates of nasal associated lymphoid tissue (NALT) 7 

were bilaterally located in the ventral walls at the opening of the nasopharyngeal duct, located in 8 

the T3 nasal sections of all C57BL/6 mice.  NALT is a normal feature in rodent nasal passages 9 

and thought to have an important immune function in regional immune defence of upper airways 10 

(25).  As expected NALT was absent in the lymphoid cell-depleted Rag2(-/-)Il2rg(-/-) mice 11 

(Figure E2).   12 

 13 

Unfortunately routine immunohistochemical techniques, using antibodies specific for murine 14 

ILC2s (or Th2 lymphocytes), are not yet available for microscopic identification of these 15 

lymphoid cells in the nasal mucosa, or any other airway tissues, of this mouse strain.  Therefore 16 

we were not able to microscopically identify the intranasal location of these cells, and this was a 17 

limitation of the present study.  Studies are underway, however, to develop a method for 18 

identifying ILC2s from distinct locations in the mouse nasal airways using microdissection of 19 

mucosal tissue and flow cytometry.  This approach has been developed successfully for murine 20 

lung tissue and tissues from other organs in the mouse (52), but it has not yet been successfully 21 

applied to murine nasal tissue to the best of our knowledge.   22 

 23 
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Hyperplasia (elevated total epithelial cell density) of nasal transitional epithelium, along with 1 

mucous cell metaplasia, was a consistent finding in the C57BL/6 mice that received repeated 2 

daily exposure to ozone for 9 days. These epithelial lesions were absent in the ozone-exposed 3 

Rag2(-/-)Il2rg(-/-) mice.  Recent reports in the literature indicate that similar appearing 4 

hyperplastic and metaplastic airway epithelium in virus-infected lungs of mice contain unique 5 

IL-33 expressing progenitor basal cells that appear to play a novel role in the induction of type 2 6 

immune responses, such as IL-13-dependent mucous cell metaplasia (53).  Though still 7 

speculative, we cannot rule out the possibility that the ozone-induced nasal epithelium observed 8 

in our study may also contain similar IL33 overexpressing progenitor cells that orchestrate type 2 9 

immune responses.  Studies are ongoing in our laboratory to immunohistochemically detect IL-10 

33, and other epithelial alarmin cytokines (TSLP and IL-25), that are known to initiate ILC2-11 

driven types in the nasal epithelium of mice. 12 

 13 

Another conspicuous ozone-induced pathologic feature in C57BL/6 mice, that was absent in 14 

Rag2(-/-)Il2rg(-/-) mice, was epithelial hyalinosis, enhanced expression of intraepithelial 15 

YM1/YM2 proteins, and Ym2 mRNA in the nasal mucosa.  YM1 and YM2 are chitinase-like 16 

proteins that are specific to rodents.  Accumulations of YM1/YM2 proteins have been previously 17 

reported in nasal olfactory epithelium of mice during regeneration and aging (54), and the 18 

overexpression of Ym1 and Ym2 has been found in the lungs of mice instilled with diesel exhaust 19 

particles (55).  Though the biological functions for these unique proteins are not fully elucidated, 20 

they are often associated with type 2 immunity, eosinophilic inflammation and tissue 21 

remodeling, and preferentially expressed in the epithelium lining proximal airways and alveolar 22 

macrophages of mice with allergic airway disease (56).  YM1/YM2 proteins have been found to 23 
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be expressed in an IL-13-dependent manner and to enhance secretion of this type 2 cytokine as 1 

well as IL-5 (57).  Conversely, an in vitro assay using purified protein has demonstrated that 2 

YM1/YM2 proteins have little chemotactic activity for eosinophils (58).  Therefore, YM1/YM2 3 

proteins might be involved in eosinophilic rhinitis induced by ozone exposure via up regulation 4 

of type 2 cytokine production. 5 

 6 

In conclusion, the results of this toxicology study in mice indicate that acute exposure to ozone 7 

(for 1 or 2days) cause nasal epithelial injury resulting in cell death and neutrophilic rhinitis, 8 

while repeated daily exposures to ozone (for 9 days) result in eosinophilic rhinitis and epithelial 9 

remodeling that are lymphoid cell dependent.  These findings identify a new host response to this 10 

commonly encountered oxidant air pollutant, and suggests a novel pathogenic pathway for nasal 11 

eosinophilic inflammation that has been found in susceptible human populations living in air-12 

polluted environments (e.g., atopic and nonatopic children living in communities with 13 

photochemical smog).  The nasal epithelial pathology and mucosal type 2 immunity that we 14 

observed in mice after repeated ozone are similar to key allergic host responses observed in 15 

children and adults who suffer from eosinophilic rhinitis caused by common aeroallergens (e.g., 16 

house dust mite, ragweed pollen), suggesting that long-term ozone exposure, by itself, could 17 

cause not only exacerbation of pre-existing allergic rhinitis, but also the development (early 18 

onset) of this chronic upper airway disease.   19 
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Figure Legends 1 

Figure 1.  A) Light photomicrographs of nasal mucosa from mice exposed to filtered air for 1 2 

day and sacrificed 24 h (1, 2, 3), ozone for 1 day and sacrificed 2 h (4, 5, 6) or 24 h (7, 8, 9), or 3 

ozone for 9 days and sacrificed 24 h post-exposure (10, 11, 12).  Tissues were histochemically 4 

stained with hematoxylin and eosin (H&E, 1, 4, 7, 10) and immunohistochemically stained for 5 

neutrophils (2, 5, 8, 11) or eosinophils (3, 6, 9, 12), and countered stained with hematoxylin.  e, 6 

nasal transitional epithelium; bv, blood vessel in the lamina propria; g, glands in the lamina 7 

propria; b, bone.  Arrow in 7, vacuolar degeneration of ciliated epithelial cell; Arrows in 10, 8 

hyaline globules in cytoplasm of nonciliated epithelial cells (hyalinosis); Arrows in 2, 5, 8, and 9 

11, neutrophils; Arrows in 3, 6, 9, and 12, eosinophils.  B) Morphometric determination of nasal 10 

epithelial thickness after 1, 2, 4, and 9 days of ozone exposure.  C) Temporal changes in the 11 

density of granulocytes (neutrophils and eosinophils) in the nasal mucosa after exposure to 12 

ozone.  *Significantly different from mice exposed to filtered air for 1 day (2 h and 24 h after 13 

exposure), p ≤ 0.05.   14 

 15 

Figure 2.  A) Light photomicrographs of nasal mucosa from mice exposed to ozone for 1 (1, 2) 16 

or 9 (3, 4) days and sacrificed 24 h post-exposure.  Tissues were histochemically stained with 17 

Alcian Blue/Periodic Acid Schiff (AB/PAS) for intraepithelial mucosubstances (1, 3) and 18 

immunohistochemically for YM1/YM2 chitinase-like proteins (2, 4), and countered stained with 19 

hematoxylin.  e, nasal transitional epithelium; bv, blood vessel in lamina propria; g, gland in 20 

lamina propria; b, bone.  Arrows, AB/PAS-stained mucosubstances in 1 and 3.  YM1/YM2 21 

protein (brown stain) in 2 and 4.  B) Temporal changes in the morphometrically determined 22 

amount of intraepithelial mucosubstances in mice exposed to ozone.  C) Morphometric 23 

measurement of the amount of YM1/YM2 proteins in epithelium of mice exposed to ozone for 1, 24 
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2, 4, or 9 days.  *Significantly different from mice exposed to filtered air for 1 day (2 h and 24 h 1 

after exposure), p ≤ 0.05.   2 

 3 

Figure 3.  A) Unsupervised hierarchical clustering of ozone-induced fold changes (relative to 4 

filtered air controls) in the expression of nasal mucosal mRNA, together with fold changes in the 5 

phenotypic expression (morphometrically determined density changes) of neutrophils, 6 

eosinophils, mucosubstances, and YM1/YM2 proteins in the nasal mucosa (shown with 7 

asterisks).  This analysis was performed in the TM4 Multiexperiment Viewer (MeV 4.8.1; 8 

http://www.tm4.org) using Pearson correlation metric.  B) Temporal fold changes in the 9 

expression of mRNA transcripts in the nasal mucosa of mice exposed to ozone for 1, 2, 4, or 9 10 

days.  *Statistically different from the respective air control group at each time point, p ≤ 0.05.  11 

 12 

Figure 4.  A) Light photomicrographs of nasal mucosa from C57BL/6 (1, 3, 5, 7, 9) and  13 

Rag2(-/-)Il2rg(-/-) (2, 4, 6, 8, 10) mice exposed to filtered air (1, 2) or ozone (3, 4, 5, 6, 7, 8, 9, 14 

10) for 9 days.  Tissues were histochemically stained with H&E (1, 2, 3, 4) or AB/PAS (9 and 15 

10), and immunhistochemically for eosinophils (5, 6) or YM1/YM2 chitinase-like proteins (7, 8).  16 

e, nasal transitional epithelium; bv, blood vessel in lamina propria; g, gland in lamina propria; b, 17 

bone.  ∗Inflammatory cell infiltrate in lamina propria; Arrows, YM1/YM2 protein (brown stain) 18 

in7 and AB/PAS-stained mucosubstances in 9.  B) Morphometrically determined densities of 19 

total epithelial cells, eosinophils, YM1/YM2 proteins, and AB/PAS-stained mucosubstances in 20 

the nasal epithelium of mice exposed to ozone for 9 days.  *Significantly different from mice of 21 

the same strain and exposed to filtered air, p ≤ 0.05.   22 

 23 
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Figure 5.  Ozone-induced fold changes in the expression of type 2 immune-related mRNA 1 

transcripts in C57BL/6 and Rag2(-/-)Il2rg(-/-) mice, relative to filtered air exposure.  2 

*Statistically different from mice of the same strain and exposed to filtered air, p ≤ 0.05.   3 

Page 25 of 39  AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



  

 

 

Figure 1  
212x271mm (300 x 300 DPI)  

 
 

Page 26 of 39 AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



  

 

 

Figure 2  
152x147mm (300 x 300 DPI)  

 
 

Page 27 of 39  AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



  

 

 

Figure 3  
136x113mm (300 x 300 DPI)  

 
 

Page 28 of 39 AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



  

 

 

Figure 4  
150x142mm (300 x 300 DPI)  

 
 

Page 29 of 39  AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



  

 

 

Figure 5  
57x19mm (600 x 600 DPI)  

 
 

Page 30 of 39 AJRCMB Articles in Press. Published on 23-July-2015 as 10.1165/rcmb.2015-0165OC 

 Copyright © 2015 by the American Thoracic Society 



Supplemental Material 1 

Ozone-Induced Type 2 Immunity in Nasal Airways: Development and Lymphoid Cell 2 

Dependence in Mice 3 

Chee Bing Ong, Kazuyoshi Kumagai, Phillip T. Brooks, Christina Brandenberger, Ryan P. 4 

Lewandowski, Daven N. Jackson-Humbles, Rance Nault, Timothy R. Zacharewski, James G. 5 

Wagner, and Jack R. Harkema 6 

 7 

Materials and Methods 8 

Animals.  All the animals were individually housed in stainless steel wire cages within whole 9 

body inhalation exposure chambers (H-1000; Lab Products Marywood, NJ).  Mice were 10 

provided free access to food (Harlan Teklad Irradiated 8940, Madison, WI) and water, and 11 

maintained in Michigan State University (MSU) animal housing facilities accredited by the 12 

Association for Assessment and Accreditation of Laboratory Animal Care and according to the 13 

National Institutes of Health guidelines as overseen by the MSU Institutional Animal Care and 14 

Use Committee.  Rooms were maintained at temperatures of 21°C–24°C and relative humidities 15 

of 45–70%, with a 12 h light/dark cycle starting at 7:30 A.M. 16 

 17 

Inhalation Exposures.  In Study 1, ozone chamber concentrations over the 9 days of exposure 18 

were 0.517 ± 0.002, 0.498 ± 0.002, 0.493 ± 0.004, and 0.485 ± 0.002 ppm (mean ± standard error 19 

of the mean), for 1, 2, 4, and 9 days, respectively.  In Study 2, the ozone chamber concentration 20 

for the 9-day exposure was 0.481 ± 0.001 ppm.  Ozone concentrations in the filtered air chamber 21 

were below 0.01 ppm throughout the exposures. 22 

 23 
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Necropsy and Nasal Tissue Preparation for Light Microscopy.  All mice were euthanized by 1 

exsanguinations via the abdominal aorta under pentobarbital anaesthesia 2 h or 24 h after the 2 

single exposure or 24 h after the end of exposures.  The head of each mouse was removed from 3 

the carcass.  After the lower jaw and skin were removed from the head, nasal cavities of mice 4 

designated for histopathology and morphometric examination were flushed retrograde through 5 

the nasopharyngeal meatus with 10% neutral buffered formalin.  The head was then immersed 6 

and stored in a large volume of the same fixative prior to decalcification.  Before sectioning, the 7 

heads were decalcified in 13% formic acid for 7 days. 8 

 9 

Immunohistochemistry.  For MBP and Ly-6B.2 staining, sections were incubated with 0.04% 10 

pepsin solution in 0.2 mol/L hydrochloric acid at 37°C for 20 min.  Following protein block by 11 

normal goat serum (Vector Laboratories, Burlingame, CA) and endogenous biotin block by 12 

avidin D (Vector Laboratories) and d-biotin (SigmaAldrich, St.Louis, MO), the slides were 13 

incubated with MBP (2.0 µg/mL) or Ly-6B.2 antibody (0.4 µg/mL) at room temperature for 60 14 

min.  The slides were subsequently reacted with a biotinylated rabbit anti-rat antibody, avidin-15 

alkaline phosphatase, and Fast Red (Vector Laboratories).  For YM1/YM2 staining, endogenous 16 

peroxidase activity was quenched by incubation in 3% hydrogen peroxide/methanol at room 17 

temperature for 30 min (no pretreatment was applied).  The sections were treated with normal 18 

rabbit serum (Vector Laboratories) and then the biotin block reagents.  The slides were incubated 19 

with YM1/YM2 antibody at dilution of 1:3000 at room temperature for 60 min.  The slides were 20 

subsequently reacted with a biotinylated goat anti-rabbit antibody, an avidin-horseradish 21 

peroxidase, and Nova Red (Vector Laboratories).  All sections were counterstained with Mayer's 22 

hematoxylin.  23 
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 1 

Nasal morphometry.  For estimation of neutrophil or eosinophil densities in the nasal mucosa, 2 

the number of points hitting areas positive for Ly-6B.2 antibody or MBP antibody, respectively, 3 

were counted with a point grid in the sampled images of each mouse.  The number of points on 4 

the reference space (i.e., mucosal epithelium and lamina propria) was also counted with a point 5 

grid.  The total number of points was multiplied by the area/point (a/p) for the neutrophil, 6 

eosinophil, or reference space to calculate each density.  Finally, the percentage of neutrophil- or 7 

eosinophil-density per the reference space was calculated and expressed as the percentage of 8 

granulocyte influx in the mucosal tissue.  9 

 10 

A point intercept grid was placed over the sampled images to estimate density of intraepithelial 11 

mucosubstances per underlying basal lamina.  Mucus density ( MV̂ ) was calculated by the 12 

area/point (a/p) and divided by the total number of points in all images (n) as shown in equation 13 

1 (EQ1) below. 14 

n
paP

V M
M

/ˆ ×
= ∑  EQ1 15 

The surface density of the basal lamina ( BLŜ ) in the selected images was estimated by counting 16 

the number of intercepts (I) of the line probe with the subepithelial basal lamina of the lateral 17 

wall divided by the area per point (a/p) and the number of points in all sampled images (n) as 18 

described in equation 2 (EQ2). 19 

npa
I

SBL ×
×

= ∑
/

2ˆ   EQ2 20 
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Intraepithelial mucosubstances per basal lamina of lateral wall was then estimated by dividing 1 

MV̂  by BLŜ .  The YM1/YM2 protein in the mucosal epithelium and epithelial thickness were 2 

evaluated with the same method and equations as those of mucosubstances.  For the estimation 3 

of epithelial thickness, both nuclear and cytoplasmic profiles in the hematoxylin and eosin-4 

stained nasal epithelium were counted.  Total epithelial numeric cell densities were determined 5 

by counting the total number of epithelial nuclear profiles present in the nasal epithelium and 6 

dividing this number by the length of the basal lamina. The length of the basal lamina was 7 

calculated from the contour length of the digitized image.   8 

  9 
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Table E1. Gene expression profile in nasal mucosa of C57BL/6 mice exposed to ozone for 1, 2, 4 or 9 days. 1 

Gene 2 h (1 day) 24 h (1 day) 2 days 4 days 9 days 
Arg1 1.07 ± 0.09 1.49 ± 0.28 1.68 ± 0.22 2.32 ± 0.49 10.33 ± 4.02 
Ccl2 (MCP-1) 3.59 ± 0.44 1.20 ± 0.23 -1.02 ± 0.13 -1.05 ± 0.10 1.09 ± 0.16 
Ccl8 (MCP-2) 1.27 ± 0.18 1.58 ± 0.34 2.17 ± 0.38 2.81 ± 0.58 7.53 ± 2.93 
Ccl11 (Eotaxin) 1.79 ± 0.24 -1.01 ± 0.12 -1.02 ± 0.07 1.25 ± 0.16 5.90 ± 2.07 
Chil3 (Ym1) -3.51 ± 0.82 -1.06 ± 0.17 1.10 ± 0.23 -1.27 ± 0.28 -1.18 ± 0.24 
Chil4 (Ym2) -7.24 ± 2.20 3.38 ± 1.40 3.06 ± 0.51 15.57 ± 9.97 431.34 ± 192.17 
Clca1 (Gob5) -2.80 ± 0.88 6.12 ± 2.29 2.54 ± 0.25 9.56 ± 4.85 145.82 ± 61.93 
Cxcl1 (KC) 2.96 ± 0.45 1.88 ± 0.55 1.35 ± 0.37 -1.44 ± 0.08 1.34 ± 0.49 
Cxcl2 (MIP-2) 5.75 ± 1.61 10.04 ± 2.67 6.53 ± 2.27 -1.10 ± 0.24 -1.17 ± 0.57 
Hmox1 1.84 ± 0.25 -1.29 ± 0.11 -1.04 ± 0.06 -1.12 ± 0.04 1.04 ± 0.10 
Ifng 1.34 ± 0.21 1.54 ± 0.47 -1.34 ± 0.20 -1.26 ± 0.10 -1.34 ± 0.26 
Il1b 5.93 ± 1.22 2.14 ± 0.34 1.75 ± 0.38 -1.03 ± 0.09 -1.24 ± 0.44 
Il2 N.E. N.E. N.E. 1.07 ± 0.23 1.31 ± 0.25 
Il4 N.E. N.E. N.E. 1.15 ± 0.23 3.62 ± 2.15 
Il5 22.70 ± 5.21 2.83 ± 0.59 1.60 ± 0.21 3.79 ± 1.06 26.74 ± 12.71 
Il6 15.31 ± 3.77 2.25 ± 0.96 1.80 ± 0.44 -1.66 ± 0.24 2.35 ± 1.17 
Il10 1.06 ± 0.14 -2.57 ± 0.29 -1.21 ± 0.13 1.45 ± 0.31 4.04 ± 1.37 
Il13 9.63 ± 1.96 4.11 ± 1.29 2.54 ± 0.55 8.11 ± 2.94 114.67 ± 74.74 
Muc5ac 1.60 ± 0.97 8.02 ± 2.73 -7.76 ± 4.26 2.31 ± 0.83 3.63 ± 1.01 
Muc5b N.E. N.E. N.E. N.E. N.E. 
Saa3 -25.26 ± 6.78 5.85 ± 3.60 1.44 ± 0.46 1.56 ± 0.16 1.19 ± 0.39 
Tnf 1.70 ± 0.20 1.26 ± 0.14 1.18 ± 0.17 -1.33 ± 0.12 1.17 ± 0.21 

Data are expressed as fold change relative to respective air controls ± SEM (n = 6/group).  Genes showing statistical significances (air 2 
vs. ozone/timepoint, p values ≤ 0.05) are in bold and underlined.  N.E.; not evaluated.3 
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Table E2.Gene expression profile in nasal mucoa of C57BL/6 and Rag2(-/-)Il2rg(-/-) mice 4 
exposed to ozone for 9 days. 5 

Gene C57BL/6, ozone Rag2(-/-)Il2rg(-/-), ozone 
Arg1 4.78 ± 0.44 1.26 ± 0.21 
Ccl2 (MCP-1) 1.00 ± 0.19 -1.70 ± 0.35 
Ccl5 (RANTES) -1.06 ± 0.09 -1.72 ± 0.65 
Ccl8 (MCP-2) 7.13 ± 1.10 -1.06 ± 0.28 
Ccl11 (Eotaxin) 2.14 ± 0.11 -1.13 ± 0.12 
Chil3 (Ym1) 1.42 ± 0.26 -1.40 ± 0.20 
Chil4 (Ym2) 193.15 ± 15.72 123.35 ± 105.15 
Clca1 (Gob5) 202.65 ± 26.33 1.62 ± 0.29 
Cxcl1 (KC) -1.31 ± 0.44 -2.33 ± 0.31 
Cxcl2 (MIP-2) 2.74 ± 2.38 -2.69 ± 1.10 
Hmox1 -1.49 ± 0.08 1.00 ± 0.06 
Ifng N.E. N.E. 
Il1b 1.91 ± 1.02 -1.40 ± 0.35 
Il2 1.37 ± 0.28 N.D. 
Il4 3.60 ± 0.89 1.03 ± 0.03 
Il5 17.78 ± 1.39 1.31 ± 0.13 
Il6 -1.83 ± 0.46 -1.15 ± 0.22 
Il10 2.78 ± 0.28 -1.14 ± 0.12 
Il13 76.92 ± 4.33 1.69 ± 0.65 
Muc5ac 7.78 ± 1.98 -1.60 ± 0.88 
Muc5b 3.22 ± 0.26 1.26 ± 0.24 
Saa3 1.35 ± 0.82 -1.50 ± 0.56 
Tnf -1.09 ± 0.24 -3.67 ± 0.84 

Data are expressed as fold change relative to respective air controls ± SEM (n = 6/group).  Genes 6 
showing statistical significances (air vs. ozone/same strain, p values ≤ 0.05) are in bold and 7 
underlined.  N.D.; not detected.  N.E.; not evaluated. 8 

  9 
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Figure E1.  Nasal sections.  A) Illustration of the right nasal passage of the mouse with the 10 

septum removed exposing the nasal turbinates and lateral wall.  The four vertical lines (T1–T4) 11 

indicate the sites of transverse tissue blocks that were processed for microscopic examination.  12 

The pink shaded region is the location of nasal mucosa that was analyzed for ozone-induced 13 

changes (relative to air controls) in mRNA expression of selected inflammatory and epithelial 14 

genes.  B) Rostral face of T1.  Red areas represent the airways lined by nasal mucosa affected by 15 

the ozone exposure (i.e., rhinitis and epithelial remodeling).  The yellow stippled lines outline the 16 

sites used for morphometry.  NT, nasoturbinate; MT, maxilloturbinate; HP, hard palate; 17 

ET,ethmoid turbinates; OB, olfactory bulb; np, nasopharynx; S, nasal septum; VM, ventral 18 

meatus; MM; middle meatus; LM, lateral meatus; NT, nasoturbinate; LW, lateral wall. 19 

 20 

Figure E2.  A & B) Light photomicrographs of the nasal mucosa lining the ventral lateral aspect 21 

of the nasophayngeal meatus in nasal tissue section T3 in a C57BL/6 (A) and Rag2(-/-)Il2rg(-/-) 22 

(B) mouse.  Nasal associated lymphoid tissue (NALT) is present in the lamina propria (lp) of the 23 

C57BL/6 mouse (A), but not in the Rag2(-/-)Il2rg(-/-) mouse (B).  Tissues were stained with 24 

hematoxylin and eosin.  e, nasal respiratory epithelium; b, bone.  C & D) Light 25 

photomicrographs of bone marrow (BM) containing eosinophils (arrows; red stain) in the nasal 26 

septum of the C57BL/6 (C) and the Rag2(-/-)Il2rg(-/-) mouse (D).  oe, olfactory epithelium; lp, 27 

lamina propria; b, septal bone.  Nasal tissue sections in C and D were immunohistochemically 28 

stained for eosinophil-specific major basic protein, and counterstained with hematoxylin. 29 
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