# Wetland ecosystems of national importance for biodiversity: Criteria, methods and candidate list of nationally important inland wetlands

Anne-Gaelle Ausseil, Philippe Gerbeaux, W. Lindsay Chadderton, Theo Stephens, Derek Brown and John Leathwick.



# Wetland ecosystems of national importance for biodiversity:

# Criteria, methods and candidate list of nationally important

## inland wetlands

# **DISCUSSION DOCUMENT**

Anne-Gaelle Ausseil<sup>1</sup>, Philippe Gerbeaux<sup>2</sup>, W. Lindsay Chadderton<sup>3,4</sup>, Theo Stephens<sup>3</sup>, Derek Brown<sup>3</sup> and John Leathwick<sup>5</sup>

<sup>1</sup>Landcare Research Ltd Private Bag 11052 Palmerston North 4442

<sup>2</sup>IUCN, Regional Office for Oceania Private Mail Bag Suva Fiji Islands

<sup>3</sup>Department of Conservation Private Bag 13049 Christchurch

<sup>4</sup>The Nature Conservancy 8 S. Michigan Ave Suite 2301 Chicago IL 60603 USA

<sup>5</sup>NIWA PO Box 11115 Hamilton 3251

Landcare Research Contract Report: LC0708/158

PREPARED FOR: Chief Scientist Department of Conservation PO Box 10420 Wellington



DATE: July 08

Reviewed by:

Approved for release by:

BR Clarkcon

Bev Clarkson Scientist Landcare Research

60

Jerry Cooper Science Leader Landcare Research

© Department of Conservation 2008

This report has been produced by Landcare Research New Zealand Ltd for the New Zealand Department of Conservation. All copyright in this report is the property of the Crown and any unauthorised publication, reproduction, or adaptation of this report is a breach of that copyright and illegal.

# Contents

| 1. | Intro                                        | oduction                                                                  | 8  |  |  |  |  |
|----|----------------------------------------------|---------------------------------------------------------------------------|----|--|--|--|--|
|    | 1.1                                          | New Zealand context                                                       | 8  |  |  |  |  |
|    | 1.2                                          | Policy context                                                            | 9  |  |  |  |  |
|    | 1.3                                          | Previous wetland inventories                                              | 10 |  |  |  |  |
|    | 1.4                                          | Identifying wetlands of national importance                               | 11 |  |  |  |  |
| 2. | Obje                                         | ectives                                                                   | 12 |  |  |  |  |
| 3. | Met                                          | hods                                                                      | 13 |  |  |  |  |
|    | 3.1                                          | Biogeographic framework and scale                                         | 13 |  |  |  |  |
|    | 3.2                                          | Delineation and mapping of wetlands                                       | 14 |  |  |  |  |
|    |                                              | Pre-human extent                                                          | 14 |  |  |  |  |
|    |                                              | Current wetland extent                                                    | 16 |  |  |  |  |
|    | 3.3                                          | A Spatial (GIS-based) wetland typology                                    | 20 |  |  |  |  |
|    |                                              | Defining hydrosystems from GIS databases                                  | 21 |  |  |  |  |
|    |                                              | Defining wetland classes from GIS databases                               | 21 |  |  |  |  |
|    |                                              | Accuracy assessment                                                       | 22 |  |  |  |  |
|    | 3.4                                          | Determining indicators of human induced pressure and ecological integrity | 23 |  |  |  |  |
|    |                                              | Anthropogenic pressure measures                                           | 23 |  |  |  |  |
|    |                                              | Source data and scales of influence                                       | 24 |  |  |  |  |
|    |                                              | Relating pressure measures to ecological integrity                        | 25 |  |  |  |  |
|    |                                              | Ranking and site selection system                                         | 28 |  |  |  |  |
| 4. | Res                                          | ults                                                                      | 33 |  |  |  |  |
|    | 4.1                                          | Current and historic extent                                               | 33 |  |  |  |  |
|    | 4.2                                          | Wetland types                                                             | 38 |  |  |  |  |
|    |                                              | Results from the GIS classification                                       | 38 |  |  |  |  |
|    |                                              | Accuracy assessment                                                       | 42 |  |  |  |  |
|    | 4.3                                          | Size distribution                                                         | 42 |  |  |  |  |
|    | 4.4                                          | Ecological integrity index                                                | 44 |  |  |  |  |
|    | 4.5                                          | Candidate list of nationally important wetlands                           | 45 |  |  |  |  |
| 5. | Disc                                         | cussion                                                                   | 53 |  |  |  |  |
|    | 5.1                                          | Strengths of the WONI wetland approach                                    | 53 |  |  |  |  |
|    | 5.2                                          | Limitations and future improvements                                       | 56 |  |  |  |  |
| 6. | Ack                                          | nowledgements                                                             | 60 |  |  |  |  |
| 7. | References                                   |                                                                           |    |  |  |  |  |
|    | Appendix 1: Wetland Maps                     |                                                                           |    |  |  |  |  |
|    | Appendix 2: Typology decision rules          |                                                                           |    |  |  |  |  |
|    | Appendix 3. Anthropogenic pressure measures. |                                                                           |    |  |  |  |  |
|    | App                                          | endix 4: Results of wetland type extent per TLA region                    | 79 |  |  |  |  |
|    | Арр                                          | endix 5. Priority lists per biogeographic unit.                           | 80 |  |  |  |  |

# **Executive Summary**

The Department of Conservation (DOC) is developing a series of systematic conservation planning and reporting tools for terrestrial, freshwater, and marine ecosystems under the banner of its Natural Heritage Management System (NHMS: see Stephens et al. 2002 for principles). The NHMS initiative seeks to provide resource managers with a set of decision support tools to maximize efficient use of limited conservation resources. It aims to help managers prioritise, plan, and report on conservation outcomes at a range of geographical and organisational scales. The approach is based on systematic conservation planning principles (Margules & Pressey 2000) using data, transparent criteria, and testable models and explicit assumptions (Chadderton et al. 2004, Stephens et al. 2002). The report arises from the Waters of National Importance (WONI) project, which is part of the Sustainable Development Programme of Action for Freshwaters. The project goal required DOC to identify a list of water bodies (lakes, rivers, wetlands) that would protect a full range of freshwater biodiversity. This report deals with nationally important inland wetlands.

Previous attempts to identify nationally important wetlands for biodiversity (e.g. Cromarty and Scott 1996) were based on an expert panel approach, and were hampered by scant biological data and lack of national wetland maps. Classification tools to define units of the full range of New Zealand's wetland biodiversity were also absent. This meant that the concep of complementarity and representation of a full range of habitats were poorly reflected when identifying nationally important wetlands for biodiversity.

This assessment has four objectives:

- Delineate the historic and current extent of all New Zealand wetlands including those on large inshore islands. Inland wetlands were mapped to a minimum size of 0.5 ha, on North, South, and Stewart islands, and all large inshore islands where useable geo-spatial data were available. The Chatham, Kermadec, and New Zealand sub-Antarctic islands were not mapped because there were no relevant geospatial data.
- Implement a spatially explicit classification based on the Johnson and Gerbeaux (2004) framework.
- Develop measures of anthropogenic pressure to indicate the intensity of various human induced disturbances potentially affecting the ecological integrity of native wetland biota based on the approach of Stephens et al. (2002).
- Develop a ranked list of wetlands of national importance that would protect a full range of wetland biodiversity and highlight the most immediate conservation management needs.

The assessment process was underlain by a three level spatial hierarchy.

- A biogeographic classification was used to divide New Zealand into a smaller set of regions sharing a common history of large scale disturbance and recolonisation. The approach assumes that to protect a full range of biodiversity a representative range of wetlands must be protected in each biogeographic unit. For consistency and to allow future integration of aquatic assessments we used a catchment-based biogeographic classification that breaks New Zealand into a set of 29 biogeographic units.
- Within each biogeographic unit each wetland formed the unit of analysis.
- A spatial classification was used to assign each wetland to a class as defined by Johnson and Gerbeaux (2004). We assumed that each wetland class represented a distinct biological assemblage.

A map of the historical extent of New Zealand's wetlands was produced using soil information held by the Land Resource Inventory (LRI) (Newsome et al. 2000) and a 15 m digital elevation model to refine soil polygons. The estimated historic extent of freshwater wetlands (including forested and herbaceous wetlands) was 2.4 million ha, over three times greater than previous estimates (672,000 ha). We estimated the current extent of wetlands to be 249,776 ha, or about 10% of historic extent. This is consistent with previous estimates of a 90% loss.

Contemporary wetland cover was defined by combining existing databases including LCDB2 (Land cover database 2), topomaps NZMS 260, existing surveys from the Regional Councils (e.g. polygons and point locations), Queen Elizabeth II (QEII) covenant wetland polygons, DOC surveys (WERI database), and a 15 m digital elevation model (DEM), to define a single set of wetland polygons and centre points. These were then checked from a standardised set of Landsat imagery using the Ecosat mapping technology. Where necessary, new wetland boundaries were delineated. The approach provides a more reliable and consistent national wetland map than provided by other databases (e.g. LCDB2), and it is quicker and less labour intensive than aerial photo and ground survey based approaches. We mapped 7032 individual wetland sites nationally. Most (74%) were smaller than 10 ha, and accounted for 6% of the national wetland area. A small number (77) of large wetlands (>500 ha) accounted for 55% of remaining wetland area; these were predominantly on the West Coast of the South Island, Southland, Otago, Northland, and the Waikato. This geographic bias indicates protection of larger wetlands alone will not protect a full range of wetland biodiversity. Smaller wetlands and remnant fragments, especially in lowland areas where wetland loss has been dramatic, account for most of the remaining wetlands in at least 40% of the 29 biogeographic units. Some wetlands were always naturally rare, but most have been much reduced, with many biogeographic units retaining less than 5% of their former wetland extent. The Palliser-Kidnapper and East Cape areas appear to have suffered the greatest losses with just 0.4% and 2.4% respectively of former wetland remaining.

A simple wetland classification was derived from soil attribute data and a 15 m DEM. Wetlands were classified into seven groups at the hydro-class level using fuzzy expert rules: bog, fen, swamp, marsh, pakihi/gumland, seepage, and inland saline. According to the classification results, swamps and pakihi/gumland are the two most common wetland classes found nationally, making up 36% and 23% respectively of all remaining wetlands. Swamps have undergone the largest loss with only 6 % of their historical extent remaining. Although inland saline wetlands are the rarest wetland type, almost 20% of their former extent remains. A preliminary assessment of the classification's accuracy was completed in the Otago region. On average we found 60% agreement between classification and actual wetland type. Accuracy was generally high for all wetland classes (over 80%) except for marshes (5%), with 93% misclassified as swamps due to soil drainage class inaccuracies. Also, almost half (46%) of fens were misclassified as bogs because of an overlapping range of soil pH; bogs/fens and swamps/marshes have highly similar environmental characteristics. Hence, if a complementarity function is used, the impacts of misclassification may limit the ability of the final site selection rationale to capture a representative range of wetland biodiversity. Moreover, classification limitations vary with the accuracy of the LRI, which is relatively coarse in Otago and more remote areas of New Zealand; however, in more heavily farmed regions where wetland loss has been greatest, the finer resolution of the LRI should also have lower classification error.

Wetlands are often under pressure from a variety of human induced disturbances, the most common being invasive species, drainage, and incompatible land use. We developed an index of human induced pressure by combining six spatial indicators of human activities known to degrade wetland biodiversity and function, and for which nationally consistent GIS data was available. Pressure measures were applied at three spatial units: the wetland's catchment, a 30m buffer around the wetland, and the wetland itself. Pressure included the amount of natural vegetation cover, humanmade impervious cover, number of introduced fish, percent cover woody weeds, artificial drainage, and a surrogate measure of land use intensity (nitrate leaching risk). We assume a direct relationship between human pressure measures and wetland ecological integrity. Pressure measures were transformed into an index of ecological integrity (EI) that ranged between 1 (near pristine, no human induced impacts) and 0 (totally degraded with no remaining ecological integrity, native biodiversity or ecological function). More than 60% of remaining wetlands had ecological integrity measures less than 0.5, indicating moderate to severe degradation with associated loss of native biodiversity. This demonstrates that legal protection alone is unlikely to halt the decline in wetland biodiversity.

To construct a ranked list of wetlands contributing most to extant wetland biodiversity, we used a selection algorithm that combined measures of complementarity, human disturbance pressure, irreplaceability, and a measure of conservation effectiveness (corresponding to the proportional contribution of any given site to the protection of the total remaining area in each wetland class). The highest ranked sites in each biogeographic unit were often the largest wetlands and usually comprised 2–3 wetland classes (commonly swamps, marshes, and fens). A high rank reflects a potential to protect both a diverse range of hydroclasses and a high proportion of what remains of each.

The wetland database underpinning this assessment provides an information resource for planning and managing wetland biodiversity at the regional and national scales, and should enable Territorial Local Authorities (TLA) and central governments agencies (e.g. DOC) to direct limited conservation and restoration resources to some of the most important wetlands. The wetlands that deserve most conservation effort are those with high ranks and threatened by additional or increasing pressures.

This report describes a work in progress and we are acutely aware that underlying methods, data, and resulting products can be improved. Our delineation of the current extent of wetlands is an incomplete inventory because of spatial limitations of satellite imagery and difficulties in depicting ephemeral, plutonic, nival, geothermal, and forested wetlands. Moreover, wetlands under 0.5 ha could not be mapped but are likely to provide important habitats for threatened species (particularly plants). Forested wetlands are also difficult to distinguish using present satellite imagery, so we clearly underestimated the total area of wetlands in Stewart Island, Fiordland, Westland, Buller, and Northwest Nelson. Wetlands associated with estuaries were excluded as these are to be covered in future estuary assessment and subsequently integrated at catchment scale. Finally, the classification underestimates the full range of wetland biodiversity.

The rankings are a guide for decision making and should be considered within the context of local knowledge on conservation priorities, and other socio-political and ecological drivers not incorporated into our assessment.

Keywords: freshwater wetland, mapping, indicator, biodiversity assessment, prioritisation

# 1. Introduction

## **1.1** New Zealand context

Freshwater resources are essential to the long-term prosperity, health, and sustainability of New Zealand (Department of the Prime Minister and Cabinet 2003). Lakes, rivers, wetlands, and estuaries provide important social, economic, cultural, and environmental functions. Wetlands in particular provide many critically important ecosystem services, including flood regulation, water storage, improving water quality, recreation, and habitat for a wide range of native and valued introduced species. They are also an essential food basket for Maori. These services were largely ignored following European settlement; most wetlands were viewed as 'wasted land' and subsequently drained and altered for alternative economic uses, mainly agriculture. Consequently, wetlands are now one of the most nationally threatened and degraded ecosystem types, with only about 10% of former wetlands remaining (Ministry for the Environment, 1997).

New Zealand has a remarkable variety of wetland types, reflecting the country's diverse geography, climate, and geology (Johnson & Gerbeaux, 2004). We used the formal definition of wetlands in the Resource Management Act (1991). Wetlands defined thus include: 'permanently or intermittently wet areas, shallow water or land/water margins that support a natural ecosystem of plants and animals that are adapted to living in wet conditions'. This broad definition includes a range of shallow water environments with disparate biological communities but with shared environmental and ecological features that distinguish wetlands from other terrestrial and freshwater ecosystems (Sorrell & Gerbeaux 2004); these distinguishing features are:

- Shallow standing water and/or waterlogged soils
- Anoxic conditions (the absence of oxygen) in the soil
- Dominance by emergent aquatic plants

In this report, we focus on palustrine systems and standing water bodies with a 500m maximum length. We excluded larger, open water bodies (i.e. lakes), estuarine, nival, geothermal, and plutonic wetland hydrosystems that could also fit this definition.

Previous estimates of the original area of freshwater wetlands in New Zealand based on soil maps place the total area at 672,000 ha (Ministry for Environment 1997)<sup>1</sup>. By the mid 1970s only an estimated 100,000 ha or 15% remained. This decline since the mid ninetenth century is one of the most globally dramatic examples. The Wildlife Service documented losses between 1954 and 1976 and found almost 40% of the total national wetland area (263,999 hectares) had been drained, at a rate of nearly 2% (about 12,000 hectares), per year (Ministry for the Environment 1997). Lowland wetlands were the hardest hit, particularly on the drier east coast of the North and South Islands, especially in the Bay of Plenty and North Canterbury. Southland and Westland retained more wetlands in a better state. Some wetland types were more susceptible to loss (e.g. kahikatea swamp forest and ephemeral dune wetlands) than others (e.g. mountain bogs and tarns) (Cromarty & Scott, 1996).

Society is now starting to recognise the role of wetlands in human welfare and sustaining biodiversity, especially since New Zealand became a party to the Ramsar Convention in 1976 (Gerbeaux 2003). However, while the rate of wetland loss has slowed, new technologies and a boom in the dairy industry have led to a new wave of wetland drainage and pollution. Many privately owned wetlands and wetland margins are at risk even in the wetter regions of Southland and Westland as prices for agricultural products increase and more effective drainage methods (e.g. 'humping and hollowing') facilitate wetland destruction.

## 1.2 Policy context

Concerns about the state and continuing loss of New Zealand wetlands became prominent in the late 1970's and early mid 1980's following the publication of the New Zealand Survey of Peat Resources (NWASCO 1978), the Peatland Policy Study (NWASCO 1982a), a Wetlands Guideline (NWASCO 1982b), and a subsequent report to the Environmental Council (NWASCO 1983). These documents ultimately led to the development of a New Zealand Wetlands Management Policy (Commission for the Environment 1986), a remarkable national and international achievement that represented one of the first such examples ever published. Although the Resource Management Act (RMA: 1991) did not supersede the New Zealand Wetlands Management Policy, it also identified wetlands as nationally important and requiring consideration when powers are exercised and decisions made under the Act (Cromarty and Scott 1996). For example, the RMA requires TLAs to draw up regional and district plans that include rules to protect and prevent further wetland loss, and to designate important wetlands. However, plan development, enforcement, and wetland designation has been patchy, resulting in piecemeal implementation of wetland conservation and management; consequently, substantial areas of wetlands continue to be drained,

<sup>&</sup>lt;sup>1</sup> Landcare Research scientists estimated the original extent of wetlands based on the selection from the Land Resource Inventory (LRI) of organic soils containing peat, and areas of shallow water containing specially adapted plant communities including rushes, sedges, reeds, flax, and pakihi vegetation.

polluted, and invaded by weeds and animal pests. These points were highlighted in The State of the Environment Report (1997), which noted shortcomings in how the New Zealand Wetland Policy had been implemented.

## **1.3** Previous wetland inventories

Many remaining wetlands are protected and managed by the DOC. Many more, including parts of Ramsar designated wetlands, are privately owned and grazed by livestock from adjacent farmland (Ministry for the Environment 1997). Protection is biased towards larger wetlands at the expense of smaller wetlands and wetland fragments, especially in lowland environments. In regions where wetland loss has been dramatic, these small wetlands (<10 ha) account for most of what remains. For example, Preece (2000) found that 90% of the remaining wetlands in the Tasman district were smaller than 10 ha and about 75% were smaller than 1 ha; furthermore, only 14% of wetlands under 100 m altitude were legally protected. Inventories in the Manawatu (Benn 1997) show similar patterns.

The absence of an accurate delineation of New Zealand's wetlands has been a major impediment to their protection and any national reporting on their state. Existing national delineations of wetlands (NZMS260, WERI<sup>2</sup>, LCDB, LCDB2) have large errors (O'Donnell & Zanders 2006; O'Donnell & Brown pers com.). For example, O'Donnell & Zanders (2006) demonstrated that estimates of freshwater cover in the upper Rangitata Valley and Ashburton Lakes varied considerably between databases, from 0.36% in River Environment Classification (REC) data layers (NIWA) to 12.84% for the NZMS260 vector maps. Similarly, Taranaki Regional Council surveys in the mid 1990's identified 717 surviving wetlands, five times more than the 139 recorded in the Wetlands of Ecological and Representative Importance (WERI) Inventory, with many on private land (Taranaki Regional Council 2001). These studies clearly demonstrate the need for an updated and much improved national inventory of wetlands.

Previous inventories have been collated from a combination of local knowledge, reports on protected areas, and interpretation of aerial photographs (Mitsch & Gosselink 2000), but this approach is often time-consuming. Recent developments in remote sensing and GIS have enabled more rapid and objective production of accurate wetland maps at 0.5 ha resolution. The Bay of Plenty Regional Council was able to construct a regional inventory of 300 wetlands, using standardised satellite images to determine wetland extent at the regional level. Delineation took six weeks, compared with one year if a field based assessment and manual digitisation of aerial photographs had been used. This, and a second application in the Manawatu region, proved such an approach was rapid and cost-effective; moreover, satellite images can be frequently updated at

<sup>&</sup>lt;sup>2</sup> In the late 1980's: the Biological Resource Centre developed a computer database known as WERI (Wetlands of Ecological and Representative Importance), effectively an inventory of about 3000 wetlands. It was essentially based on information collected during Wildlife Service surveys carried out during the 1970s and 1980s.

national scales to enable repeatable national reporting of the current location and extent of New Zealand's wetlands (Ausseil 2003). Therefore, satellite mapping could be used with field surveys to help designate wetlands with a high priority for further assessment.

## 1.4 Identifying wetlands of national importance

The Department of Conservation is developing a series of systematic conservation planning and reporting tools for terrestrial, freshwater and marine ecosystems under the banner of its Natural Heritage Management System (NHMS: see Stephens et al. 2002 for principles). The NHMS will provide resource managers with decision support tools to maximize efficient use of limited conservation resources. It will help managers prioritise, plan, and report on conservation outcomes over a range of geographical and organisational scales. The approach is based on systematic conservation planning principles (Margules & Pressey 2000) using data, transparent criteria, testable models, and explicit assumptions (Chadderton et al. 2004, Stephens et al. 2002). This report identifies nationally important inland wetlands needed to protect a full range of wetland biodiversity. It arises from the Waters of National Importance (WONI) project, part of the Sustainable Development Programme of Action for Freshwaters. The project goal required DOC to identify a list of water bodies that would protect a full range of freshwater biodiversity.

The first WONI output was a candidate list of nationally important rivers (Chadderton et al. 2004) reflecting the most immediate requirements of a multi-agency working party. Interest centred around securing the national needs for energy generation, water use, irrigation, natural heritage (bio and geo-diversity), recreation, and tourism at catchment scales. The Chadderton et al. (2004) report was the first attempt to identify nationally important rivers on the basis of their contribution to national or regional biodiversity, and it demonstrated that a quantitative approach using spatial databases could deliver a transparent and reproducible result. The ranking exercise attempted to meet two objectives: (1) maintaining viable populations of all species and (2) protecting the full range of remaining natural freshwater habitats and ecosystems that best represent indigenous biodiversity. The Chadderton et al. (2004) assessment combined information on catchment size (as a surrogate for river environment diversity), ecological integrity with data on presence of special features (threatened species and habitat types), and connectivity or buffering function (defined by the presence of nationally important wetlands and lakes in the catchment unit). The latter wetlands and lakes were largely defined from a preliminary list of wetlands of international significance (Cromarty & Scott 1996) developed from expert opinion as part of a RAMSAR directory initiative. However, Chadderton et al. (2004) acknowledged that this list was incomplete and they identified a critical need to develop a comprehensive, systematic, and reproducible list of nationally important wetlands. This report is the first of several steps towards addressing this need.

# 2. Objectives

Development of a list of nationally important wetlands using a systematic framework requires reliable maps of the current and former extent of wetlands. Moreover, without comprehensive biological inventory data, a spatially explicit classification must also provide a surrogate measure of the variety of life within and between different wetlands. This is fundamental to identifying a set of wetlands representing the full range of extant biodiversity. However, both requirements were lacking at the start of this project.

Therefore, this assessment had 4 objectives:

- Delineate the historic and current extent of all wetlands over 0.5 ha of mainland New Zealand including large inshore islands.
- Develop a spatially explicit classification based on the Johnson and Gerbeaux (2004) framework to classify each wetland into hydroclasses or subclasses.
- Develop measures of anthropogenic pressure to indicate the intensity of various human induced disturbances potentially affecting the ecological integrity of native biota (based on Stephens et al. (2002)).
- Develop a ranked list of wetlands of national importance that would protect a full range of wetland biodiversity and provide guidance on the most immediate conservation management needs.

# 3. Methods

## **3.1** Biogeographic framework and scale

Identification of nationally important water bodies for biodiversity must account for variability at both the local and biogeographic scales to capture effects of regional historic processes and local scale ecological processes on biodiversity pattern (Chadderton et al. 2004, Collier et al. 2003, Harding & Winterbourn 1997, McDowall 1996, Stephens et al. 2002, Vinson & Hawkins 1998). A freshwater biogeographic framework was developed for the riverine biodiversity assessment (Leathwick et al. 2008). This was designed to account for historic determinants of contemporary biodiversity patterns, particularly the large-scale disturbance events such as glaciation, sea level change, and volcanic eruptions that have major impacts on community composition at regional spatial scales. Colonisation pathways or barriers (e.g. alpine ridgelines, coastal straits) were also considered (Chadderton et al. 2004), as they affect the ability of surviving taxa to disperse and occupy or recolonise habitable sites. Boundaries were based on catchment units and were primarily derived using data describing riverine biota.

Leathwick et al. (2008) combined four different data sources:

- The distributions of obligate aquatic biota having a limited ability to disperse between catchments. These are thought to best indicate the minimum spatial scale required for conservation of entire freshwater ecosystems (Abell et al. 2000).
- Evidence of genetic similarity between different populations of various related freshwater species and groups (e.g. *Galaxias vulgaris* complex: Allibone et al. 1996),
- The extent of major historic physical disturbances (e.g. last glacial maximum, volcanic impact zones in the central North Island)
- The presence of regional-scale barriers or pathways for aquatic species dispersal.

Wetlands straddle aquatic and terrestrial ecosystems, and while emergent vegetation has been relatively well studied, the rest of the aquatic biota is not well known (especially invertebrates and algae; Sorrell & Gerbeaux 2004, Suren et al. 2008). We assumed the obligate freshwater wetland taxa will be the poorest dispersers and that these provide the best surrogate measures of the minimum spatial scales required for conservation of entire ecosystems. Therefore, the use of freshwater biogeographic units should adequately account for historic variation in wetland biodiversity (terrestrial and freshwater). We recognise the biogeographic framework may overestimate biological variation for some terrestrial groups, but it is more likely to under-estimate biodiversity spatial patterns driven by historic processes. In particular, some freshwater groups of poor-dispersing species (crustaceans and molluscs) vary at finer scales (first-order catchment units or neighbouring springs within a unit) (Scarsbrook et al. 2007, Ponder et al. 1996).

Using the riverine framework also enables future integration of wetland assessments with those for rivers, and lakes and estuaries, consistent with the goals of identifying Waters of National Importance.



Figure 1 Map of freshwater biogeographic units (Leathwick et al, 2007a).

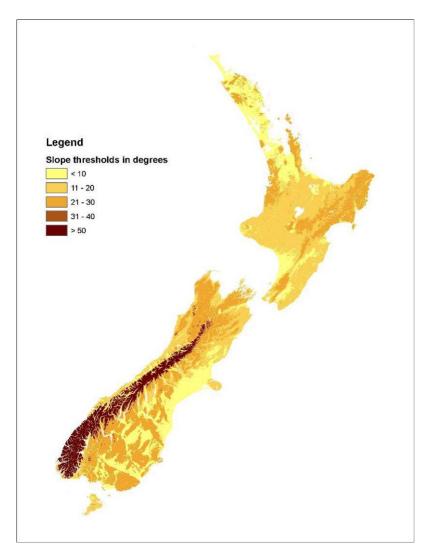
## 3.2 Delineation and mapping of wetlands

## **Pre-human extent**

A key objective is to estimate wetland loss since human settlement. Therefore we must estimate both the original (pre-human) extent of freshwater wetlands and the current extent in a way that allows valid comparison. No simple surrogate data can easily be applied but combinations of topographic and soil information (presence of peaty soils, soil wetness, etc.) have commonly been used in various parts of the world. Tests carried out in Australia (Northern Territory) found a strong correlation between a combination of soil and topography information and wetlands (92% similarity) in the study area (Beggs & Lowry 2003).

Several attempts have been made to estimate the extent of New Zealand's wetland loss. Landcare Research estimated that 672,000 ha of freshwater wetlands existed before human settlement (Ministry for the Environment 1997). They used the Land Resource Inventory (LRI) to select land units where the land use capability (LUC) was primarily limited by wetness (e.g. bog, fen, and swamp units on peaty and gleyed soils), and added areas of wetland vegetation. However, the regional LRI manuals also provide data on land units dominated by three other limiting factors: nutrients, climate, and erosion. These land units could contain wetlands (e.g. pakihi, seepages, and alpine bogs) not included in the estimate of historic cover given in the 1997 State of the Environment report.

We used the Fundamental Soil Layers (FSL), coupled with a 15 m Digital Elevation Model (DEM), to develop a more accurate estimate of pre-settlement wetlands. GIS rules were applied to generate 3 levels of certainty: 1 (highly probable—generally units initially identified by the 1997 Landcare Research analysis); 2 (units associated with pakihi and other soils with poor drainage); and 3 (wetlands can be found in this category but soil and landscape features are atypical of wetlands). Only the first two levels of certainty were used in our estimate of pre-settlement wetland extent.


The pre-settlement wetland layer was produced in a two step process: (1) selection of polygons, (2) refinement using a slope threshold.

In the first step, we selected polygons from three databases: NZMS260 topomaps, Land Cover Database 1 (LCDB1), and the LRI. The topomaps gave swamp polygons, indicating the swamp extent in the 1970s and '80s. The LCDB1 'inland wetlands' category provided evidence of wetland extent in the early '90s. The LRI provided the main source of pre-settlement soil information. Many features provided clues about wetness of soils:

- The Land use capability Correlation (LCORR) is the national land use classification based on the regional Land Use Capability (LUC). The hierarchical land use classification identifies the land's general versatility for productive use, the most limiting factor to production, and a general association of characteristics relevant to productive use (e.g. landform, soil, erosion potential, etc.).
- **GENSOI** is the soil code correlated to the nomenclature of the General Surveys of Soil of North and South Islands (New Zealand Soil Bureau 1954, New Zealand Soil Bureau 1968). A complete set of GENSOI data was available in the South Island, but no GENSOI data was available for the East Cape region.
- The National New Zealand Soils Classification (NZSC) is intended to replace the New Zealand Genetic Soil Classification (Hewitt 1998) but is not available for all areas of New Zealand. This was the primary layer used to delineate North Island wetlands.
- **DRAINAGE CLASS** is the internal soil drainage. It is divided into five classes from very poorly drained soils (class 1) to well-drained soils (class 5). A class below 3 is considered to have a high probability of being associated with a wetland area.
- **VEGETATION** indicates the vegetative cover derived from aerial photographs (Hunter & Blaschke 1986). This attribute helps confirm whether wetland vegetation is present.

We initially collated a list of suitable LCORR derived from the soil survey books and LUC manuals for the regions for which they were published. Among the selected LCORR polygons, we collated a list of appropriate soil codes, based on the study of the soil survey books. We used GENSOI in the South Island and NZSC in the North Island because of its complete coverage. The NZSC soil list was compiled using the current extent as a training dataset. As such, we selected NZSC soil types where wetland covered 95% of the current area. Drainage classes (drainage class < 3) and presence of wetland vegetation were then used to refine the polygon selection (the full set of GIS rules for selecting LRI polygons in the North and South Island is presented in Appendix 1).

In the second step, the selected polygons were refined by applying a slope threshold derived from a 15 m DEM. This is to counter the lower resolution of the LRI in montane areas, as the mapped units do not always fit the topographic details of the landscape. Polygons were sp on steeper slopes to refine probable wetland boundary limits. Slope thresholds were defined as any slope greater than the maximum in 95% of the current wetlands found in each level 1 environment of Land Environments of New Zealand (LENZ) (Leathwick et al. 2003) (Figure 2). The final layer is a raster layer, based on a 15 m cell grid.



**Figure 2** National distribution of Slope thresholds used to refine LRI wetland polygons to define the pre-settlement extent of wetlands. Thresholds are stratified across LENZ level 1 environments (Appendix 1).

#### **Current wetland extent**

We used a common framework based on wetland locations and standardised satellite imagery to develop a consistent, contemporary, national wetland layer.

#### Wetland location

Centre point data and wetland polygon data layers were collated from recent surveys, field work delineation, or photo-interpretation and held by regional councils, DOC conservancies, or Queen Elizabeth II trust (QEII) databases (Table 1). Regional Councils provided polygon or centre point data. The DOC database largely consisted of WERI data. QEII data was a polygon layer derived from all QEII covenants containing freshwater wetlands. Available data varied in standard and spatial extent with some regions having recently completed comprehensive surveys and/or updated inventories (e.g. Auckland, Waikato, Bay of Plenty, Manawatu, Wellington, Tasman, Canterbury). Others relied on old survey information (sometimes dating to the 1980s) or ad hoc updates of WERI, LCDB1 or topo-vectors (e.g. West Coast, Southland, Otago). Three regions, Northland, Hawke's Bay, and East Coast, had no recent inventory data so we used local knowledge to locate wetlands not already identified in NZMS260 or LCDB2.

| Region                    | Initial data source on freshwater wetlands                                      | Data type         | Number of sites to check |  |
|---------------------------|---------------------------------------------------------------------------------|-------------------|--------------------------|--|
| Northland                 | DOC collection of points                                                        | Polygon           | 274                      |  |
| Auckland                  | Auckland Regional Council (ARC) polygon database                                | Polygon           | 2225                     |  |
| Waikato                   | Landcare Research Ltd polygon database                                          | Polygon           | 874                      |  |
| Bay of Plenty             | Environment Bay of Plenty (EBOP) polygon database                               | Polygon           | 513                      |  |
| Manawatu–Wanganui         | Horizons database                                                               | Polygon and point | 943                      |  |
| Taranaki                  | Taranaki Regional Council (TRC) polygon database                                | Polygon           | 406                      |  |
| Hawkes Bay – East<br>Cape | DOC local knowledge of points                                                   | Point             | 189                      |  |
| Wellington                | Greater Wellington (GW) polygon database                                        | Polygon           | 236                      |  |
| Tasman                    | Tasman District Council (TDC) point database                                    | Point             | 835                      |  |
| Marlborough               | Marlborough District Council (MDC) point database                               | Point             | 453                      |  |
| West Coast                | Estimation by GIS rules using a combination of LRI, LCDB2, and DEM information. | Polygon           | 5884                     |  |
| Canterbury                | Environment Canterbury (ECAN) polygon and point database                        | Polygon and point | 2172                     |  |
| Otago                     | Otago Regional Council (ORC) polygon database                                   | Polygon           | 2082                     |  |
| Southland                 | DOC polygon database                                                            | Polygon           | 1468                     |  |

**Table 1** Input information used to delineate boundaries and centre points of current freshwater wetlands.

Wetlands today are often a combination of fragments of a former larger wetland, and may be represented by several separate polygons. Where these are still within close proximity they should be treated as a single entity, reflecting in part the value a combination of smaller wetland units may have if they could all be reconnected through restoration. Therefore, except where a wetland site was already defined by Regional councils or DOC, we considered all polygons to be the same wetland site if each was within 300 m of its nearest neighbour and historically contiguous. Each fragment was assigned the same identifier code.

#### Satellite images

Satellite images were used to provide a standardised set of imagery to check and complete delineation. We obtained 26 Landsat Enhanced Thematic Mapper (ETM+) images to provide a national cover of New Zealand. The images were collected between September 1999 and February 2003 (Figure 3). The six 30 m spectral bands of ETM+ were combined with the panchromatic layer to produce 15 m multi-spectral pixels (pan-sharpening). This pan-sharpening enables the data to be used at 1:50 000 scale. The pan-sharpened imagery was ortho-rectified using a digital elevation model (DEM). Ground-control points were derived from coverage of black and white orthophotographs with 2.5 m pixel resolution. Ortho-rectification was processed with ERDAS IMAGINE 8.40 software to a root mean square mapping error of 20 m.

The ortho-rectified imagery was then standardised to remove the influence of topography, the geometry of satellite and sun position, and atmospheric conditions (Shepherd & Dymond 2003). A

single satellite layer was created from a mosaic of 26 standardised Landsat images that covered both the North and South islands (Figure 3).

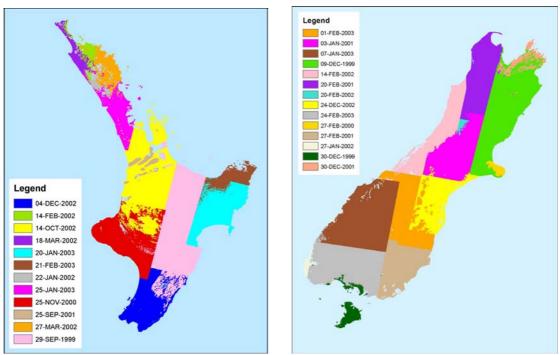



Figure 3 Mosaic of Landsat images for the North Island and South Island.

## Data checking method

The method consisted of bringing all of the collected data to the same standard, to achieve a consistent national layer, working by Territorial Local Authorities (TLA) region. A minimum mapping unit of 0.5 ha (i.e. 25 pixels) was adopted to reflect the discrimination limits of the satellite imagery.

For each region, the initial wetland information presented in Table 1 was checked on the satellite imagery using ERDAS IMAGINE. The LCDB1 and 2 (Land Cover Database 1 & 2), NZMS260 topomaps, LRI, FSL, and a 15 m Digital Elevation Model (DEM) were also used during delineation to help refine wetland boundaries. The NZMS260 and LCDB1 and 2 were most helpful for defining larger wetlands where these boundaries were known to be accurate. The DEM was applied to confirm wetland boundaries where existing polygons extended on to steep slopes. Although primarily used for delineating the historic extent of wetlands, LRI (LUC, soil types or vegetation) was also used in some regions where wetlands were covered with tall native vegetation. Soil data enabled determination of wetness status in areas not identified as wetland polygons in NZMS260 or LCDB1 and 2. It also helped in areas corresponding to wetland forests, as wetness in woody vegetation cannot be interpreted from satellite images.

A team of five GIS analysts (Anne Sutherland, Janice Willoughby, Hamish Heke, Terry Conaghan, and Tom Pyatt) used a program developed specifically for this project to check each wetland location. One GIS analyst ran the analysis for a given region to ensure consistency within a biogeographic unit. Two analysts were very familiar with the locations of remaining wetland in their region (Terry Conaghan for Northland and Tom Pyatt for Hawke's Bay). To ensure consistency, all GIS analysts attended a joint training session to ensure they all used the same level of visual interpretation of the satellite image.

For each wetland centre point (location), delineation was performed using one of two possible approaches:

- If the wetland information was a point, a region-grown algorithm was applied on the satellite image to generate a polygon. This algorithm searches around a seeding point and adds neighbouring pixels with a similar spectral signature to the seeding point. This allows an automatic definition of boundaries, but requires the manual setting of a spectral threshold. If the region-growing could not be done, the reason was recorded in the attribute table (presence of cloud, too small, too narrow, etc.).
- If the location consisted of a polygon and:
  - the polygon did not match the satellite image, then the region-growing algorithm was applied to update the boundaries. Other ancillary data (LCDB2, NZMS260, LRI) were used to enhance the delineation. In some cases, the extent was improved by adding new region-grown polygons
  - the polygon matched the image but the region-growing process did not improve the boundaries, then the polygon was kept in the final layer. In some cases, we consulted local experts and aerial photos if we were not certain whether the polygon was valid

In the Auckland, Bay of Plenty, and Manawatu regions, existing regional council data was largely retained as much of this had recently been defined (using ground-truthed data or aerial photos). In the northern North Island and most of the South Island, regional growing of polygons and existing LCDB2 lines were used to define wetland boundaries, reflecting in part limited previous investment in wetland mapping (Table 2). Time and budget constraints prevented a comprehensive check of all wetland locations over large regions in the South Island. Hence, because the number of sites to be checked for the West Coast region was far too large (5,884 sites), we scanned the region from north to south on the satellite images instead of checking each location. For Southland, only sites over 1 ha (1,268 sites) were checked, and for Canterbury and Otago, only sites over 1.5 ha were checked (1,279 sites and 1,346 sites respectively).

| Region                    | Region<br>growing | Regional<br>Council<br>polygon | LCDB2<br>polygon | NZMS260<br>'swamp'<br>polygon | Manual<br>Drawing | Open<br>water<br>polygon | SNA<br>report<br>polygon | Northland<br>aerial<br>photos | QEII | LRI |
|---------------------------|-------------------|--------------------------------|------------------|-------------------------------|-------------------|--------------------------|--------------------------|-------------------------------|------|-----|
| Northland                 | 69%               | 0%                             | 0%               | 4%                            | 2%                | 0%                       | 1%                       | 24%                           | 1%   | 0%  |
| Auckland                  | 8%                | 91%                            | 0%               | 0%                            | 0%                | 0%                       | 0%                       | 0%                            | 0%   | 0%  |
| Waikato                   | 49%               | 46%                            | 0%               | 0%                            | 0%                | 0%                       | 0%                       | 0%                            | 5%   | 0%  |
| Bay of<br>Plenty          | 7%                | 93%                            | 0%               | 0%                            | 0%                | 0%                       | 0%                       | 0%                            | 0%   | 0%  |
| Manawatu–<br>Wanganui     | 16%               | 65%                            | 15%              | 0%                            | 0%                | 3%                       | 0%                       | 0%                            | 0%   | 0%  |
| Taranaki                  | 36%               | 33%                            | 9%               | 0%                            | 0%                | 20%                      | 0%                       | 0%                            | 3%   | 0%  |
| Hawkes Bay<br>– East Cape | 75%               | 0%                             | 11%              | 9%                            | 4%                | 0%                       | 0%                       | 0%                            | 1%   | 0%  |
| Wellington                | 53%               | 45%                            | 0%               | 0%                            | 0%                | 0%                       | 0%                       | 0%                            | 2%   | 0%  |
| Tasman                    | 88%               | 0%                             | 9%               | 1%                            | 1%                | 0%                       | 0%                       | 0%                            | 1%   | 0%  |
| Marlborough               | 95%               | 0%                             | 0%               | 0%                            | 3%                | 0%                       | 0%                       | 0%                            | 2%   | 0%  |
| West Coast                | 44%               | 0%                             | 39%              | 3%                            | 0%                | 0%                       | 0%                       | 0%                            | 0%   | 14% |
| Canterbury                | 28%               | 66%                            | 4%               | 1%                            | 0%                | 0%                       | 0%                       | 0%                            | 0%   | 0%  |
| Otago                     | 59%               | 1%                             | 32%              | 7%                            | 0%                | 0%                       | 0%                       | 0%                            | 0%   | 0%  |
| Southland                 | 46%               | 2%                             | 46%              | 5%                            | 0%                | 0%                       | 0%                       | 0%                            | 1%   | 0%  |

Table 2 Sources of information used to define wetland boundaries and checked against satellite imagery.

The accuracy of current extent estimates was assessed by Ausseil et al. (2007) in the Manawatu region. They found a producer's accuracy—the probability that a ground-truthed sample is correctly mapped—of 65%. Producer's accuracy measures the errors of omission. User accuracy, which indicates the probability that a sample (in this case a polygon mapped by satellite) actually matches reference ground-truth data, was 76%. When comparing wetland areas site by site, the overall correlation coefficient was high (0.96), with a standard deviation of 3.46 hectares, with an uncertainty of  $\pm$  138 ha for the total area of palustrine wetlands mapped by satellite for the Manawatu region.

## 3.3 A Spatial (GIS-based) wetland typology

A spatially referenced wetland classification system was used as a surrogate measure of biological variation across and between wetlands. It is a tool to recognise and delineate the full range of wetland diversity. It also is an essential component of any systematic conservation process that attempts to identify a representative range of wetlands, especially in the absence of an adequate biodiversity inventory. We assumed that if we protect a full range of wetland types, defined by a classification, we will protect a full range of biodiversity (ecosystems, communities, species, genetic variation). The classification we used is based on the hierarchical and semi-hierarchical classification systems described in Johnson and Gerbeaux (2004).

## Defining hydrosystems from GIS databases

Of the nine wetland hydrosystems defined by Johnson and Gerbeaux (2004), we included palustrine and inland saline hydrosystems in this assessment. We did not consider estuarine, marine, riverine, lacustrine, plutonic, geothermal, and nival hydrosystems because these are (or will be) the focus of analogous classification and ranking projects.

*Inland saline* wetlands are those where strong evaporation processes result in high concentrations of soluble salts in soil and groundwater. They can be easily identified from information within the LRI. They are a minor hydrosystem in New Zealand, and now are only located in the basins of inland Otago. Where the salinity class of the LRI exceeded 3 or the GENSOI soil type was type '2' it was classified as an inland saline wetland (Johnson & Gerbeaux 2004).

*Palustrine* wetlands are defined as all freshwater wetlands fed by rain, groundwater, or surface water, but not directly associated with the open water of estuaries, lakes, or rivers (Johnson & Gerbeaux, 2004). We also excluded wetlands associated with estuary ecosystems as these will be assessed in later iterations.

## Defining wetland classes from GIS databases

Johnson and Gerbeaux (2004) recognised ten classes of freshwater wetlands, these being: bog, fen, swamp, marsh, seepage, shallow water, ephemeral wetland, pakihi/gumland, and saltmarsh. We did not consider saltmarshes because they are part of estuarine habitats. Shallow water required information on the depth of standing water but this is not available; therefore, to be consistent with Johnson & Gerbeaux (2004) we simply incorporated all open water bodies less than 500 m long (in any dimension) but did not differentiate these into a separate class. Ephemeral wetlands are season-dependent habitats whose extent varies temporally; they cannot yet be consistently delineated with remote tools. Therefore, we retained seven wetland classes: bog, fen, swamp, marsh, seepage, pakihi, and gumland. Their main environmental features are summarised in Table 3.

| Wetland class         | Water origin                             | Water flow       | Drainage         | Substrate                | Nutrient status    | pН      |
|-----------------------|------------------------------------------|------------------|------------------|--------------------------|--------------------|---------|
| Bog                   | Rain only                                | Almost nil       | Poor             | Peat                     | Low or very<br>low | 3–4.8   |
| Fen                   | Rain +<br>groundwater                    | Slow to moderate | Poor             | Mainly peat              | Low to moderate    | 4–6     |
| Swamp                 | Mainly surface<br>water +<br>groundwater | Moderate         | Poor             | Peat and/or mineral      | Moderate to high   | 4.8–6.3 |
| Marsh                 | Groundwater + surface water              | Slow to moderate | Moderate to good | Usually<br>mineral       | Moderate to high   | 6–7     |
| Seepage               | Surface water<br>and/or<br>groundwater   | Moderate to fast | Moderate to good | Peat, mineral<br>or rock | Low to high        | 4–7     |
| Pakihi and<br>gumland | Mainly rain                              | Almost nil       | Poor             | Mineral or peat          | Very low to<br>low | 4.1–5   |

**Table 3** Distinguishing features of New Zealand wetland classes (from Johnson & Gerbeaux2004)

Some key wetland features like pH, fertility, or drainage are defined as attributes in the Fundamental Soils Layer (FSL) (Table 3), but other clues can be found in landscape features. For example, a nearby lake or a river might indicate the dominant source of water; a large upstream subcatchment area may indicate the wetland receives nutrients from the upper catchment; and wetlands on steep slopes are probably seepages.

The FSL layer was first clipped to the wetland extent, and each polygon was assigned a wetland class. A simple decision tree based upon these properties is inadequate because some features overlap (e.g. range of pH) preventing crisp rule definition. We therefore used a rule-based fuzzy logic system to perform the classification. Rules were manually defined (based on higher level expert knowledge), and used to translate the features described in Table 3 into a probability framework for each wetland polygon.

For each feature *i* and each wetland class *j*, we assigned a degree of membership  $p_{ij}$  in [0,1] that the feature *i* describes the wetland type *j*. The  $p_{ij}$  are then multiplied together to obtain a probability  $p_j$  per wetland type:

$$p_j = \prod_{i=1}^n p_{ij}$$

The  $p_{ij}$  values are based on empirical expert knowledge and are presented in Appendix 2. The rules show that seepages, pakihi/gumland and inland saline follow a distinct path of rules: seepages are distinguished by the slope angle, pakihi/gumland and inland saline are identified by the soil type. Two groups are then clearly separated: swamp/marsh and bog/fen have a stronger differentation based on the pH class, peat content, fertility, and the nearby presence of a lake or river. Swamp and marsh are then distinguished essentially by the drainage class and bog and fen are distinguished using the pH class, the peat content, and the presence of red tussock (strong indicator of a fen system).

The protocol was slightly different for classifying the historical extent. The rules did not include the presence of a lake, river, and sub-catchment area, as these clues are site-specific and only apply to current extent.

## Accuracy assessment

As it was not possible to estimate the accuracy of the GIS classification over the whole country, we checked the validity of the classification using a field investigation in the Otago region. Over two days, a wetland expert (Peter Johnson) visited by helicopter almost half the remaining wetland in the Otago region. The wetland classes he observed were assessed against the GIS classification, assigning the dominant wetland class to the site if the classified wetland contained several classes (Ausseil et al. 2008).

## 3.4 Determining indicators of human induced pressure and ecological integrity

## Anthropogenic pressure measures

Wetlands are sensitive to environmental changes. They are ecotones that support both terrestrial and aquatic biota and so may be affected by a particularly diverse range of human disturbance pressures including alterations of nutrients, hydrology and sedimentation, fire, vegetation clearance, soil disturbance, invasion by aquatic or terrestrial weeds, and animal pests (e.g. livestock grazing, non indigenous fish, invertebrate pests) (Clarkson et al. 2002, Sorrell & Gerbeaux 2004). Over shorter timeframes, human induced disturbances can change biological community structure, composition, and function, thereby eliminating sensitive species, and altering ecological processes. Degradation of this suite of ecological features is described as a decline in ecological integrity (Clarkson et al. 2002).

We developed measures for six important and common pressures on wetland ecosystems. These are: naturalness of catchment cover; artificial impervious cover; nutrient enrichment; introduced fish; woody weeds; and drainage. Some pressures may affect a small component of the wetland community (e.g. invasive fish affect aquatic components), whereas water quality and quantity changes affect the entire wetland community (Table 4).

This does not include the full range of pressures affecting wetlands. For example, we were not able to develop measures of fire impacts because of the absence of a reliable national data layer describing past fires; nor did we explicitly consider mammalian pests, herbaceous weeds, and exotic invertebrates because there are no spatial data describing these; and fragmentation was not considered because of great uncertainty about how this should be measured and nature of its relationship to ecological integrity. Nitrate risk was used as a surrogate measure of land use intensity. We recognise that phosphorus probably plays a more important role in nutrient enrichment (Clarkson B., pers. com.) and in diminishing ecological integrity, but nationally comprehensive GIS data on the risk of phosphorus risk were not available.

| Indicator                                                 | Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference                                                                                                   |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Naturalness of<br>catchment cover                         | Loss of native vegetation, loss of buffering, increased edge<br>effects (increased risk of invasion, wind throw), increased<br>sedimentation due to soil erosion, change in catchment<br>discharge character and wetland hydrology. Catchment<br>clearance is associated with increased pesticide use,<br>increased nutrient loads, greater extremes in water<br>temperatures in inflowing streams. Impacts both aquatic and<br>terrestrial communities | Sorrell & Gerbeaux (2004),<br>Quinn (2000), Boulton &<br>Brock (1999)                                       |
| Artificial impervious<br>cover (urbanisation,<br>roading) | Changes in hydrological function, flashier inflows, increased<br>input of fine contaminants, heavy metals, and sediment,<br>potential increased invasion risk. Impacts both aquatic and<br>terrestrial communities                                                                                                                                                                                                                                      | Suren (2000), Suren &<br>Elliot (2004), Boulton &<br>Brock (1999)                                           |
| Nutrient enrichment                                       | Change in water quality, DO, pH, de-oxygenation, altered<br>plant species composition,<br>Impacts both aquatic and terrestrial communities                                                                                                                                                                                                                                                                                                              | Clarkson et al. (2002),<br>Sorrell & Gerbeaux (2004),<br>Parkyn & Wilcock (2004),<br>Boulton & Brock (1999) |
| Introduced fish                                           | Predation and competition with native communities, trophic cascades, altering physical habitat, and change in water quality. Impacts aquatic communities                                                                                                                                                                                                                                                                                                | Closs et al. (2004),<br>McIntosh (2000),<br>Champion et al. (2002).                                         |
| Woody weeds                                               | Change in plant composition, competition, increased<br>shading, and chemical inhibition (willows), and altered<br>hydrological function. Impacts both aquatic and terrestrial<br>communities                                                                                                                                                                                                                                                            | Sorrell & Gerbeaux (2004)                                                                                   |
| Drainage and soil disturbance                             | Loss of wetland habitat, change in plant community and<br>hydrological function, and potential changes for fauna.<br>Impacts both aquatic and terrestrial communities                                                                                                                                                                                                                                                                                   | Clarkson et al. (2002),<br>Sorrell & Gerbeaux (2004),<br>Boulton & Brock (1999)                             |

**Table 4** Anthropogenic pressure measures used to quantify human induced disturbance as an inverse measure of ecological integrity

#### Source data and scales of influence

For each wetland, pressure was quantified at a range of scales to include any combination of the contributing catchment, a surrounding 30 m buffer zone, and the wetland site (Table 5). The boundaries of contributing catchments were derived using ARCINFO (Ausseil 2003). Information about the upstream catchment provides a measure of probable presence of pollutants and increased nutrient or sediment linked to land clearance and intensification (e.g. urbanisation, pastural farming, forestry). The catchment's influence on nutrient input varies with wetland class; for example, bogs depend entirely on rainfall so are far less sensitive to catchment scale issues. Nutrient enrichment (nitrate risk) was quantified from the upstream catchment for marsh, seepage, inland saline, and wetlands close to rivers, and from the buffer zone for bog, fen, pakihi and gumland. For swamps, we assigned the maximum constraint between the catchment or the buffer zone influence. For simplicity, the other pressures were calculated equally between wetland classes.

| Indicator              | Source data                                                                                                                                                                                                                                                                                        | Format                                                             | Scale of influence                   |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|
| Naturalness            | LCDB2 natural land cover types (appendix 3),<br>modified with an overlay from Agribase farm<br>type record                                                                                                                                                                                         | Grid cells defined as<br>either 'natural' or<br>'unnatural' cover  | Catchment and buffer                 |
| Imperviousness         | NZ260 roads, LCDB urban areas, 50k Vectors<br>including roads, SHW, sealed, metalled, un-<br>metalled, Railway, attribute – multiple rails,<br>single rail, tracks, attributes – foot track, vehicle<br>track, tunnels, used to erase sections of road and<br>rail network, and buildings (point). | Grid cells defined as<br>either 'pervious' or<br>'impervious'      | Wetland,<br>catchment, and<br>buffer |
| Nutrient<br>enrichment | Nitrate risk measure derived from CLUES (Woods et al. 2006)                                                                                                                                                                                                                                        | Grid cells ranging<br>from 1 to 69 (natural<br>to highly enriched) | Catchment and buffer                 |
| Introduced fish        | New Zealand Freshwater Fish (NZFFD) database records                                                                                                                                                                                                                                               | Point database of<br>introduced fish<br>species                    | Catchment                            |
| Woody weeds            | LCDB2 willows and other woody weeds (Appendix 3)                                                                                                                                                                                                                                                   | Polygon layer of woody weeds                                       | Wetland and buffer                   |
| Drainage               | Layer derived from the NZMS 260 river network                                                                                                                                                                                                                                                      | Vector line                                                        | Wetland and buffer                   |

Table 5 Format and source data used to produce pressure measures

#### Relating pressure measures to ecological integrity

Before calculating an overall pressure index, for each pressure factor we calculated transfer functions that indicate our expectations of likely decline in ecological integrity. We assumed a high pressure index indicates low ecological integrity (Table 6) Ecological integrity values ranged from zero to one, where one indicates pristine or complete integrity. Relationships between ecological integrity and human induced pressure are designed to reflect qualitative understanding of likely changes across each anthropogenic disturbance gradient (Figure 4). For most pressures we have assumed that even at extreme levels of human disturbance some wetland function, biodiversity, or restoration potential will remain. Thus, condition indices do not generally decline to zero, except in the extreme case where 100% impervious cover would completely destroy wetland ecological values (Stephens et al. 2002). The shape of the transfer functions from pressure to ecological integrity were derived from expert opinion based on our understanding of these relationships and literature.

| EI name                                       | Scale of influence | Input variable x                                                     | Transfer function $c = f(x)$                                                      |
|-----------------------------------------------|--------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Naturalness ( $c_N$ )                         | Catchment          | Proportion of non-natural cover (0–1)                                | $c_N = 0.3 + \frac{0.7}{1 + e^{(10x - 4)}}$                                       |
|                                               | Buffer             | Proportion of non-natural cover (0–1)                                | $c_N = 1 - 0.7x$                                                                  |
| Imperviousness<br>( <i>c</i> <sub>Imp</sub> ) | Wetland and buffer | Proportion of impervious area (0–1)                                  | $c_{Imp} = \frac{1-x}{1+3x}$                                                      |
| Nutrient<br>enrichment<br>(c <sub>NL</sub> )  | Catchment          | Nitrate leaching risk mean value                                     | $c_{NL} = 1 - \frac{0.8}{1 + e^{(4 - 0.2x)}}$                                     |
|                                               | Buffer             | Nitrate leaching risk mean value                                     | $c_{NL} = 1 - 0.0125(1 - \frac{core}{edge}) \times x$                             |
| Introduced fish $(c_{IF})$                    | Catchment          | Number of introduced fish<br>species weighted by<br>pestiness scores | $c_{IF} = \frac{0.05 + 0.75x}{0.05 + x}$                                          |
| Woody weeds<br>$c_{WW} = \min(c_{gW}, c_o)$   | Wetland            | $rac{A_{woodyweed}}{A_{wetland}}$                                   | Grey willows ( <i>S. cinera</i> ) ( $c_{gw}$ ):<br>$c_{gw} = 1 - 0.75e^{-4(1-x)}$ |
|                                               |                    |                                                                      | For gorse and other $(c_o)$ :<br>$c_o = 1 - 0.25e^{-4(1-x)}$                      |
| Drainage $(c_D)$                              | Wetland and buffer | $\frac{A_{drain}}{A_{wetland}}$                                      | $c_D = 1 - 0.9x$                                                                  |

Table 6 Transfer functions applied to the pressure indicators (see Appendix 3 for more details)

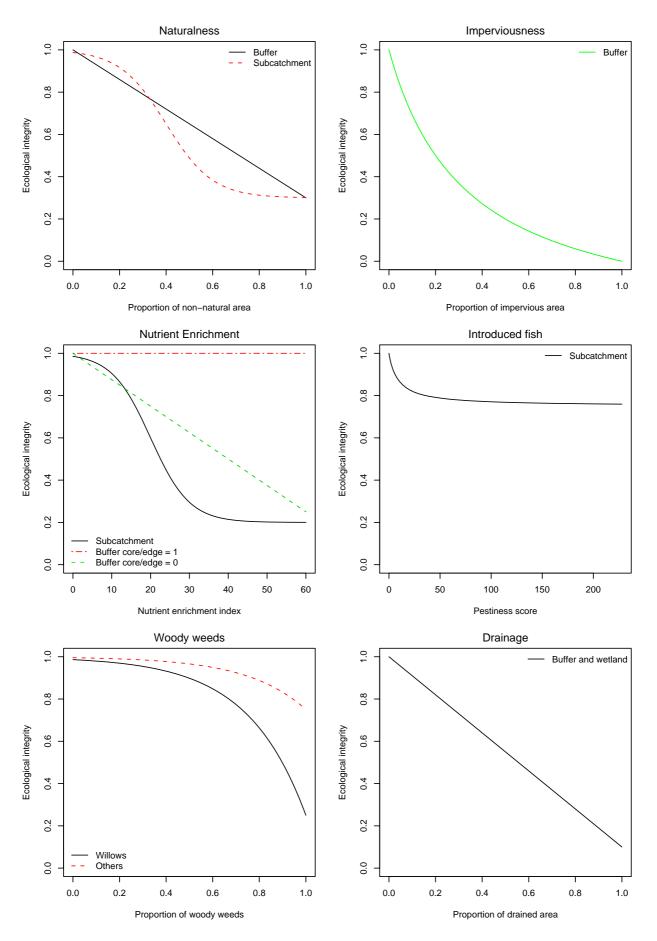



Figure 4 curves used to transform pressure indicators into an Ecological Integrity score

All pressure measures were then integrated into a single pressure index to quantify human induced disturbance. This was used as a weighting function to give less weight to wetlands likely to be already degraded.

Once all the transformations had been applied to each pressure measure, we computed an overall ecological integrity index (*EI*) as follows:

$$c = min(c_{Imp}, c_{NL}, c_N) \times c_D \times min(c_{gw}, c_o) \times c_{IF}$$

(1)

## With

 $c_{Imp} = \text{EI}$  associated with imperviousness measure  $c_{NL} = \text{EI}$  associated with Nitrate Leaching risk measure  $c_N = \text{EI}$  associated with Naturalness measure  $c_D = \text{EI}$  associated with Drainage measure  $c_{gw}$ ,  $c_o = \text{EI}$  associated with grey willow and other woody weeds respectively  $c_{IF} = \text{EI}$  associated with introduced fish measure

We took the smallest of the  $c_{Imp}$ ,  $c_N$ , and  $c_{NL}$  values, as this signals the maximum biological constraint. We used *c* as a weighting function to give less weight to wetlands in degraded condition.

## Ranking and site selection system

The objective of wetland site selection and ranking was to identify the minimum set of remaining inland wetlands that contribute most towards protecting a representative range of remaining wetland biodiversity. Ranking procedure was akin to that used to identify rivers of national importance (Leathwick et al. 2007b). We accounted for **complementarity** (Vane-Wright et al. 1991) between different wetland types and incorporated a measurement of **conservation effectiveness**, weighted by a measure of **irreplaceability** based on extent of habitat loss.

The **complementarity** measure explicitly accounts for the contribution that protection of one wetland type (e.g. swamp) makes to protection of biodiversity in related wetland types (e.g. fen and marshes). In other words, it takes into account the compositional overlap between wetland types. For this calculation, we needed a similarity matrix based on distances between wetland classes. Palustrine and inland saline hydrosystems were merged to the same level of analysis. Similarity distance measures were defined based on the wetland classification and expert advice (Table 7).

|                    | Bog  | Fen  | Swamp | Marsh | Pakihi/<br>gumland | Seepage | Saline |
|--------------------|------|------|-------|-------|--------------------|---------|--------|
| Bog                | 0    | 0.04 | 0.18  | 0.34  | 0.14               | 0.38    | 1      |
| Fen                | 0.04 | 0    | 0.08  | 0.2   | 0.1                | 0.22    | 1      |
| Swamp              | 0.18 | 0.08 | 0     | 0.08  | 0.24               | 0.4     | 1      |
| Marsh              | 0.34 | 0.2  | 0.08  | 0     | 0.34               | 0.4     | 0.96   |
| Pakihi/<br>gumland | 0.14 | 0.1  | 0.24  | 0.34  | 0                  | 0.42    | 1      |
| Seepage            | 0.38 | 0.22 | 0.4   | 0.4   | 0.42               | 0       | 1      |
| Saline             | 1    | 1    | 1     | 0.96  | 1                  | 1       | 0      |

Table 7 Distance measures used for the six palustrine wetland classes and the inland saline hydrosystem

There is much environmental overlap between wetland classes (Johnson & Gerbeaux 2004), with the exception of inland saline wetlands. Distance measures ranged between 0 (environmentally identical) and 1 with inland saline wetlands considered the most distinctive. Pakihi and gumlands were grouped into a single class. Fen/bog (distance 0.04), and swamp/marsh (distance 0.08) were considered to be environmentally quite similar and so likely to have similar community compositions.

For ranking purposes, we used a similarity measure (s) with a negative relationship to the distance measure, ranging from 0 (dissimilar) to 1 (identical), as below:

$$s_{ij} = e^{-kd_{ij}}$$
(2)

Where:

 $s_{ij}$  is the distance measure between wetland classes *i* and *j*, as given in Table 7. *k* is a positive multiplier set at 4

The selection process is based on a measure of **conservation effectiveness** (*CE*), that seeks to identify the minimum geographic area that will conserve most biodiversity (Leathwick et al. 2007b). The selection algorithm assumes an initial rapid increase in conservation effectiveness with the first sites or examples protected, but this flattens off as larger proportions are protected. It requires a measure of the contribution of a selected wetland to the goal of protecting all remaining wetland biodiversity. We defined *CE* as the sum of wetland class areas weighted by their ecological integrity scores; therefore larger wetlands should rank higher, although their potential contribution to *CE* can be down weighted by their ecological integrity scores.

We then further weight conservation effectiveness with a measure of **irreplaceability**<sup>3</sup>. Irreplaceability reflects the potential of each wetland to be substituted by another for the purpose of protecting a full range of biodiversity (i.e. the conservation goal). If a component of biodiversity (e.g. a wetland class) is represented by a single site, then irreplaceability is maximal because no other site can contribute the biodiversity it contains. If many sites could contribute this component of biodiversity, then irreplaceability is low.

 $<sup>^{3}</sup>$  With targets nominated, Pressey et al. (1994) defined the irreplaceability of a site in two ways: (1) the likelihood that it will be required as part of a conservation system that achieves the set of targets; and (2) the extent to which the options for achieving the set of targets are reduced if the area is unavailable for conservation.

The algorithm for estimating the conservation effectiveness (CE) of a given selection of wetland sites is as follows:

We calculate the maximum effective wetland area that can be protected  $(Pcomp_i)$  when taking into account the similarity between wetland classes:

$$Pcomp_{i} = \sum_{j=1}^{nj} s_{ij} \sum_{k=1}^{n} a_{ik}$$
(3)

Where:

 $n_j$  is the number of wetland classes.

 $s_{ij}$  is the similarity measure between wetland classes *i* and *j* 

*n* the total number of wetland sites

 $a_{ik}$  the area of class *i* in site *k* 

 $\sum_{k=1}^{n} a_{ik}$  is the maximum wetland area available for each class. The sum over the wetland classes  $n_j$ 

accounts for the complementarity. Selection of a similar class to the original will contribute much protection for biological features also present in the original class, whereas selection of a dissimilar wetland class will contribute little to the original class because they share few features. If the similarity of an additional wetland class is low, little is added to  $Pcomp_i$ .

We can estimate a similar measure  $(Pscomp_i)$  for any given wetland selection scenario:

$$Pscomp_{i} = \sum_{j=1}^{nj} s_{ij} \sum_{k=1}^{n} p_{k} a_{jk} c_{k}$$
(4)

Where:

 $p_k$  is a flag set as 0 (non selected) or 1 (selected) for each wetland site k.  $c_k$  the ecological integrity index as calculated above (see section 3.5.2) for site k

We then calculate *Pprot<sub>i</sub>*, the ratio of a particular selection over maximum potential protection:

$$Pprot_{i} = \frac{Pscomp_{i}}{Pcomp_{i}}$$
(5)

The conservation effectiveness (CE) of any wetland site selection scenario, averaged across all the wetland classes *i* can then be calculated as:

$$CE = \frac{\sum_{i=1}^{N} cf_{i} * [Pprot_{i}]^{0.25}}{\sum_{i=1}^{N} cf_{i}}$$
(6)

Where  $cf_i$  is a correction factor calculated as:

$$cf_i = \frac{a_i}{\sum_{j=1}^{n_j} s_{ij} a_j}$$
(7)

cf standardises the area by the similarity measure in the other types (which is a virtually augmented area). As in Ferrier et al. (2004), the ratio  $Pprot_i$  was raised to a power of 0.25 to reflect

a diminishing increment to conservation return with subsequent additions of the same class (*i*). This power function reflects the general species:area relationship (Rosenzweig 1995).

Finally, for any given selection, we calculate the benefit/cost ratio (CEratio) as follows:

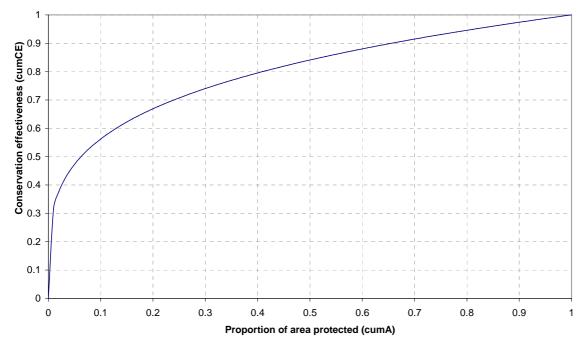
$$CEratio = \frac{CE}{cost * Hleft}$$
(8)

Where *Hleft* is defined as:

$$Hleft = \frac{\sum_{i=1}^{N} a_{ik} \left(\frac{Area_{i\_current}}{Area_{i\_historic}}\right)^{0.4}}{\sum_{i=1}^{N} a_{ik}}$$
(9)

with

Area<sub>i\_current</sub> Total current extent in class iArea<sub>i\_historic</sub> Total historic extent in class i


*Hleft* is a measure of habitat loss for type *i* represented in site *k*. It is high when the site *k* holds a wetland type that has not lost too much extent within the biogeographic unit. *1/Hleft* is an **irreplaceability** measure: the smaller the ratio of current over historic of a wetland type, the higher the irreplaceability and therefore the higher ranking.

cost = 1 at this stage, but it could be set as any measure involving a cost to conservation effectiveness, such as area contribution, land tenure constraint, or land use capability. For example, Leathwick et al. (2007b) used the sum of the river and stream segment lengths as an indicator of cost, assuming that the costs of protection are proportional to the amount of resource protected.

#### Iterative selection of priority wetlands

Wetlands were ranked and selected within each biogeographic unit by iterating the steps described above. We began by calculating for each wetland site the *CEratio* value, and selecting the wetland that maximises *CEratio* as our first selected priority site. We repeated the procedure, calculating the marginal increase in *CEratio* resulting from selecting each remaining wetland site. Finally, to the selected set we added the wetland site that would result in the highest *CEratio*. This process was repeated until all the wetland sites in the biogeographic unit were selected. In this way a ranked list was created. Note that it could be repeated until a nominated level of CE was achieved, or some total *cost* or *Hleft* threshold was reached.

The relationship between measures of cumulative conservation effectiveness (cumCE) against the cumulative area (CumA) protected reflects the species-area relationship (Figure 5). When a small area is protected, conservation effectiveness increases rapidly, slowing as larger proportions of the biogeographic unit are protected.



**Figure 5** The function used to describe the relationship between conservation effectiveness and the proportion of protection accorded to a wetland class.

# 4. Results

#### 4.1 Current and historic extent

We estimate the total historic extent of wetlands in New Zealand was 2.4 million ha, nearly three times greater than previous estimates (672,000 ha (Ministry for the Environment 1997)) although the earlier estimate excluded many wetland forests on alluvial flood plains. Our figure suggests almost 9% of the New Zealand mainland area (North Island, South Island, and Stewart Island) was covered by wetland. Current extent is estimated to be 249,776 ha, or 10% of the former extent, consistent with previously cited 90% loss in wetland cover. The loss has been greatest in the North Island, which now retains only 4.9% of its historic extent and contributes about 25% to the national total (Figures 6 & 7; Table 8). Loss has been greatest in the Auckland, Coromandel, East Cape, Manawatu, Hawkes Bay, Northland, and Wellington regions, with wetlands now largely absent from lowland alluvial flood plains. Just over 16% of wetlands area remains in the South Island but this accounts for 75% of the total national area (Figures 6 & 7; Table 8). Wetland cover has survived best on the West Coast of the South Island, on Stewart Island, and in the Otago region (Taeri, Clutha, and Otago Peninsula).

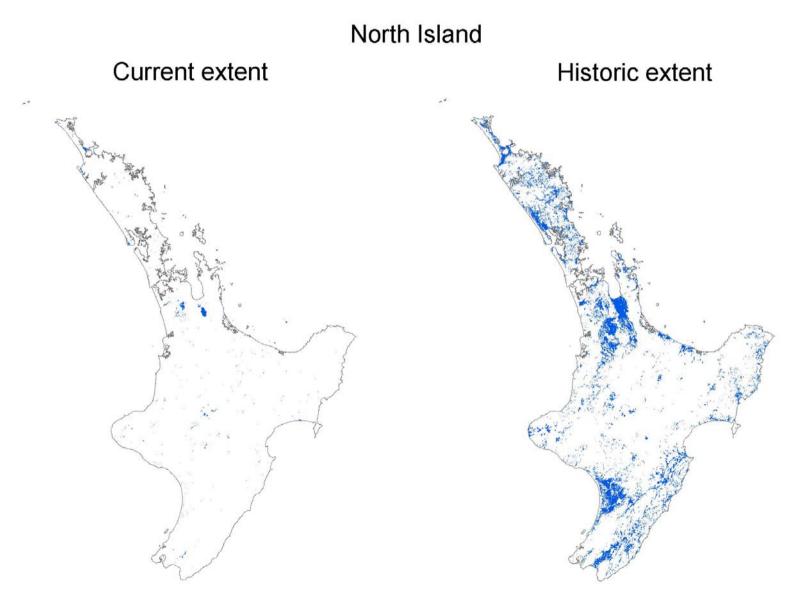



Figure 6 Current and historic extent of freshwater wetlands in the North Island.

Landcare Research New Zealand Limited

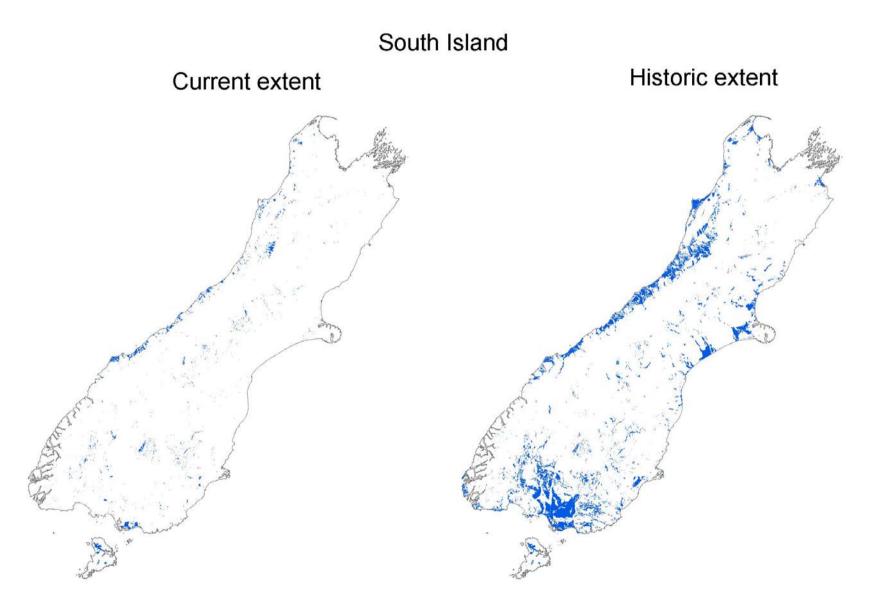



Figure 7 Current and historic extent of freshwater wetlands in the South Island.

At the level of biogeographic units, Westland and Southland have the greatest proportion of national current extent, with 21% and 13% respectively (Table 8). However, despite the presence of large wetland complexes in Southland, this unit has suffered the greatest loss of any South Island region: only 7.9% of its former wetland extent remains, compared to just over 24% in Westland. Twelve of the 29 biogeographic units contain less than 1% of national wetland area, with a percentage loss close to the national average. This reflects that wetlands appear to have been naturally rare in some biogeographic units (e.g. Banks and Otago Peninsulas, Wellington, and Motueka Nelson). On the Otago Peninsula wetlands were uncommon, but a high proportion of their former extent (37%) has been retained. For many other biogeographic units, less than 5% of the former extent remains. Loss seems almost total in Palliser-Kidnappers and East Cape with only 0.4% and 2.4% respectively of former wetlands remaining.

| Biogeographic unit         | Current extent (ha) | Historic extent (ha) | Proportion of<br>national current<br>extent | Proportion<br>remaining of<br>historic extent |
|----------------------------|---------------------|----------------------|---------------------------------------------|-----------------------------------------------|
| Auckland                   | 859                 | 30,381               | 0.3%                                        | 2.8%                                          |
| Banks Peninsula            | 34                  | 356                  | <0.1%                                       | 9.6%                                          |
| Bay of Plenty              | 3,043               | 29,136               | 1.2%                                        | 10.4%                                         |
| Canterbury                 | 11,559              | 164,869              | 4.6%                                        | 7.0%                                          |
| Clutha                     | 14,527              | 58,803               | 5.8%                                        | 24.7%                                         |
| Coromandel                 | 737                 | 25,984               | 0.3%                                        | 2.8%                                          |
| East Cape                  | 2,354               | 97,033               | 0.9%                                        | 2.4%                                          |
| Fiordland                  | 1,252               | 28,704               | 0.5%                                        | 4.4%                                          |
| Grey–Buller                | 20,196              | 102,379              | 8.1%                                        | 19.7%                                         |
| Hawkes Bay                 | 1,019               | 33,902               | 0.4%                                        | 3.0%                                          |
| Manawatu–Wairarapa         | 3,414               | 254,257              | 1.4%                                        | 1.3%                                          |
| Marlborough                | 1,710               | 14,756               | 0.7%                                        | 11.6%                                         |
| Mokau                      | 1,208               | 23,638               | 0.5%                                        | 5.1%                                          |
| Motueka–Nelson             | 276                 | 5,802                | 0.1%                                        | 4.8%                                          |
| Northland – eastern        | 3,084               | 79,457               | 1.2%                                        | 3.9%                                          |
| Northland – northern       | 5,179               | 27,973               | 2.1%                                        | 18.5%                                         |
| Northland – western        | 6,865               | 179,120              | 2.7%                                        | 3.8%                                          |
| Northwest Nelson – Paparoa | 18,086              | 66,461               | 7.2%                                        | 27.2%                                         |
| Otago Peninsula            | 344                 | 930                  | 0.1%                                        | 37.0%                                         |
| Palliser-Kidnappers        | 326                 | 74,009               | 0.1%                                        | 0.4%                                          |
| Southland                  | 32,970              | 415,785              | 13.2%                                       | 7.9%                                          |
| Stewart Island             | 12,552              | 12,552               | 5%                                          | 100.0%                                        |
| Taieri                     | 11,039              | 36,828               | 4.4%                                        | 30.0%                                         |
| Taranaki                   | 1,209               | 23,117               | 0.5%                                        | 5.2%                                          |
| Waikato                    | 27,601              | 312,011              | 11.1%                                       | 8.9%                                          |
| Waitaki                    | 8,183               | 23,416               | 3.3%                                        | 35.0%                                         |

**Table 8** Current extent of freshwater wetlands per biogeographic units

Landcare Research New Zealand Limited

| Biogeographic unit     | Current extent (ha) | Historic extent<br>(ha) | Proportion of<br>national current<br>extent | Proportion<br>remaining of<br>historic extent |
|------------------------|---------------------|-------------------------|---------------------------------------------|-----------------------------------------------|
| Wanganui–Rangitikei    | 6,865               | 127,233                 | 2.7%                                        | 5.4%                                          |
| Wellington             | 474                 | 5,834                   | 0.2%                                        | 8.1%                                          |
| Westland               | 52,569              | 215,164                 | 21%                                         | 24.4%                                         |
| Undefined <sup>4</sup> | 242                 | 1,188                   | 0.1%                                        | -                                             |
| Total                  | 249,776             | 2,471,080               | 100%                                        | 10.11%                                        |

A comparison of wetland loss within Territorial Local Authority boundaries gives a slightly different picture (Table 9). On average less than 5% of wetland area remains in any North Island TLA district, and five have less than 3% of their former extent. In the South Island, all have more than 10% remaining (average 16%). The West Coast and Southland TLA's provide the biggest contributions to national wetland area (contributing 34% and 19% respectively) despite having lost 75–80% of their historic extent.

A comparison of Manawatu and Tasman Districts is telling. Both make a small contribution (2.8% and 2.1%) respectively to the total current extent. However, the proportion of loss differs markedly, with Manawatu (TLA) retaining 2.6% of its former wetland area while 19% of wetlands remain in Tasman (TLA).

<sup>&</sup>lt;sup>4</sup> Some of the current and historic extent fell outside the WONI biogeographic units because of discrepancies in the coastal boundaries; these were classified as "undefined" and represented 0.1% and 0.05% of the current and historic extent respectively.

|                 | TLA region                          | Current<br>extent (ha) | % National extent | Historic<br>extent (ha) | % left |
|-----------------|-------------------------------------|------------------------|-------------------|-------------------------|--------|
| North<br>Island | Northland                           | 14,114                 | 5.7%              | 258,451                 | 5.5%   |
|                 | Auckland                            | 2,639                  | 1.1%              | 57,851                  | 4.6%   |
|                 | Waikato                             | 28,226                 | 11.3%             | 356,516                 | 7.9%   |
|                 | BOP                                 | 3,304                  | 1.3%              | 43,089                  | 7.7%   |
|                 | Manawatu                            | 6,983                  | 2.8%              | 264,511                 | 2.6%   |
|                 | Taranaki                            | 3,045                  | 1.2%              | 40,278                  | 7.6%   |
|                 | Hawkes Bay                          | 3,394                  | 1.4%              | 180,371                 | 1.9%   |
|                 | Wellington                          | 2,774                  | 1.1%              | 122,804                 | 2.3%   |
|                 | Total<br>North Island               | 64,479                 | 25.8%             | 1,323,871               | 4.9%   |
| South<br>Island | Tasman                              | 5,224                  | 2.1%              | 27,339                  | 19.1%  |
|                 | Marlborough                         | 1,545                  | 0.6%              | 12,785                  | 12.1%  |
|                 | West Coast                          | 84,396                 | 33.8%             | 358,182                 | 23.6%  |
|                 | Canterbury                          | 19,851                 | 7.9%              | 187,115                 | 10.6%  |
|                 | Otago                               | 27,050                 | 10.8%             | 110,804                 | 24.4%  |
|                 | Southland                           | 47,231                 | 18.9%             | 450,985                 | 10.8%  |
|                 | Total<br>South & Stewart<br>islands | 185,297                | 74.2%             | 1,147,209               | 16.3%  |
|                 | TOTAL                               | 249,776                | 100%              | 2,471,080               | 10.1%  |

Table 9 Current and historic extent of freshwater wetlands per TLA region

## 4.2 Wetland types

#### **Results from the GIS classification**

Swamps and pakihi/gumland are the two most common wetland classes, making up 36% and 23% respectively of all remaining wetland area (Table 10). However, swamps (being fertile and suitable for agriculture if drained) have undergone most loss with only 6% of their historical extent remaining. Inland saline wetlands were always the rarest form of wetland but today only 292 ha remains, exclusively in Central Otago (Clutha and Taeri biogeographic units). This represents not quite 20% of the former extent. Seepages seem least affected by habitat destruction, with 68% remaining.

|                        | Current<br>extent (ha) | Historic<br>extent (ha) | Proportion of national current extent | Proportion of remaining historic extent |
|------------------------|------------------------|-------------------------|---------------------------------------|-----------------------------------------|
| Pakihi/gumland         | 56,909                 | 339,458                 | 22.8%                                 | 16.8%                                   |
| Bog                    | 40,061                 | 153,116                 | 16.0%                                 | 26.2%                                   |
| Swamp                  | 89,922                 | 1,501,008               | 36.0%                                 | 6.0%                                    |
| Marsh                  | 23,066                 | 280,828                 | 9.2%                                  | 8.2%                                    |
| Fen                    | 37,009                 | 192,097                 | 14.8%                                 | 19.3%                                   |
| Seepage                | 2,043                  | 2,990                   | 0.8%                                  | 68.3%                                   |
| Inland Saline          | 292                    | 1,586                   | 0.1%                                  | 18.4%                                   |
| Undefined <sup>5</sup> | 474                    |                         | 0.2%                                  |                                         |

Table 10 Current and historic Extent of wetland classes.

At the biogeographic unit level, Westland has the highest proportion of national current extent of swamp (over a third) whereas the Waikato biogeographic unit has the highest proportion of bog (Figure 9). Almost 80% of the total area of bog in the Waikato (13,067 ha), is estimated to reside in two wetland sites, Whangamarino (3398 ha bog area) and Kopuatai peat dome (Bog area; 7186 ha) (Appendix 5). Southland biogeographic unit is the other major stronghold for bogs (32% of national area), most being found within the Awarua wetland complex. Fens are most common in the Clutha and Southland biogeographic unit, accounting for 25% and 23% respectively of the total national area. Small areas of marsh and seepage are present throughout New Zealand, but the inland saline wetland class is found only in the Clutha and Taieri biogeographic units (Figure 8).

<sup>&</sup>lt;sup>5</sup> "Undefined" corresponds to wetland areas that couldn't be assigned a type because of edge discrepancies with the LRI layer used for the typology rules. Landcare Research New Zealand Limited

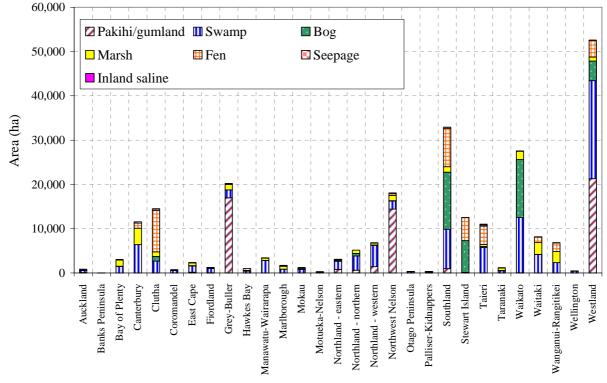



Figure 8 Distribution of wetland classes in each biogeographic unit

Wetland loss varies across wetland classes and between biogeographic units. For example, Pakihi/gumland wetlands have been mostly preserved in the East Cape and Northwest Nelson units (41% and 35% left, respectively), while in the Bay of Plenty and Waikato less than 1% and 3% remain, respectively (Table 11). Furthermore, Waikato is estimated to be a stronghold for bogs ( with 19% remaining) but less than 5% of the other wetland classes remains. Southland is similar, retaining almost 36% of its bog area while swamps and marshes shrank to < 5% of former area. A disproportional reduction in the extent of the most common wetland class often drives the high (>90%) overall loss. Thus in Motueka Nelson where overall < 5% of wetlands remain, 2% of swamps remain but 52% of seepages and 26% of marsh wetland classes have survived (Table 11).

**Table 11** Proportion of wetland classes remaining in each biogeographic unit (the historical extent in hectares is in brackets)

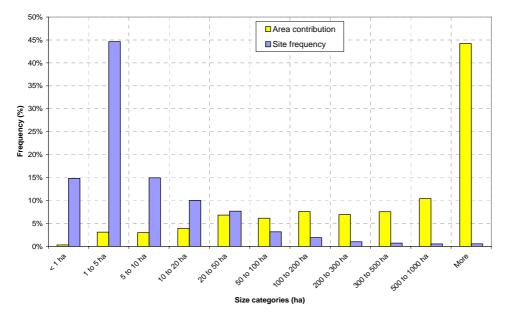
|               | Total    | Pakihi/<br>gumland | bog    | swamp    | marsh   | fen     | seepage | Inland<br>saline |
|---------------|----------|--------------------|--------|----------|---------|---------|---------|------------------|
| Auckland      | 3%       | 2%                 | 4%     | 2%       | 13%     | 0.2%    | 100%    |                  |
|               | (30381)  | (4393)             | (1141) | (20815)  | (1541)  | (2478)  | (12)    |                  |
| Banks         | 10%      |                    |        | 3%       | 51%     |         | 12%     |                  |
| Peninsula     | (356)    |                    |        | (297)    | (47)    |         | (12)    |                  |
| Bay of Plenty | 10%      | 0%                 | 3%     | 7%       | 47%     | 1%      |         |                  |
|               | (29136)  | (513)              | (888)  | (21569)  | (2981)  | (3184)  |         |                  |
| Canterbury    | 7%       |                    |        | 4%       | 31%     | 49%     | 100%    |                  |
|               | (164869) |                    |        | (150249) | (12068) | (2366)  | (186)   |                  |
| Clutha        | 25%      |                    | 47%    | 12%      | 16%     | 38%     | 34%     | 7%               |
|               | (58803)  |                    | (2191) | (23202)  | (6635)  | (24612) | (1136)  | (1027)           |
| Coromandel    | 3%       |                    | 0%     | 2%       | 52%     | 3%      | 42%     |                  |
|               | (25984)  |                    | (108)  | (24507)  | (236)   | (1128)  | (5)     |                  |

Landcare Research New Zealand Limited

|             | Total    | Pakihi/<br>gumland | bog     | swamp           | marsh   | fen     | seepage     | Inland<br>saline |
|-------------|----------|--------------------|---------|-----------------|---------|---------|-------------|------------------|
| East Cape   | 2%       | 41%                | 22%     | 2%              | 2%      | 0.4%    | 97%         |                  |
|             | (97033)  | (388)              | (233)   | (62879)         | (32036) | (1443)  | (54)        |                  |
| Fiordland   | 4%       | 0%                 | 0%      | 100%            |         | 5%      | 100%        |                  |
|             | (28704)  | (24587)            | (40)    | (653)           |         | (3405)  | (19)        |                  |
| Grey–Buller | 20%      | 21%                | 1%      | 18%             | 13%     | 100%    | 100%        |                  |
|             | (102379) | (82521)            | (437)   | (10076)         | (9321)  | (0)     | (24)        |                  |
| Hawkes Bay  | 3%       |                    |         | 2%              | 4%      | 15%     | 100%        |                  |
| -           | (33902)  |                    |         | (27457)         | (3714)  | (2715)  | (15)        |                  |
| Manawatu–   | 1%       |                    | 0.3%    | 1%              | 2%      | 1%      | 100%        |                  |
| Wairarapa   | (254257) |                    | (1266)  | (230068)        | (21631) | (1290)  | (2)         |                  |
| Marlborough | 12%      |                    |         | 8%              | 38%     | 5%      | 91%         |                  |
| C           | (14756)  |                    |         | (11028)         | (1755)  | (1863)  | (109)       |                  |
| Mokau       | 5%       |                    | 13%     | 5%              | 5%      | 2%      | 100%        |                  |
|             | (23638)  |                    | (715)   | (17411)         | (5126)  | (371)   | (15)        |                  |
| Motueka-    | 5%       |                    | . /     | 2%              | 26%     | · /     | 52%         |                  |
| Nelson      | (5802)   |                    |         | (5379)          | (382)   |         | (41)        |                  |
| Northland – | 4%       | 3%                 | 3%      | 5%              | 2%      | 1%      | × /         |                  |
| eastern     | (79457)  | (25812)            | (6432)  | (34596)         | (10296) | (2320)  |             |                  |
| Northland - | 18%      | 5%                 | 8%      | 47%             | 100%    | 1%      |             |                  |
| northern    | (27973)  | (12529)            | (7705)  | (6809)          | (451)   | (479)   |             |                  |
| Northland – | 4%       | 5%                 | 2%      | 4%              | 2%      | 0.3%    | 100%        |                  |
| western     | (179120) | (31175)            | (3080)  | (121376)        | (18341) | (5141)  | (7)         |                  |
| Northwest   | 27%      | 35%                | 4%      | 15%             | 11%     | 100%    | 100%        |                  |
| Nelson      | (66461)  | (41349)            | (1960)  | (11702)         | (11336) | (54)    | (61)        |                  |
| Otago       | 35%      | (+13+7)            | (1)00)  | 31%             | (11550) | (34)    | 74%         |                  |
| Peninsula   | (930)    |                    |         | (925)           |         |         | (5)         |                  |
| Palliser-   | 0.4%     |                    |         | 0.3%            | 1%      | 0%      | 100%        |                  |
| Kidnappers  | (74009)  |                    |         | 0.3%<br>(59544) | (14156) | (306)   | 100%<br>(4) |                  |
| Southland   | 8%       | 17%                | 36%     | 4%              |         | 10%     | 67%         |                  |
| Southland   |          |                    |         |                 | 3%      |         |             |                  |
|             | (415785) | (5927)             | (36209) | (250924)        | (36058) | (86264) | (404)       |                  |
| Stewart     | 100%     |                    | 100%    | 100%            |         | 100%    |             |                  |
| Island      | (12552)  |                    | (7173)  | (140)           |         | (5239)  |             |                  |
| Taieri      | 30%      |                    | 21%     | 24%             | 10%     | 67%     | 44%         | 39%              |
|             | (36828)  |                    | (1020)  | (23818)         | (4701)  | (6181)  | (548)       | (559)            |
| Taranaki    | 5%       |                    | 100%    | 2%              | 29%     | 8%      | 100%        |                  |
|             | (23117)  |                    | (82)    | (20166)         | (1868)  | (997)   | (4)         |                  |
| Waikato     | 9%       | 3%                 | 19%     | 7%              | 5%      | 0.2%    |             |                  |
|             | (312011) | (1321)             | (69799) | (179957)        | (37811) | (23123) |             |                  |
| Waitaki     | 35%      |                    |         | 27%             | 50%     | 51%     | 22%         |                  |
|             | (23416)  |                    |         | (15275)         | (5441)  | (2406)  | (293)       |                  |
| Wanganui-   | 5%       |                    | 0%      | 2%              | 9%      | 45%     | 100%        |                  |
| Rangitikei  | (127233) |                    | (442)   | (94548)         | (27930) | (4283)  | (30)        |                  |
| Wellington  | 8%       |                    |         | 16%             | 86%     | 0.3%    |             | -                |
|             | (5834)   |                    |         | (2437)          | (58)    | (3340)  |             |                  |
| Westland    | 24%      | 20%                | 37%     | 31%             | 6%      | 54%     | 100%        |                  |
|             | (215164) | (108767)           | (12162) | (72398)         | (14784) | (7051)  | (2)         |                  |

See Appendix 4 for data describing the distribution of wetland classes across TLA boundaries.

#### Accuracy assessment


An error matrix of the thematic classification was generated (Table 12) from the Otago field assessment. It showed an overall agreement of 60% but this varied greatly between classes. Accuracy was generally higher for all wetland classes (over 80% correct classification) except for marshes (5%) (cf. 'user's accuracy'). Hence, where we found a bog, fen, swamp, or seepage in the field these were usually accurately classified by our GIS rules. However, most marshes observed in the field were misclassified as swamp (93%), although where marshes were identified by the GIS rules they were correctly classified 83% of the time (cf. 'producer's accuracy'). True fens, bogs, and swamps were generally correctly classified in GIS, but the classification suggests the last two were far more abundant than they actually were. For instance, 46% of bogs identified by the GIS rules were actually fens, and 59% of GIS swamps were marshes. Seepages were also overestimated, and only 11% of the real seepages were correctly classified.

|                |                 | Wetla | nd class o | bserved |       |         |                  |       | Producer's accuracy |
|----------------|-----------------|-------|------------|---------|-------|---------|------------------|-------|---------------------|
| Area (ha)      |                 | Bog   | Fen        | Marsh   | Swamp | seepage | Inland<br>saline | Total |                     |
| GIS            | Bog             | 351   | 319        | 22      | 0     | 0       | 0                | 692   | 51%                 |
| classification | Fen             | 4     | 2283       | 1       | 58    | 0       | 0                | 2345  | 97%                 |
|                | Marsh           | 0     | 0          | 93      | 13    |         | 6                | 112   | 83%                 |
|                | Swamp           | 9     | 248        | 1747    | 940   | 0       | 0                | 2943  | 32%                 |
|                | Seepage         | 0     |            | 12      | 36    | 6       | 3                | 58    | 11%                 |
|                | Total           | 363   | 2850       | 1874    | 1046  | 6       | 10               | 6149  |                     |
|                | User's accuracy | 96%   | 80%        | 5%      | 90%   | 100%    |                  |       | 60%                 |

Table 12 Error matrix of the wetland classification in the Otago region

## 4.3 Size distribution

Of a total of 7032 individual wetlands mapped nationally, most (74%) are smaller than 10 ha and represent 6% of the national wetland area (Figure 9). There are 77 wetlands over 500 ha which in total cover 54.6% of remaining wetland area (Table 13). These large wetlands (>500ha) are swamp, bog, or pakihis (2), and are mostly on the West Coast (45%), or in Southland, Otago, and Waikato. New Zealand's largest wetland (Kopuatai: 10542 ha) is classified as a bog and located in the Waikato biogeographic unit. Almost half of all biogeographic units contain no wetland over 500 ha.



**Figure 9** Size frequency and proportional contribution to total area of wetlands nationally (7032 sites)

| <b>Table 13</b> Number, total area, and wetland classes in the 77 remaining we | etlands over 500 ha |
|--------------------------------------------------------------------------------|---------------------|
| in each biogeographic unit                                                     |                     |
|                                                                                |                     |

| Biogeographic<br>unit   | Number of<br>wetland sites<br>over 500 ha | Total<br>area<br>(ha) | Bog   | Swamp | Marsh | Fen   | Inland<br>saline | Pakihi/<br>Gumland |
|-------------------------|-------------------------------------------|-----------------------|-------|-------|-------|-------|------------------|--------------------|
| Canterbury              | 2                                         | 2086                  | 0     | 1868  | 202   | 16    | 0                | 0                  |
| Clutha                  | 4                                         | 7648                  | 330   | 877   | 207   | 6235  | 0                | 0                  |
| East Cape               | 1                                         | 651                   | 0     | 637   | 14    | 0     | 0                | 0                  |
| Grey-Buller             | 8                                         | 12476                 | 0     | 241   | 160   | 13    | 0                | 12062              |
| Northland –<br>eastern  | 1                                         | 827                   | 106   | 239   | 0     | 0     | 0                | 481                |
| Northland –<br>northern | 2                                         | 2932                  | 136   | 1533  | 436   | 0     | 0                | 827                |
| Northland –<br>western  | 2                                         | 2460                  | 0     | 2105  | 45    | 0     | 0                | 310                |
| Northwest<br>Nelson     | 7                                         | 6051                  | 0     | 275   | 231   | 34    | 0                | 5512               |
| Southland               | 8                                         | 15543                 | 9841  | 3211  | 86    | 1770  | 0                | 636                |
| Stewart Island          | 3                                         | 12389                 | 7152  | 0     | 0     | 5237  | 0                | 0                  |
| Taieri                  | 6                                         | 6483                  | 0     | 4306  | 176   | 1822  | 178              | 0                  |
| Waikato                 | 7                                         | 20730                 | 12009 | 8029  | 674   | 0     | 0                | 17                 |
| Waitaki                 | 4                                         | 3313                  | 0     | 1939  | 418   | 956   | 0                | 0                  |
| Wanganui–<br>Rangitikei | 2                                         | 1535                  | 0     | 387   | 1148  | 0     | 0                | 0                  |
| Westland                | 20                                        | 39272                 | 3638  | 16064 | 172   | 3042  | 0                | 16357              |
| TOTAL                   | 77                                        | 134397                | 33212 | 41711 | 3970  | 19125 | 178              | 36202              |

43

#### 4.4 Ecological integrity index

Nationally, wetlands represent degraded ecosystems with impaired ecological integrity (Figure 10). More than 60% of sites have an EI < 0.5, and over half the biogeographic units had a mean EI < 0.5, indicating significant human induced disturbance pressures (Figure 11). This potentially represents a substantial loss of biodiversity content. The EI values follow general patterns of agricultural and urban development (Figure 11) with the lowest EI values found in biogeographic units characterized by warm, flat, fertile land favoured for agricultural development. For example, intensive agricultural development (and associated nutrient risks) in the Waikato is associated with a mean EI of 0.35. Regions like Auckland, with widespread urban development, have similar EIs. These EI values contrast with wetlands in Fiordland or Stewart Island; these are typically in good condition, with human disturbance pressures are confined to a few invasive species, and they have a mean EI > 0.9. These wetlands are likely to have retained much of their natural native community composition.

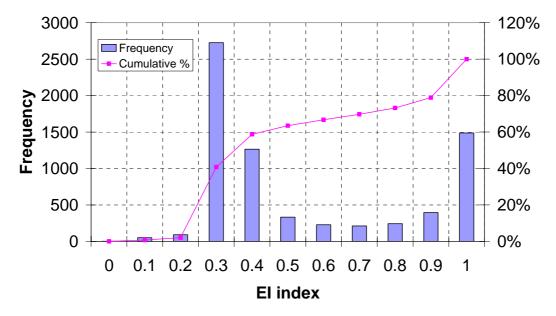



Figure 10 Histogram of the ecological integrity index for all 7032 wetland sites



Figure 11 Mean and one standard deviation for the ecological integrity index in all 29 biogeographic units

#### 4.5 Candidate list of nationally important wetlands

The highest ranked sites in each biogeographic unit were often the largest remaining wetlands. This reflects their potential to protect several wetland classes and a high proportion of what remains of these classes (Table 14, Figure 12). For example, Kopuatai peat dome is the largest wetland in the Waikato biogeographic unit, and accounts for 55% of remaining bog and 27% of remaining swamp. The top ranked site in each biogeographic unit typically contained two or three wetland classes and most commonly included swamps, marshes and fens. Smaller wetlands were ranked highly if they contained rare hydroclasses, and/or had high ecological integrity, Maymorn ridge in the Wellington region and Grebe in the Southland being two examples.

The 5 ha Maymorn ridge wetland in Wellington contains 41% (by area) of fen habitat left in Wellington. When this is coupled with its high ecological integrity (0.97) it also has a high irreplaceability score because there are no comparable options for protecting this type of wetland biodiversity. Other fens in the Wellington biogeographic unit are smaller, and/or have lower ecological integrity. Thus, the ranking algorithm places more importance on this site, as it assumes it is critical for protecting a full range of biodiversity in the Wellington biogeographic unit.

In Southland, the Grebe was selected before either the Waituna or Toetoe wetlands, two components of the Awarua wetland (New Zealand's largest wetland complex). This appears to reflect the promotion of a smaller wetland because it has a higher ecological integrity (EI = 0.95) and the demotion of larger wetlands in poorer condition (EI = 0.41; Appendix 5). In part, this may also reflect the relationship between area and conservation effectiveness derived from the species area curve (Figure 5). Hence, with the existing function, conservation effectiveness increases extremely rapidly over the first 1-3% of the area protected before levelling off. Thus, the Grebe, a small wetland in good condition, contributes 30% of the overall CE even though Waituna Lagoon is almost 30 times larger and

Toetoe 10 times larger, and despite the wider range of wetland classes in Waituna and Toetoe, the second and third highest ranked wetlands in Southland. In contrast, selection of the Upper Taieri Wetlands Complex reflects both the richness of wetlands classes (3) and its high irreplaceability due to the presence of distinctive and rare saline wetlands (Table 14); these make up for the somewhat reduced ecological integrity.



Figure 12 Location of the highest ranked wetland site in each biogeographic unit.

| Biogeographic unit   | Names                              | EI index | Area<br>(ha) | Bog        | Fen         | Swamp      | Marsh     | Pakihi/<br>Gumland | Inland saline |
|----------------------|------------------------------------|----------|--------------|------------|-------------|------------|-----------|--------------------|---------------|
| Auckland             | Awhitu_tram gully rd               | 0.49     | 87           |            |             | 87 (15%)   |           |                    |               |
| Banks Peninsula      | Wairewa                            | 0.23     | 11           |            |             | 6 (100%)   | 5 (29%)   |                    |               |
| Bay of Plenty        | Whirinaki (Hautapu) Bog            | 0.30     | 37           |            | 30 (69%)    | 7 (0.5%)   |           |                    |               |
| Canterbury           | Lake Stream – Cameron Fan Wetland  | 0.45     | 1405         |            | 16 (1%)     | 1290 (20%) | 100 (3%)  |                    |               |
| Clutha               | Von Valley Wetland Management Area | 0.68     | 2492         |            | 1408 (15%)  | 877 (33%)  | 207 (20%) |                    |               |
| Coromandel           | Kaitoke swamp                      | 0.93     | 222          |            |             | 199 (35%)  | 23 (18%)  |                    |               |
| East Cape            | Whakaki lagoon                     | 0.27     | 651          |            |             | 637 (44%)  | 14 (2%)   |                    |               |
| Fiordland            | Lake Hauroko – Lillburn valley rd  | 0.96     | 15           |            |             |            |           | 15 (28%)           |               |
| Grey–Buller          | Lake Hochstetter pakihi            | 0.74     | 5391         |            |             | 158 (9%)   |           | 5233 (31%)         |               |
| Hawkes Bay           | Poukawa stream                     | 0.21     | 116          |            |             | 113 (28%)  | 3 (2%)    |                    |               |
| Manawatu–Wairarapa   | JK Donald Reserve                  | 0.24     | 410          |            |             | 337 (12%)  | 73 (13%)  |                    |               |
| Marlborough          | Edwards- Muntz                     | 0.83     | 131          |            | 28 (32%)    | 102 (12%)  |           |                    |               |
| Mokau                | Hutiwai Wetland                    | 0.97     | 240          |            |             | 199 (24%)  | 41 (16%)  |                    |               |
| Motueka–Nelson       | Tonga Swamp                        | 0.97     | 18           |            |             | 18 (19%)   |           |                    |               |
| Northland – eastern  | Lake Ohia wetlands                 | 0.28     | 827          | 106 (43%)  |             | 239 (13%)  |           | 481 (57%)          |               |
| Northland – northern | Waihuahua swamp                    | 0.78     | 1589         | 136 (21%)  |             | 518 (18%)  | 108 (19%) | 827 (76%)          |               |
| Northland – western  | Kaipara Head wetland               | 0.37     | 1928         |            |             | 1883 (38%) | 45 (11%)  |                    |               |
| Northwest Nelson     | Denniston plateau                  | 0.68     | 1138         |            | 13 (3%)     |            |           | 1125 (8%)          |               |
| Otago Peninsula      | Swampy Summit Wetland              | 0.78     | 122          |            |             | 122 (34%)  |           |                    |               |
| Palliser–Kidnappers  | Wanstead                           | 0.25     | 27           |            |             | 27 (15%)   |           |                    |               |
| Southland            | Grebe                              | 0.95     | 312          |            | 7 (0.1%)    | 305 (3%)   |           |                    |               |
| Stewart Island       | Ruggedy Flats                      | 0.97     | 10148        | 4912 (68%) | 5237 (100%) |            |           |                    |               |

Table 14 Ecological integrity value, Extent and proportion (in brackets) of wetland classes in the first site selected in each biogeographic unit

| Biogeographic unit  | Names                         | EI index | Area<br>(ha) | Bog        | Fen       | Swamp      | Marsh     | Pakihi/<br>Gumland | Inland saline |
|---------------------|-------------------------------|----------|--------------|------------|-----------|------------|-----------|--------------------|---------------|
| Taieri              | Upper Taieri Wetlands Complex | 0.31     | 2349         |            |           | 1995 (35%) | 176 (37%) |                    | 178 (80%)     |
| Taranaki            | Norfolk Road                  | 0.75     | 199          |            |           | 199 (41%)  |           |                    |               |
| Waikato             | Kopuatai wetland              | 0.23     | 10542        | 7188 (55%) |           | 3354 (27%) |           |                    |               |
| Waitaki             | Braemar Road Tussock          | 0.85     | 1570         |            | 956 (78%) | 437 (10%)  | 177 (7%)  |                    |               |
| Wanganui–Rangitikei | Waitotara and Hawken's Lagoon | 0.37     | 213          |            |           | 213 (9%)   |           |                    |               |
| Wellington          | Maymorn Ridge                 | 0.97     | 5            |            | 5 (41%)   |            |           |                    |               |
| Westland            | Haast wetland                 | 0.80     | 3569         |            |           | 816 (4%)   | 8 (1%)    | 2745 (13%)         |               |

The top 20 ranked wetlands in each biogeographic unit are listed in Appendix 5, as well as any additional sites required to provide full representation of wetland classes. The omission of a fully representative range of wetlands classes in the top 20 wetlands results from the complementarity function, which assumes protection of similar wetland classes will capture some of the biodiversity present in absent classes.

If the selection algorithm continues until one example of each wetland class in each biogeographic unit has been selected, conservation effectiveness exceeds 67% for each unit (Table 15). In other words, if the goal is to select the minimum number of sites that protect a full range of wetland classes, then selecting at least one example of each wetland class would protect more than 67% of overall wetland biodiversity. But, in some biogeographic units, over 200 wetlands must be selected to capture a full range of wetland classes (e.g. Bay of Plenty)— not particularly effective for allocating resources. In areas of high ecological integrity, fewer wetlands are required to protect close to 100% of the full range of biodiversity (high conservation effectiveness). Thus, on Stewart Island, 99% of wetland biodiversity can be effectively conserved by protecting 27% of the sites (4 sites out of 15) and in Fiordland 97% (CE) is achieved by selecting 68% of remaining wetland area. In areas of high human pressure (e.g. Banks Peninsula and Bay of Plenty) protecting 99% of wetland area may effectively conserve just over 70% of remaining biodiversity.

| Biogeographic unit   | Number of<br>wetland classes<br>present | Number of sites<br>before all wetland<br>classes are<br>selected | Total number<br>of sites | % CE<br>reached | % Area<br>covered |
|----------------------|-----------------------------------------|------------------------------------------------------------------|--------------------------|-----------------|-------------------|
| Auckland             | 6                                       | 20                                                               | 204                      | 73%             | 62%               |
| Banks Peninsula      | 3                                       | 5                                                                | 6                        | 70%             | 99%               |
| Bay of Plenty        | 6                                       | 215                                                              | 249                      | 74%             | 99%               |
| Canterbury           | 4                                       | 46                                                               | 843                      | 72%             | 58%               |
| Clutha               | 6                                       | 29                                                               | 606                      | 90%             | 75%               |
| Coromandel           | 4                                       | 23                                                               | 27                       | 93%             | 99%               |
| East Cape            | 5                                       | 23                                                               | 227                      | 71%             | 63%               |
| Fiordland            | 4                                       | 98                                                               | 144                      | 97%             | 95%               |
| Grey–Buller          | 5                                       | 36                                                               | 259                      | 90%             | 85%               |
| Hawkes Bay           | 4                                       | 50                                                               | 78                       | 83%             | 96%               |
| Manawatu–Wairarapa   | 5                                       | 56                                                               | 352                      | 70%             | 73%               |
| Marlborough          | 4                                       | 24                                                               | 216                      | 72%             | 61%               |
| Mokau                | 5                                       | 30                                                               | 66                       | 88%             | 93%               |
| Motueka-Nelson       | 4                                       | 34                                                               | 66                       | 89%             | 84%               |
| Northland – eastern  | 6                                       | 46                                                               | 218                      | 75%             | 84%               |
| Northland – northern | 5                                       | 22                                                               | 159                      | 85%             | 83%               |
| Northland – western  | 6                                       | 41                                                               | 466                      | 82%             | 84%               |

**Table 15** Number of wetland sites required to select at least one example of each wetland class per biogeographic unit, and cumulative conservation effectiveness and area that results from this selection.

| Biogeographic unit  | Number of<br>wetland classes<br>present | Number of sites<br>before all wetland<br>classes are<br>selected | Total number of sites | % CE<br>reached | % Area<br>covered |
|---------------------|-----------------------------------------|------------------------------------------------------------------|-----------------------|-----------------|-------------------|
| Northwest Nelson    | 6                                       | 55                                                               | 272                   | 92%             | 91%               |
| Otago Peninsula     | 4                                       | 7                                                                | 11                    | 82%             | 99%               |
| Palliser-Kidnappers | 3                                       | 5                                                                | 82                    | 67%             | 29%               |
| Southland           | 6                                       | 173                                                              | 863                   | 83%             | 85%               |
| Stewart Island      | 3                                       | 4                                                                | 15                    | 99%             | 99%               |
| Taieri              | 6                                       | 60                                                               | 427                   | 81%             | 85%               |
| Taranaki            | 5                                       | 50                                                               | 70                    | 88%             | 97%               |
| Waikato             | 6                                       | 73                                                               | 179                   | 71%             | 97%               |
| Waitaki             | 4                                       | 60                                                               | 221                   | 86%             | 92%               |
| Wanganui-Rangitikei | 4                                       | 127                                                              | 377                   | 83%             | 91%               |
| Wellington          | 4                                       | 4                                                                | 59                    | 82%             | 46%               |
| Westland            | 6                                       | 120                                                              | 270                   | 95%             | 98%               |

An alternative way to examine the rankings is to consider the first set of wetland sites that reaches a threshold of conservation effectiveness (Table 16). For example, if we want to protect enough wetlands to achieve 70% CE in each biogeographic unit, we would need to conserve 328 wetland sites. This would account for 66% of all possible combinations of wetland classes/biogeographic units and 43% of the remaining area. In Southland, 70% CE is achieved from the first nine wetlands that make up about 45% of the remaining area and it captures all wetlands classes except seepages.

| Biogeographic unit   | Number of wetland sites selected | Number of wetland classes represented | Total no of wetland classes | Wetland class<br>not represented | Cumulative area as<br>percent of total area in<br>the biogeographic unit |
|----------------------|----------------------------------|---------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------|
| Auckland             | 10                               | 6                                     | 6                           |                                  | 49%                                                                      |
| Banks Peninsula      | 4                                | 3                                     | 3                           |                                  | 89%                                                                      |
| Bay of Plenty        | 61                               | 4                                     | 6                           | Seepage, gumland                 | 77%                                                                      |
| Canterbury           | 33                               | 3                                     | 4                           | Seepage                          | 53%                                                                      |
| Clutha               | 1                                | 3                                     | 6                           | Bog, seepage, saline             | 17%                                                                      |
| Coromandel           | 1                                | 2                                     | 4                           | Fen, seepage                     | 30%                                                                      |
| East Cape            | 15                               | 4                                     | 5                           | Fen                              | 57%                                                                      |
| Fiordland            | 1                                | 1                                     | 4                           | Fen, swamp, bog                  | 1%                                                                       |
| Grey-Buller          | 1                                | 2                                     | 5                           | Fen, marsh, bog                  | 27%                                                                      |
| Hawkes Bay           | 1                                | 2                                     | 4                           | seepage, fen                     | 11%                                                                      |
| Manawatu-Wairarapa   | 59                               | 5                                     | 5                           |                                  | 74%                                                                      |
| Marlborough          | 16                               | 3                                     | 4                           | Seepage                          | 55%                                                                      |
| Mokau                | 1                                | 2                                     | 5                           | Bog, fen, seepage                | 20%                                                                      |
| Motueka-Nelson       | 2                                | 3                                     | 4                           | Seepage                          | 24%                                                                      |
| Northland - eastern  | 15                               | 4                                     | 6                           | Fen, seepage                     | 69%                                                                      |
| Northland – northern | 1                                | 4                                     | 5                           | Fen                              | 31%                                                                      |
| Northland – western  | 3                                | 3                                     | 6                           | Bog, fen, seepage                | 43%                                                                      |
| Northwest Nelson     | 3                                | 4                                     | 6                           | Bog, seepage                     | 26%                                                                      |
| Otago Peninsula      | 1                                | 1                                     | 4                           | Fen, marsh, seepage              | 31%                                                                      |
| Palliser-Kidnappers  | 31                               | 3                                     | 3                           |                                  | 75%                                                                      |
| Southland            | 9                                | 5                                     | 6                           | Seepage                          | 45%                                                                      |

**Table 16** Number of wetland sites required to reach a minimum of 70% conservation effectiveness in each biogeographic unit

| Biogeographic unit  | Number of wetland sites selected | Number of wetland classes represented | Total no of wetland classes | Wetland class<br>not represented | Cumulative area as<br>percent of total area in<br>the biogeographic unit |
|---------------------|----------------------------------|---------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------|
| Stewart Island      | 1                                | 2                                     | 3                           | Swamp                            | 81%                                                                      |
| Taieri              | 3                                | 4                                     | 6                           | Bog., seepage                    | 38%                                                                      |
| Taranaki            | 2                                | 1                                     | 5                           | Bog, fen, marsh, seepage         | 28%                                                                      |
| Waikato             | 38                               | 5                                     | 6                           | Seepage                          | 92%                                                                      |
| Waitaki             | 2                                | 3                                     | 4                           | Seepage                          | 28%                                                                      |
| Wanganui-Rangitikei | 7                                | 3                                     | 4                           | Seepage                          | 44%                                                                      |
| Wellington          | 3                                | 3                                     | 4                           | Marsh                            | 41%                                                                      |
| Westland            | 3                                | 5                                     | 6                           | Seepage                          | 23%                                                                      |
| Total               | 328                              | 93                                    | 139                         |                                  | 43%                                                                      |

# 5. Discussion

## 5.1 Strengths of the WONI wetland approach

This project has achieved two firsts: the first national scale inventory of New Zealand's inland wetlands and the first quantitative listing of wetlands contributing most to what remains of our remaining wetland biodiversity. Previous inventories have either been focused at the regional scale (Janssen et al. 2005), or adopted more qualitative expert panel approaches (e.g. Oceania list of wetlands, (Cromarty and Scott 1996)) that assessed a wider range of freshwater ecosystems (lakes, rivers, estuaries and wetlands).

We have improved on previous estimates of the current and former wetland extent by incorporating a more complete range of data from existing databases, and by using nationally consistent digital elevation models and satellite imagery. By considering all Land Use Capability classes in the LRI that could contain wetlands we increased the estimate of probable historic extent from 672,000 ha to 2,471,080 ha. However, some of this increase reflects a broader definition of wetlands. In the Waikato, Leathwick et al. (1995) reported 25% of the wetland vegetation remained whereas we estimated it to be 7.9% (Table 12) because our measure of historic extent was greater due to the inclusion of wetlands. Former historic kahikatea-dominated alluvial forests (i.e. the estimated extent of secondary scrub on alluvial in 1840) adds another 200,000+ ha to our wider definition, and thus confirms a similar loss of extent. Satellite imagery and regional growing provide a consistent and repeatable approach to wetland delineation; these techniques can generate regular, cost-effective, national updates to measure changes in extent. Thus, this work could provide a baseline for monitoring progress towards NZBS and wetland policy goals.

There is increasing evidence that species disappear quickly once the area of remaining ecosystem, habitat, or community falls below 30% of its original area, and the biodiversity loss associated with the destruction of each additional hectare increases rapidly (Rosenzweig 1995; Seabloom et al. 2002; Fahrig 2003). The rate of wetland habitat loss in New Zealand has been dramatic; we have confirmed that losses are about 90%. Destruction has been greatest in the North Island (>95% loss), with 80–85% loss in many parts of the South Island. These figures describe only a part of the loss—the area lost component. Our data indicate New Zealand's wetland ecological integrity is severely depleted and what remains is threatened, with some ecosystem types, communities, and species facing extinction. Clearly, to achieve New Zealand Biodiversity Strategy Goal Three<sup>1</sup>, all remaining

<sup>&</sup>lt;sup>1</sup> Goal Three of the Biodiversity Strategy is: "Halt the decline in New Zealand's indigenous biodiversity. Maintain and restore a full range of remaining natural habitats and ecosystems to a healthy functioning state, enhance critically scarce habitats, and sustain the more modified ecosystems in production and urban environments; and do what else is

wetlands must be protected from drainage, clearance, pollution, and invasion by exotic species.

We have improved upon earlier freshwater prioritisation exercises (Chadderton et al. 2004, Leathwick et al. 2007b) by incorporating measures of irreplaceability and complementarity. The selection ranking and underlying wetland attributes provide a consistent, transparent, objective, and repeatable framework that is not fraught with the geographic, taxonomic, and sampling biases implicit in expert-panel-based approaches (Chadderton et al 2004).

These data provide strong quantitative support for recent national policy statements that identify the need to protect all remaining natural wetlands. They reinforce the need to consider wetlands as nationally significant habitats for indigenous species (Ministry for the Environment 2007). These guidelines, the 1986 National Wetland policy, and provisions in the Resource Management Act (1992) are designed to prevent further loss of wetlands through habitat destruction, and if enforced by Territorial Local Authorities (TLA) would provide some legal protection to all remaining wetlands. However, wetland drainage, ploughing, burning, and spraying continue (Sorrell & Gerbeaux, 2004), apparently unconstrained by legislation and policy. Most (74%) of the 7032 wetlands identified in this study are smaller than 10 ha. This result is consistent with previous regional assessments (Preece 2000 & 2001) that show the highly fragmented state of remaining wetlands. These small wetlands account for most of what remains in the 12 biogeographic units that now contain less than 1% of the total national wetland area. Most are located on private land, and it is questionable whether the current regulatory framework, and its reliance on national guidance to regional policies, will prevent or even slow further loss.

Legal protection alone will not prevent further loss of wetland biodiversity. Effective conservation will require active management and restoration to mitigate impacts of invasive species, fire, sedimentation and nutrient enrichment, and altered hydrology (Sorrell & Gerbeaux, 2004). Lowland coastal wetlands are particularly important as they contribute much to remaining biological diversity and are important refuges for threatened species in these regions (de Lange et al 2004). But, they have suffered the greatest levels of loss from drainage and habitat destruction, and are also under increasing pressure from intensification of surrounding land uses. This is illustrated by the state of wetlands in the Manawatu, Hawkes Bay, and Palliser–Kidnappers biogeographic units. Over 97% of wetlands have been lost and the few remaining examples in the lowland areas have low ecological integrity. Even the highest ranked sites (Table 13) have an ecological integrity score of less than 0.25, suggesting much of their biodiversity has already been lost.

The approach lends itself to further learning, improvement, and exploration of alternate assumption. The ranking system is a guide for decision makers, as it provides some, but not all, the information required to prioritise and allocate scarce conservation resources. In particular, it is important to identify the sites at most imminent risk. Some of the highest ranked sites are well protected on high protection status conservation land (e.g. National Park, Scientific Reserve) and may be at negligible

necessary to maintain and restore viable populations of all indigenous species and subspecies across their natural range and maintain their genetic diversity."

risk of degradation (except from impacts of invasive species). However, the highest ranked sites also at most risk of loss must be top priority for conservation effort. The opportunity costs of spending scarce conservation resources on important but secure biodiversity are large (Margules and Pressey 2000, Stephens et al 2002). Further relevant considerations are tenure, cost, feasibility, and effectiveness of the required action. In short, it is the conservation work rather than the site that should be prioritised to achieve greatest efficiency.

This database and ranking provides managers with information to help identify sites for conservation. For example, by overlaying wetland ranks with information on land status regional site protection priorities (for land acquisition, covenants etc) could be identified. Alternatively, animal or plant pest management priorities could be informed by considering wetlands ranks, the presence of existing populations of invasive species, and the relative impact sustained control or eradication versus further spread would have upon the sites ecological integrity and ranking.

It might be tempting to focus protection efforts on the 77 wetlands larger than 500 ha because these capture over 50% of remaining wetland extent. However, this strategy would not meet representativeness goals because the 77 wetlands are located in just 16 of the 29 biogeographic units (predominantly West coast, Southland, Northland, Waikato, and Stewart Island). Many of the larger wetlands (>500 ha) are less vulnerable to the most pressing anthropogenic threats other than fire or invasive species (e.g. Stewart Island Ruggedy flats) and are therefore less threatened than the many smaller wetlands in agricultural landscapes. Systematic conservation planning principles (Margules and Pressey 2000) state that these smaller, typically highly irreplaceable and more vulnerable wetlands deserve the most immediate conservation investment. Threats to their persistence mean options for their conservation are rapidly retreating, and it is important to conserve them while this is still possible.

To meet the policy goal of protecting a fully representative range of wetlands, it is important that when TLAs devise biodiversity policies and report conservation performance these should use biogeographic units rather than political boundaries, which do not reflect biodiversity pattern. For example, in the Tasman region, the TLA summary suggests that almost 20% of wetlands remain. But, the biogeographic unit analysis in this region reveals that North West Nelson biogeographic unit has retained over 27% of its former wetland extent compared with less than 5% remaining in the Motueka/Nelson biogeographic unit (Table 8). Intervention priorities must also recognise the full range of wetland classes. Thus, although swamps are the most extensive wetland class remaining in New Zealand they have also suffered the greatest losses (<6% remaining); in the Motueka –Nelson Biogeographic unit swamps, with just 2% of their former extent, are the most threatened wetland class.

## 56

### 5.2 Limitations and future improvements

## Wetland Delineation

Efforts to delineate historic extent are limited by the accuracy of information on potential land capability (soil Land Use Capability maps). Soils data are sparse and patchy; remote and steep areas of New Zealand have low resolution; and soil alteration by 'improvements', infilling, and landscaping are not detectable in the data. These limitations mean our estimates of historic wetland extent are probably underestimates.

Our delineation of the current extent of wetlands improves on existing national maps (e.g. LCDB2) but is nevertheless an incomplete inventory as we were unable to depict ephemeral, plutonic, nival, and geothermal wetlands. This is a major gap in our assessment and results in failure to represent the full range of wetland biodiversity. Satellite imagery favours depiction of wetlands with lowstature vegetation like rushes or sedges, whereas forested wetlands are difficult to separate from dry forests. Hence, our results for Fiordland (New Zealand's largest national park and an area retaining most of its wetland) wrongly suggest a significant loss in cover. The error is a consequence of scant centre point data for Fiordland, poor resolution of soils data (perhaps overestimating former extent), and the inability of satellite imagery to differentiate wetlands through canopy trees. Moreover, some discrepancies probably reflect the absence of good centre point data for some remote parts of New Zealand. Thus, estimates of current and former extent in remote forested regions of New Zealand (e.g. West Coast, Westland, Fiordland, and Stewart Island) should be treated with caution, being likely underestimates of the total area. We also probably missed many small wetlands because centre point locations were absent and spatial limitations of remote satellite imagery prevented recognition of wetlands < 0.5 ha. These small wetlands are likely to be abundant (Preece, 2000 & 2001) and are probably important sites for sustaining some threatened species, particularly in some seriously depleted biogeographic units. For most of these sites, ground-truthing will improve delineation, especially where margins vary seasonally. Region-growing from satellite imagery is most suitable for regional and national assessments and should not replace delineation from aerial photos or ground-truthed polygons.

Defining wetland sites was also problematic in fragmented landscapes. In the absence of local information we used a GIS rule (polygons within 300 m of a nearest neighbour are in the same site) to combine wetland fragments into a single site, or wetland complex. However, whether this is appropriate can only be assessed on a site by site basis.

Delineation could be improved by using local experts to map these wetlands or possibly by using radar imagery or LIDAR (Light Detection and Ranging remote sensing systems) for small wetlands. S-map, a current soil mapping project (Hewitt 2005), has good potential to refine delineation because it seeks to standardise and improve landscape descriptors (slopes, ridges, spurs) and soil information based on a combination of ground survey and topographic modelling techniques (Rutledge and Ausseil 2006). However, to improve delineation of small wetland types in local depressions, field work is still necessary. Some forested wetlands could also be identified and mapped by compiling data from other publications; for example, New Zealand Forest Service forest class maps, PNAP surveys, National Parks Series Maps, and the biological survey of reserves report series all contain forest cover type data that could help locate wet forest areas.

#### Wetland classification

Our wetland typology was constrained by data and reliance on soil properties. Although the GIS expert rules reflect environmental drivers described by Johnson and Gerbeaux (2004), the ability of these rules to differentiate wetland types is highly dependent on the resolution of the LRI, which is as coarse as 1:250,000 in the montane areas of the South Island. In regions mapped at such coarse resolutions, soils data can not accurately classify wetlands that vary at a much finer scale—in part, the results from the Otago region probably reflect this. The overall wetland classification probably underestimated the marsh extent, overestimated seepages, and confused bog and fen. The underestimation of marsh probably reflects the inability of drainage class data to differentiate marshes form swamps, while the peat content and pH class of bog and fen are too similar to differentiate these wetland types accurately. Thus, parts of the Whangamarino wetland complex are classified as bog when they should be fen (Clarkson pers. comm.), although Cromarty and Scott (1996) classified it as a swamp/bog complex. Marsh and swamp wetland classes are environmentally similar and have much overlap in their species compositions (Brian Sorrell, NIWA, pers. commm). If this this overlap is large then the misclassification of marshes as swamps will have little material impact on the biodiversity representation goal of the site selection process. Clearly this is an issue that deserves further enquiry.

The limited classification level is likely to have under-represented the full range of wetland diversity. For example, the classification rules do not account for climatic variability at regional scales that affect wetland plant community composition (Leathwick et al. 2003). A national classification system that incorporates a wider range of environmental drivers (e.g. temperature, rainfall variation) should better differentiate biotic pattern across wetland ecosystems and would substantially improve the biodiversity assessment and our site rankings. However, progress towards its development depends on the S-Map project, to improve mapping of soil characteristics (drainage, pH, peat, flood return intervals) (Rutledge & Ausseil 2006), and the delineation of critical topographic features defining wetland boundaries. In the near term, the classification could be refined using wetland data derived under the NIWA-Landcare FRST wetland project and information on vegetation and wetland class at various locations.

### Wetland pressure indicators

Wetland ecological integrity was defined using a combined index of anthropogenic pressures measures, transformed to scale them according to expert opinions about their impact. We assumed a high pressure index indicates low ecological integrity. Empirical evidence to support this assumption would be correlation between ecological integrity and species occupancy. The proportion of taxa expected to be present naturally (i.e. without pressures) should increase with ecological integrity. A current FRST research project is presently attempting to quantify and describe some of these relationships (B. Clarkson pers. comm.). Outputs from these studies will improve the EI model and remove possible covariates or redundant variables that may presently weight the assessment toward particular pressure measures. For example, we used nitrate risk as a surrogate measure of land use intensification because it is derived from data on farm types, soil, rainfall, and fertiliser application (CLUEs reference). There is likely to be a reasonable correlation between nitrate and phosphorus enrichment (the latter probably the more important nutrient pressure; B. Clarkson, pers. comm.) as they share many of the same drivers. However, a national data set on phosphorus does not yet exist. Further work is needed to create a national layer of phosphorus enrichment risk to assess its relationship with nitrate risk, field measurements, and measures of ecological integrity.

Future research may also enable inclusion of a fragmentation measure. The negative impacts fragmentation has on wetland functioning (especially hydrological processes; (Saunders et al. 1991) were recognised, but without data or even expert consensus to scale its impact on wetland biodiversity, fragmentation could not be included. We were also unable to include a measure of pressure from human induced fire because there is no national inventory of burnt wetlands. Natural fires occurred in the past for most of New Zealand wetlands but are now much more common (Sorrell & Gerbeaux 2004). New Zealand native vegetation is not fire adapted (Basher et al. 1990) and while several wetland native plant species can tolerate infrequent burning, fire has significant impacts on native wetland communities by altering plant communities and making them vulnerable to weed invasion (Timmins 1992).

With the exception of nutrient enrichment, all other pressure measures were applied uniformly across each wetland class. We recognise that some classes are more susceptible to particular pressures than others. The impact of the pressure on ecological integrity depends on the size of the catchment relative to the wetland, the river size and flood frequency, and the wetland edge to core ratio. For example, indicators derived from upstream catchments or that require open water (pest fish) would have little relevance to bogs that depend on rainwater for their wetness. This averaging impact was probably most pronounced in the Waituna wetlands, where the low ecological integrity score is driven by intensive dairy farming in the upstream catchment even though much of the system is composed of bogs that would be minimally affected by such pressures. It seems likely that New Zealand's bogs may not be as heavily disturbed as our data suggests. The relationships will be described quantitatively by the current FRST research.

### Site selection methods

Measures of complementarity assume protection of one wetland type protects some of the biodiversity of similar wetland types. By combining complementarity, ecological integrity, and irreplaceability, our selection algorithm defines an overall measure of conservation effectiveness. The trade-off among these factors appears to have prevented selection of some degraded wetland classes where related (but not the same) types with higher ecological integrity were present. This suggests our complementarity variable may overestimate the contribution any one wetland type can make to the full range of available biodiversity. In practice, when choosing between two highly similar wetlands types the algorithm appears to select the least degraded wetland types even where no examples of the other type have been selected. Thus, it seems likely that our process does not always select a full range of wetland biodiversity, but the biotic data are so limited (Suren et al. 2008) that we have no way of assessing bias in the selection.

The relationship between wetland area and our conservation effectiveness metric deserves critical assessment. It suggests that protection of only 1-3% of the remaining area could achieve conservation effectiveness in the order of 30% of what currently remains. The selection of the Grebe system in Southland ahead of two significantly larger wetland complexes (Waituna and Toetoes) illustrates this result. The relationship between extent and conservation effectiveness may be overly optimistic. If there is rapid species loss as the area remaining falls below 30% as indicated by Rosenzweig (1995), Seabloom et al. (2002)and Fahrig (2003), then our CE metric should asymptote at a higher percentage remaining. A more conservative increase in CE with area protected will favour selection of larger wetlands that should generally be more viable.

Finally, wetlands associated with estuaries were excluded because a future estuary assessment is planned. This artificial separation has probably demoted some freshwater wetlands bordering estuaries that together would rank higher because of their greater combined internal diversity. For example, Okarito swamp is a coastal freshwater wetland ranked twelfth highest in the Westland biogeographic unit; however, if estuarine wetland around the Lagoon and other open water habitats had been considered, it would probably have ranked higher. Clearly, there is a more general need to

integrate all classes of biodiversity—rivers, lakes, wetlands, estuaries, and adjacent terrestrial and perhaps also marine ecosystems. Also, there is a strong case for including threatened species as distribution patterns, while presence of macro and or wide-ranging species often does not correspond to wetland classes or ecological integrity (Chadderton et al. 2004). Further work is needed to devise robust ways to include these dimensions into the site selection and conservation work prioritisation processes, developing these methods remains among the core challenges for systematic conservation science.

# 6. Acknowledgements

The authors are extremely grateful to Sjaan Charteris, Natasha Grainger, and Dave West for managing the project in the various stages of its development, providing an important interface with DOC conservancies and Regional Council staff in the closing stages of this project, and reviewing early drafts. Simon Ferrier provided key equations and critical feedback on the design of selection algorithms. We benefited greatly from numerous discussions with Peter Johnson, Bev Clarkson, and Brian Sorrell. Terry Conaghan, Tom Pyatt, Anne Sutherland, Janice Willoughby, Hamish Heke, and Garry Eason helped complete the GIS mapping. Elaine Wright promoted continuity and momentum as well as critical review of the approach and final documents. We also thanks Bev Clarkson for her thoughful review of the final report, and Peter McGregor for his editorial oversight.

Acknowledgements are also due to all the Regional Councils who have kindly supplied their freshwater databases. These include Auckland Regional Council, EBOP, Taranaki Regional Council, Horizons Regional Council, Greater Wellington RC, Tasman District Council, Marlborough District Council and ECAN.

# 7. References

Abell, R.; Olson, D.M.; Dinerstein, E.; Hurley, P.; Diggs, J.T.; Eichbaum, W.; Walters, S.; Wettengel, W.; Allnutt, T.; Loucks, C.; Hedao, P. 2000: Freshwater ecoprovinces of North America: a conservation assessment. Island Press, Washington DC. 319 p.

Allibone, R.M.; Crowl, T.A.; Holmes, J.M.; King, T.M.; McDowall, R.M.; Townsend, C.R.; Wallis, G.P. 1996: Isozyme analysis of Galaxias species (Teleostei: Galaxiidae) from the Taieri River, South Island, New Zealand: a species complex revealed. Biological Journal of the Linnean Society 57: 107–127.

Ausseil, A.-G. 2003: Wetland mapping in the Bay of Plenty Region. Landcare Research Ltd contract report LC0304/038. 54 p.

Ausseil, A.-G.; Dymond, J.R.; Shepherd, J.D. 2007: Rapid mapping and prioritisation of wetland sites in the Manawatu–Wanganui Region, New Zealand. Environmental Management 39: 316-325.

Ausseil, A.-G.; Newsome P.; Johnson P. 2008: Wetland mapping in the Otago Region.. Landcare Research contract report LC0708/115. 51 p.

Basher, L.R.; Meurk, C.D.; Tate, K.R. 1990: The effects of burning on soil properties and vegetation. A review of the scientific evidence relating to the sustainability of ecosystems and land use in the eastern South Island hill and high country. DSIR Land Resources Technical Record 18. DSIR Land Resources, Lower Hutt.

Beggs, G.; Lowry, J. 2003: Land capability and topographic data as a surrogate for the mapping and classification of wetlands: a case example from the Daly basin, Northern Territory, Australia. Water Science and Technology 48: 49–56.

Benn, J. 1997: Wetlands of the Manawatu plains. Wellington Fish and Game Council.

Boulton, A.J.; Brock, M.A. 1999: Australian freshwater ecology: Processes and Management. Gleneagles Publishing, Adelaide. 300 p.

Chadderton, L; Brown, D.J.; Stephens, R.T.T. 2004: Identifying freshwater ecosystems of national importance for biodiversity: criteria methods, and candidate list of nationally important rivers. Department of Conservation Discussion Document. 112 p.

Champion, P., Clayton, J., Rowe, D. 2002: Lake Managers' Handbook: Alien Invaders. Ministry for the Environment, report number: 444.

Clarkson, B.R.; Sorrell, B.K.; Reeves, P.N.; Champion, P.D.; Partridge, T.R.; Clarkson, B.D. 2002: Handbook for monitoring wetland condition. Coordinated Monitoring of New Zealand Wetlands. Ministry for the Environment Sustainable Management Fund Project.

Closs, G.P.; Dean, T.; Champion, P.; Hofstra, D. 2004: Aquatic invaders and pest species in lakes. Pp. 1–27 in Harding, J.; Mosley, P.; Pearson, C.; Sorrell, B. (eds): Freshwaters of New Zealand. New Zealand Hydrological Society, New Zealand Limnological Society, Caxton Press, Christchurch, New Zealand.

Collier, K.J.; Clarkson, B.D.; Chadderton, L. 2003: Criteria and frameworks for assessing natural heritage value of nationally important freshwater and estuarine ecosystems. NIWA client report HAM2002-033.

Commission for the Environment 1986: New Zealand Wetlands Management Policy. Report NoC1204. Wellington, New Zealand.

Cromarty, P; Scott, D.A. 1996: A directory of wetlands in New Zealand. Department of Conservation, Wellington, New Zealand.

de Lange, P.J.; Norton, D.A.; Heenan, P.B.; Courtney, S.; Molloy, B.P.J.; Ogle, C.C.; Rance, B.D.; Johnson, P.N.; Hitchmough, R.A. 2004: Threatened and uncommon plants of New Zealand. New Zealand Journal of Botany 42: 45–76.

Department of the Prime Minister and Cabinet 2003: Sustainable Development for New Zealand: Programme of Action. Department of the Prime Minister and Cabinet, Wellington, New Zealand. 30 p.

Fahrig; L. 2003: Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics 34: 487–515.

Ferrier, S.; Powell, G.V.N.; Richardson, K.S.; Manion, G.; Overton, J.M.; Allnutt, T.F.; Cameron, S.E.; Mantle, K.; Burgess, N.D.; Faith, D.P.; Lamoreux, J.F.; Kier, G.; Hijmans, R.J.; Funk, V.A.; Cassis, G.A.; Fisher, B.L.; Flemons, P.; Lees, D.; Lovett, J.C.; Van Rompaey, R.S.A.R. 2004: Mapping more of terrestrial biodiversity for global conservation assessment. Bioscience 54: 1101–1109.

Gerbeaux, P. 2003: The Ramsar Convention: a review of wetlands management in New Zealand. Pacific Ecologist Number 4.

Harding, J.S.; Winterbourn, M.J. 1997: New Zealand ecoregions: a classification for use in stream conservation and management. Department of Conservation Technical Series No 11. Department of Conservation, Wellington, New Zealand. 79 p.

Hewitt, A.H. 1998: New Zealand Soil Classification. Landcare Research Science Series No 1. Manaaki Whenua Press, Lincoln, New Zealand. 133 p.

Hewitt, A.H. 2005: S-map: A new spatial soil information system for New Zealand. Information in Formation 15: 2–4.

Hunter, G.; Blaschke, P.M. 1986: The New Zealand Land Resource Inventory vegetation cover classification. Water and Soil Miscellaneous Publication 101. Soil Conservation Division, Ministry of Works and Development, Wellington, New Zealand.

Janssen, H.; Ausseil, O.; Beveridge, A. 2005: Regional wetland inventory and prioritisation project. Horizons Regional Council Report 2005/EXT/615. Horizons Regional Council, Palmerston North, New Zealand.

Johnson, P.; Gerbeaux, P. 2004: Wetland types in New Zealand. Department of Conservation, Wellington, New Zealand.

Leathwick, J.R.; Clarkson, B.D.; Whaley, P.T. 1995: Vegetation of the Waikato Region: current and historical Perspectives. Landcare Research contract report LC9596/022. 59 p.

Leathwick, J.R.; Wilson, G.; Rutledge, D.; Wardle, P.; Morgan, F.; Johnston, K.; McLeod, M.; Kirkpatrick, R. 2003: Land Environments of New Zealand. David Bateman Ltd, Auckland, New Zealand.

Leathwick, J.R.; Collier, K.; Chadderton, L. 2007a: Identifying freshwater ecosystems with nationally important natural heritage values: development of a biogeographic framework. Science for Conservation 274. Department of Conservation, Wellington, New Zealand.

Leathwick, J.R.; Julian, K.; Chadderton, L.; Ferrier, S.; Elith, J. 2007b: Assessment of conservation priority for New Zealand's rivers and streams. NIWA client report HAM2006-044. NIWA, Hamilton, New Zealand. 35 p.

Leathwick, J.R., Julian K., J. Elith, Chadderton L., Ferrier, S., Snelder, T. 2008: A biologicallyoptimised environmental classification of New Zealand rivers and streams: reanalysis excluding human impacts variables. NIWA client report HAM2008-027. NIWA, Hamilton, New Zealand.

Margules, C.; Pressey, R. 2000: Systematic conservation planning. Nature 405: 243–253.

McDowall, R.M. 1996: Volcanism and freshwater fish biogeography in the northeastern North Island of New Zealand. Journal of Biogeography 23: 139–148.

McIntosh, A.R. 2000: Habitat- and size-related variations in exotic trout impacts on native galaxiid fishes in New Zealand streams. Canadian Journal of Fisheries and Aquatic Sciences 57: 2140–2151.

Ministry for the Environment 1997: The State of New Zealand's Environment. Ministry for the Environment, Wellington, New Zealand.

Ministry for the Environment 2007: Protecting our places: information about the Statement of National Priorities for Protecting Rare and Threatened Biodiversity on Private Land. Publication no 805. www.biodiversity.govt.nz/pdfs/protecting-our-places-detail.pdf.

Mitsch, W.; Gosselink, J. 2000: Wetlands. 3rd edition. Wiley, New York & Chichester.

Newsome, P.; Wilde, H.G.; Willoughby, E.J. 2000: Land Resource Information System spatial data layers. Landcare Research, Palmerston North, New Zealand.

New Zealand Soil Bureau 1954: General Survey of the soils of North Island, New Zealand. 5. New Zealand Soil Bureau, Wellington, New Zealand 286 p.

New Zealand Soil Bureau 1968: General Survey of the soils of South Island, New Zealand. 27. New Zealand Soil Bureau, Wellington, New Zealand. 404 p.

National Water And Soil Conservation Organisation (NWASCO) 1978: A survey of New Zealand Peat Resources. Water and Soil Technical Publication No.14. University of Waikato, Hamilton, New Zealand, 157 p.

National Water And Soil Conservation Organisation (NWASCO) 1982a: Peatlands Policy Study: reports and recommendations. Water And Soil Miscellaneous Publication No. 40. Wellington.

National Water And Soil Conservation Organisation (NWASCO) 1982b: A Wetland Guidelines. Water and Soil Management Publication No. 8. Welligton, 14 p.

National Water And Soil Conservation Organisation (NWASCO) 1983: Wetlands: a diminishing resource (a report for the Environmental Council). Water and Soil Miscellaneous Publication No. 58.

O'Donnell, C.F.J., Zanders, D. 2006: Mapping the freshwater habitats of New Zealand: A trial integration and interpretation of GIS databases. Department of Conservation, Christchurch, New Zealand. (Unpublished report). 19 p.

Parkyn, S., Wilcock, R. 2004: Impacts of agricultural land use. Pp. 34.1–34.16 in Harding, J.; Mosley, P.; Pearson, C.; Sorrell, B. (eds): Freshwaters of New Zealand. New Zealand Hydrological Society, New Zealand Limnological Society, Caxton Press, Christchurch, New Zealand.

Ponder, W.F.; Eggler, P.; Colgan, D.J. 1996: Genetic differentiation of aquatic snails (Gastropoda: Hydrobiidae) from artesian springs in arid Australia. Biological Journal of Linnean Society 56: 553–596.

Preece, J. 2000: An overview of the freshwater wetlands of Tasman District. Report prepared for TDC, DOC and Nelson/Malborough Fish and Game Council. Culverden, New Zealand.

Preece, J. 2001: An overview of the freshwater wetlands of Marlborough District. Report prepared for Marlborough District Council. Culverden, New Zealand.

Quinn, J.M. 2000: Effects of pastoral development. Pp. 208–229 in Collier, K.J.; Winterbourn, M.J. (eds.): New Zealand stream invertebrates: ecology and implications for management. New Zealand Limnological Society, Caxton Press, Christchurch, New Zealand.

Rosenzweig, M.L. 1995: Patterns in space: species area curves. Cambridge University Press.

Rutledge, D.; Ausseil, A.-G. 2006: Preparing a National Environmental Classification for Freshwater Wetlands: scoping report. Landcare Research Contract Report 0607/118.

Saunders, D.A.; Richard, J.H.; Margules, C.R. 1991: Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology 5: 18–32.

Scarsbrook, M.; Barquín, J.; Gray, D. 2007: New Zealand coldwater springs and their biodiversity. Science for Conservation 278. Department of Conservation, Wellington, New Zealand. 72 p.

Seabloom, E.W.; Dobson, A.; Stoms, D.M. 2002: Extinction rates under nonrandom patterns of habitat loss. Proceedings of the National Academy of Sciences of the USA 99:11229–11234

Shepherd, J.D.; Dymond, J.R. 2003: Correcting Satellite Imagery for the Variance of Reflectance and Illumination with Topography. International Journal on Remote Sensing 24: 3503–3514.

Sorrell, B.; Gerbeaux, P. 2004: Wetland Ecosystems. Chapter 28 in Harding, J.; Mosley, P.; Pearson, C.; Sorrell, B. (eds): Freshwaters of New Zealand. New Zealand Hydrological Society, New Zealand Limnological Society, Caxton Press, Christchurch, New Zealand. 15p.

Stephens, R.T.T.; Brown, D.J.; Thornley, N.J. 2002: Measuring Conservation Achievement: concepts and their application over the Twizel Area. Science for Conservation 200. Wellington, Department of Conservation.

Suren, A.M. 2000: Effects of urbanisation. Pp. 260–288 in Collier, K.J.; Winterbourn, M.J. (eds): New Zealand stream invertebrates: ecology and implications for management. New Zealand Limnological Society, Christchurch, New Zealand.

Suren, A.M.; Elliott, S. 2004: Effects of urbanisation on streams. Chapter 35 in Harding, J.; Mosley, P.; Pearson, C.; Sorrell, B. (eds): Freshwaters of New Zealand. New Zealand Hydrological Society, New Zealand Limnological Society, Caxton Press, Christchurch, New Zealand.17 p.

Suren, A.M.; Lambert, P.; Image, K.; Sorrell, B.K. 2008: Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater Biology 53: 727–744

Taranaki Regional Council 2001: Wetlands of Taranaki: Taranaki Regional Council priorities for protection and enhancement.

Timmins, S.M. 1992: Wetland vegetation recovery after fire: Eweburn Bog, Te Anau, New Zealand. New Zealand Journal of Botany 30: 383–399

Vane-Wright, R.I.; Humphries, C.J.; Williams, P.H. 1991: What to protect? Systematics and the agony of choice. Biological Conservation 55: 235–254.

Vinson, M.R.; Hawkins, CP 1998: Biodiversity of stream insects: Variation at Local Basin and Regional scales. Annual Review of Entomology 43: 271–293.

Wilding, T.K.; Rowe, D. 2007: A draft risk-assessment method for the introduction of freshwater fish to New Zealand. Unpublished NIWA Client report. Hamilton, NIWA.

Woods, R.; Elliott, S.; Shankar, U.; Bidwell, V.; Harris, S.; Wheeler, D.; Clothier, B.; Green, S.; Hewitt, A.; Gibb, R.; Parfitt, R. 2006: The CLUES project: Predicting the Effects of Land-use on Water Quality. NIWA client report MAF05502.

## **Appendix 1: Wetland Maps**

## **1.1 Pre-settlement extent**

The Land Resource Inventory (LRI) was the main GIS layer used to select polygons referring to a pre-settlement wetland extent. The rules are shown in Tables 2 and 3 for the North Island and the South Island respectively. The North Island rules use three attributes of the LRI:

- LCORR: is an expression of three parts recorded in combination (see Newsome et al (2000) for interpretation). The left-hand number (between 1 and 8) describes the land limitation for arable use (from 1 = no limitation to 8 = severe limitation for cropping, pasture, or forestry). The middle letter corresponds to the polygon susceptibility for four limitations: 'e' = erosion limitation, 'w' = soil wetness limitation (poor drainage), 's' = soil physical or chemical limitation (e.g. shallowness, stoniness, low fertility), and 'c' = climatic limitation (coldness, frost, salt-laden onshore winds). The right-hand number makes the combined LCORR expression unique. It associates polygons on the basis of common landform, productive potential, physical limitation, and management behaviour.
- NZSC: is the New Zealand Soil Classification. The nomenclature can be found in Hewitt A. (1998).
- **Drainage Class**: is assessed using criteria of soil depth and chroma. The classes range from 1 (very poor drainage) to 5 (well drained soil).

Table 2 should be read row by row. For example, the first row of Table 2 is equivalent to the GIS rule: if LCORR = '1w1 OR 1w2 OR 1w4 OR 1w5' AND 'NZSC = RFM OR O% OR G%' then certainty = 1.

**Table 2** Rules applied on the Land Resource Inventory to select pre-settlement wetland polygons for the North Island<sup>2</sup>.

| LCORR                                                                | NZSC              | DRAINAGE class | Certainty |
|----------------------------------------------------------------------|-------------------|----------------|-----------|
| 1w 1, 1w2, 1w4, 1w5                                                  | RFM, O%, G%       |                | 1         |
| 1w3, 2w6, 2w7, 2w4, 2w3, 2s4, 3s6, 4e14, 6s11, 6s15, 7e23, 7e24, 7s1 |                   | < 3            | 1         |
| 1w3, 2w6, 2w7, 2w4, 2w3, 2s4, 3s6, 4e14, 6s11, 6s15, 7e23, 7e24, 7s2 |                   | > 3            | 3         |
| 1w6                                                                  | BMM, EMM, LOM     |                | 1         |
| 1w6                                                                  | not BMM, EMM, LOM |                | 3         |

<sup>2</sup> N.B. '%' denotes a wildcard character. This can be used as either a prefix or a suffix.

| LCORR                                                                                             | NZSC                                                                                                                                                                                        | DRAINAGE class | Certainty |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 2w1                                                                                               | RFM, GOT, GR%                                                                                                                                                                               |                | 1         |
| 2w1                                                                                               | not RFM, GOT or GR%                                                                                                                                                                         |                | 3         |
| 2w2                                                                                               | O%, G%                                                                                                                                                                                      |                | 1         |
| 2w2                                                                                               | not O%, G%                                                                                                                                                                                  |                | 3         |
| 2w8                                                                                               | RFM                                                                                                                                                                                         |                | 1         |
| 2w8                                                                                               | not RFM                                                                                                                                                                                     |                | 3         |
| 2w5, 2w9, 2w14, 2w10, 2w12, 2w13, 2s3, 3s22,<br>3w%, 4w%, 5w%, 6w%, 6e66, 6e62, 6e65,<br>7w%, 8w% |                                                                                                                                                                                             |                | 1         |
| 2s11                                                                                              | not BSA, PPT                                                                                                                                                                                |                | 1         |
| 2s11                                                                                              | BSA, PPT                                                                                                                                                                                    |                | 3         |
| 3e17                                                                                              | PJM, PJT, PP%, PIM                                                                                                                                                                          |                | 1         |
| 3e17                                                                                              | not PJM, PJT, PP%, PIM                                                                                                                                                                      |                | 3         |
| 3e20, 3s18                                                                                        | PJM, PPJ                                                                                                                                                                                    | <3             | 1         |
| 3e20, 3s18                                                                                        | not PJM, PPJ                                                                                                                                                                                |                | 3         |
| Other LCORR not listed above                                                                      | O%, G%                                                                                                                                                                                      |                | 2         |
| Other LCORR not listed above                                                                      | UEY, PPX, PIM, UEP, RSM,<br>PJM, UDM, LIT, RFM,<br>WGFU, BSM, NOM, BAM,<br>BFM, UPT, PPJX, LGT, ZGT,<br>XPT, NPA, BLM, LPT, BOM,<br>RFM, MPT, PPT, EMM, NXM,<br>EPT, MOM, RFMA, BMM,<br>PPU | <3             | 3         |

The rules for the South Island use four attributes of the LRI:

- LCORR (described above)
- LUC: Land Use Capability which has the same description as LCORR
- **GENSOI**: is the soil nomenclature corresponding to the General Survey of Soils of the South Island (New Zealand Soil Bureau, 1968).
- **VEGETATION**: is an indication of the vegetative cover of the polygon. The relevant codes for wetland vegetation are:
- H1: swamp vegetation
- H2: rushes and sedges
- H6: pakihi vegetation
- P5: red tussock grassland
- M1: manuka/kanuka
- N7: podocarp forest
- N3a: lowland podocarp forest

GENSOI was used instead of NZSC as we had a complete coverage for GENSOI in the South Island. VEGETATION was used in the South Island as a checking attribute because the scale of the polygons is coarse.

| LCORR | GENSOI                                                                                                                                                                                                                                                                                                                                         | LUC                                                                                                                                                                                                                                | VEGETATION      | Certainty |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| %w%   | 18d, 18f, 25b, 25c, 25d, 26, 28cH, 28d, 32b, 33, 33a, 33b, 36a, 36aH, 36c, 36cH, 36d, 36dH, 36e, 40, 40aH, 52, 53a, 53aH, 54h, 59, 59a, 59b, 59c, 60, 60a, 60b, 62, 62c, 62d, 63, 63a, 63b, 63cH, 64a, 64e, 64f, 70a, 72, 86, 86a, 86b, 86c, 87, 87a, 88, 89, 89a, 89b, 89c, 89d, 89e, 89f, 89g, 90, 90a, 90b, 90c, 90d, 90e, 90f, 91, 91a, 92 |                                                                                                                                                                                                                                    |                 | 1         |
|       | 15, 15 H, 17, 18, 18a, 20, 43c, 68, 68a, 68b, 68c, 70, 70b, 70c, 94, 94a, 95, 95a, 95b, 95c, 95d, 97, 98, 98b, 98c, 98e, 98f, 98g, 99, 99a, 99b, 99c, 99d                                                                                                                                                                                      |                                                                                                                                                                                                                                    | H 1 H 2         | 1         |
|       | 23                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | P 5 H 1 H 2     | 1         |
|       | 25a                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | H 2             | 1         |
|       | 18d, 18f, 25b, 25c, 25d, 26, 28cH, 28d, 32b, 33, 33a, 33b, 36a, 36aH, 36c, 36cH, 36d, 36dH, 36e, 40, 40aH, 52, 53a, 53aH, 54h, 59, 59a, 59b, 59c, 60, 60a, 60b, 62, 62c, 62d, 63, 63a, 63b, 63cH, 64a, 64e, 64f, 70a, 72, 86, 86a, 86b, 86c, 87, 87a, 88, 89, 89a, 89b, 89c, 89d, 89e, 89f, 89g, 90, 90a, 90b, 90c, 90d, 90e, 90f, 91, 91a, 92 | %2c2, %2s1, 2s3, 3e4,<br>3s2, 3s4, 3s8, 3s9,<br>3s10, 3s11, 3s12, 4c3,<br>4e16, 4s1, 4s2, 4s5,<br>4s8, 4s10, 4s11, 4s15,<br>5c2, 5s5, 5s6, 6c7,<br>6e8, 6s3, 6s4, 6s5,<br>6s6, 6s10, 7s1, 7s2,<br>7s3, 7s6, 7s7, 7s11,<br>8c1, 8s1 |                 | 2         |
|       | 18b, 19b, 21b, 21c, 26a, 29, 29 H, 29aH, 29ch, 29d,<br>29dH,<br>35aH, 36, 36 H, 36b, 40a, 41cH, 43d, 44aH, 50 H,<br>40a, 50b, 50bH, 76 H, 76dH, 80, 80a<br>53b, 53d, 54e, 54eH, 54f, 54hH                                                                                                                                                      |                                                                                                                                                                                                                                    | Р 5             | 2         |
|       | 78, 78 H                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | H 2 H 6 M 1 P 5 | 2         |
|       | 28bH                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | M 1 P 5         | 3         |
|       | 30bH                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | M 1 H 1         | 3         |
|       | 43                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                    | H 1 H 2 M 1     | 3         |
|       | 59d                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | P 5 N 7         | 3         |
|       | 62a                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | M 1             | 3         |
|       | 77a                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    | N3a             | 3         |

# **Table 3** Rules applied on the Land Resource Inventory to select historical wetland polygons for the South Island

Once the polygons from the LRI were selected for the North and South Islands, thresholds on slope stratified across the LENZ level 1 environments were applied. LRI wetland soils polygons were trimmed where the slope exceeded the threshold. Figure 2 in the main body of this report (Section 3.2) shows the spatial map of the slope thresholds, and Table 4 shows the threshold numbers used.

| LENZ Level | Slope threshold | Description                                     |
|------------|-----------------|-------------------------------------------------|
| А          | 6               | Northern lowlands                               |
| В          | 17              | Central dry lowland                             |
| С          | 7               | Western and southern North Island lowlands      |
| D          | 24              | Northern hill country                           |
| Е          | 18              | Central dry foothills                           |
| F          | 19              | Central hill country and volcanic plateau       |
| G          | 6               | Northern recent soils                           |
| Н          | 9               | Central sandy recent soils                      |
| Ι          | 3               | Central poorly-drained recent soils             |
| J          | 6               | Central well-drained recent soils               |
| K          | 6               | central upland recent soils                     |
| L          | 4               | Southern lowlands                               |
| М          | 6               | Western South Island recent soils               |
| N          | 9               | Eastern South Island plains                     |
| 0          | 11              | Western South Island foothills & Stewart Island |
| Р          | 20              | Central mountains                               |
| Q          | 21              | Southeastern hill country & mountains           |
| R          | 44              | Southern Alps                                   |
| S          | 7               | Ultramafic soils                                |
| Т          | 51              | Permanent snow & ice                            |

**Table 4** Slope thresholds used to refine LRI wetland polygons.

## **1.2 Current extent**

The GIS wetland data includes a list of attributes associated with each polygon (Table 1) and an associated metadata file; these metadata describe the different information sources used to define the wetland boundaries, including the source of the polygon and further information when a region-growing has been applied (threshold and centre point data). Each wetland has two unique identifier numbers (Idwetland and Idunique) at the region scale and national scale.

**Table 1** Description of the attributes associated with each wetland polygon in the current national extent layer (2007).

| Attribute name | Definition                                                                           |
|----------------|--------------------------------------------------------------------------------------|
| Source         | Source of information of the polygon                                                 |
| Туре           | Emergent vegetation or open water type                                               |
| Name           | Name of the wetland                                                                  |
| Info           | General information known about the wetland                                          |
| IDunit         | Identifier of the biogeographic unit                                                 |
| IDwetland      | Identifier of the wetland at the region level                                        |
| IDregion       | Identifier of the political region                                                   |
| IDunique       | Identifier of the wetland at the national level (= IDregion x<br>100000 + IDwetland) |
| IDinfo         | General information on the identifier number IDwetland                               |
| Easting        | Easting of the centre point used for the region-growing algorithm                    |
| Northing       | Northing of the centre point used for the region-growing algorithm                   |
| Threshold      | Spectral threshold used for the region-growing algorithm                             |
| Check          | Flag to know if a region-growing polygon has been checked or not.                    |

Figure 1 summarises the different sources of information used for each region (TLA boundaries) for creating the current wetland extent.

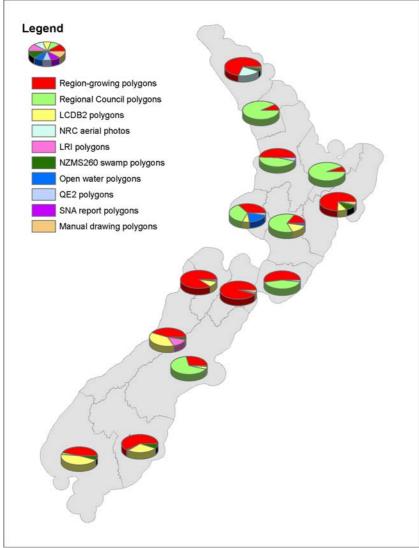



Figure 1 Source of information in each region authority boundaries.

# Appendix 2: Typology decision rules

## 2.1 Wetland classes

Table 5 shows the rules to define the degree of membership of each wetland polygon to each class. For each of the 13 variables (pH class, drainage class, peat content, red tussock, subalpine vegetation, upland, slope, nearby lake, nearby river, subcatchment size, fertility, pakihi soil, and gumland soil), the polygon was assigned a degree of membership  $p_{ij}$  in each wetland class (*i* refers to the variable, *j* to the wetland class). For example, a polygon with a pH class of 1 will have a swamp membership of 0.1, a marsh membership of 0.6, etc. The  $p_{ij}$  are then multiplied to obtain a probability  $p_j$  per wetland class.

Tables 6, 7, and 8 show the rules used to determine the variables **pakihi soils**, **gumland soils**, and **peat content** respectively, as they were not available from the LRI. These variables had to be inferred from GIS rules on the soil types (using the following attributes in the LRI: NZSC, GENSOI, SOIL TYPE, TOP ROCK, and BASE ROCK).

| Variable            | description     | swamp | marsh | bog | fen | seepage | pakihi | gumland |
|---------------------|-----------------|-------|-------|-----|-----|---------|--------|---------|
| PH class            | 7.6-8.3         | 0.1   | 0.6   | 0   | 0   | 0.8     |        |         |
| (from the LRI)      | 6.5-7.5         | 0.8   | 1     | 0   | 0   | 1       |        |         |
|                     | 5.8-6.4         | 1     | 0.6   | 0   | 0.6 | 1       |        |         |
|                     | 5.5-5.7         | 0.8   | 0.2   | 0.6 | 0.8 | 1       |        |         |
|                     | 4.9-5.4         | 0.5   | 0     | 0.8 | 1   | 1       |        |         |
|                     | 4.5-4.8         | 0.1   | 0     | 1   | 0.8 | 1       |        |         |
| Drainage class      | very poor       | 1     | 0     | 1   | 1   | 0       |        |         |
| (from the LRI)      | poor            | 1     | 0.2   | 1   | 1   | 0.2     |        |         |
|                     | imperfect       | 0.8   | 1     | 0.6 | 0.6 | 0.4     |        |         |
|                     | moderately well | 0.3   | 0.9   | 0   | 0.5 | 1       |        |         |
|                     | well            | 0.1   | 0.9   | 0   | 0.1 | 1       |        |         |
| Peat content        | Pure peat       |       | 0     | 1   | 0.8 | 0       |        |         |
|                     | Mneral/peat     |       | 0.5   | 0.8 | 1   | 1       |        |         |
|                     | Pure mineral    |       | 1     | 0   | 0.1 | 1       |        |         |
| Red tussock         | No red tussock  | 1     | 1     | 1   | 0.5 |         |        |         |
| (P5 in LRI)         | Red tussock     | 0     | 0     | 0   | 1   |         |        |         |
| Subalpine herbfield | presence        | 0     | 0.5   |     | 1   |         |        |         |
| (H 4 in LRI)        | absence         | 1     | 1     |     | 1   |         |        |         |
| Upland              | >600m (upland)  | 0.5   |       |     |     |         |        |         |
|                     | < 600m          | 1     |       |     |     |         |        |         |
| Slope               | < 6 deg (flat)  | 1     |       |     |     | 0       |        |         |
|                     | > 6 deg (steep) | 0.5   |       |     |     | 1       |        |         |
| Lake nearby         | presence        |       |       | 0.1 | 0.1 |         |        |         |
|                     | absence         |       |       | 1   | 1   |         |        |         |

 Table 5 Degree of membership for each wetland class per variable.

| Variable          | description                 | swamp | marsh | bog | fen | seepage | pakihi | gumland |
|-------------------|-----------------------------|-------|-------|-----|-----|---------|--------|---------|
| River nearby      | presence                    |       |       |     | 0.1 |         |        |         |
|                   | absence                     |       |       |     | 1   |         |        |         |
| Subcatchment size | > 1000 ha                   |       |       |     | 0.1 | 0       |        |         |
|                   | 100-1000 ha                 |       |       |     | 1   | 0       |        |         |
|                   | < 100 ha                    |       |       |     | 1   | 1       |        |         |
| Fertility         | low                         | 0.2   | 0.2   | 1   | 1   |         |        |         |
|                   | low to medium               | 0.5   | 0.5   | 0.8 | 1   |         |        |         |
|                   | medium                      | 0.8   | 0.8   | 0   | 0.8 |         |        |         |
|                   | medium to high              | 1     | 1     | 0   | 0   |         |        |         |
|                   | high                        | 1     | 1     | 0   | 0   |         |        |         |
| Pakihi soil       | High probability            |       |       |     |     |         | 1      |         |
|                   | Low probability             |       |       |     |     |         | 0.5    |         |
|                   | absence                     |       |       |     |     |         | 0      |         |
| Gumland soil      | High and medium probability |       |       |     |     |         |        | 1       |
|                   | low probability             |       |       |     |     |         |        | 0.2     |
|                   | absence                     |       |       |     |     |         |        | 0       |

#### **Table 6** Pakihi soil definition.

| North Island          | South Island                                        |
|-----------------------|-----------------------------------------------------|
| NZSC like ZP ZG ZD ZX | GENSOI like 59a,59b, 59c, 59d, 60a, 60b, 62, 62a,   |
| except ZXU            | 62c, 62d, 63a, 64f, 64fH                            |
| NZSC like ZO          | NZSC like ZO                                        |
|                       | North Island<br>NZSC like ZP ZG ZD ZX<br>except ZXU |

### Table 7 Gumland soil definition (North Island only).

|                    | NZSC classification          |  |
|--------------------|------------------------------|--|
| High probability   | UDP, ZXU, UEP, ZOH, ZOT, UDM |  |
| Medium probability | UYT, ZDH, ZGT                |  |
| Low probability    | UEY, GOA, UPS, UEM, UPT, UYM |  |

#### **Table 8** Peat content definition.

|                            | GIS Rule                                                                                                       |
|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Pure peat                  | Top rock or soil type contains 'Pt' or NZSC like OH, OM, OF                                                    |
| Peat and mineral substrate | Top rock not Pt and baserock like Pt or peaty or<br>NZSC like LGO, BAO, GUO, GRO, GAO, GOO, ERO, ZPOZ,<br>RXOA |
| Pure mineral               | By default                                                                                                     |

The protocol was slightly different for classifying the historical extent. The rules did not include the presence of lake, river, and sub-catchment area, as these clues are site-specific and apply to the current extent only.

Table 9 shows an example of wetland classification for a polygon with the following properties: pH class = 1, drainage class = poor, peat content = mineral/peat, no red tussock, no subalpine herbfield, below 600m elevation, slope below 6 degrees, no lake or river nearby, medium subcatchment size (100–1000 ha), medium fertility, no pakihi soil, and no gumland soil. By reading membership values in table 5, and multiplying the membership degrees in each class, we found in this example that the highest  $p_j$  is  $p_{bog} = 0.8$ , so the polygon will be classified as a bog.

| Variable            | description    | swamp | marsh | bog | fen  | seepage | pakihi | gumland |
|---------------------|----------------|-------|-------|-----|------|---------|--------|---------|
| PH class            | 4.5-4.8        | 0.1   | 0     | 1   | 0.8  | 1       |        |         |
| Drainage class      | poor           | 1     | 0.2   | 1   | 1    | 0.2     |        |         |
| Peat content        | mineral/peat   |       | 0.5   | 0.8 | 1    | 1       |        |         |
| Red tussock         | absence        | 1     | 1     | 1   | 0.5  |         |        |         |
| Subalpine herbfield | absence        | 1     | 1     |     | 1    |         |        |         |
| upland              | < 600m         | 1     |       |     |      |         |        |         |
| Slope               | < 6 deg (flat) | 1     |       |     |      | 0       |        |         |
| Lake nearby         | absence        |       |       | 1   | 1    |         |        |         |
| River nearby        | absence        |       |       |     | 1    |         |        |         |
| Subcatchment size   | 100-1000 ha    |       |       |     | 1    | 0       |        |         |
| Fertility           | medium         | 0.8   | 0.8   | 0   | 0.8  |         |        |         |
| Pakihi soil         | absence        |       |       |     |      |         | 0      |         |
| Gumland soil        | absence        |       |       |     |      |         |        | 0       |
| Probability $p_j$   |                | 0.08  | 0     | 0.8 | 0.32 | 0.2     | 0      | 0       |

 Table 9 Example of wetland class assignment.

#### 2.2 Wetland structural vegetation

Wetland vegetation structural classes (Johnson & Gerbeaux 2004) were defined for each wetland based on the natural vegetation cover classes defined in LCDB2 but were not used in the current assessment due to the methodological complexity this would impose (e.g. how to measure complementarity).

| LCDB2 code | LCDB2 description                |
|------------|----------------------------------|
| 41         | Low-producing grassland          |
| 43         | Tall tussock grassland           |
| 45         | Herbaceous freshwater vegetation |
| 47         | Flaxland                         |
| 50         | Fernland                         |
| 52         | Manuka and or kanuka             |
| 53         | Matagouri                        |
| 54         | Broadleaved indigenous hardwoods |
| 55         | Sub alpine shrubland             |
| 69         | Indigenous forest                |

 Table 10 Natural vegetation structural classes of wetlands as defined in LCDB2.

## **3.1** Creating the spatial layers

### 3.1.1 Naturalness

Spatial variation in native vegetation cover was derived using a combination of LCDB2 cover types considered as 'natural' overlaid with data from an unpublished land use layer held by Landcare Research. The LCDB2 polygons, particularly tussock, were refined by applying a rule based on underlying land use where land defined as farmed was considered as non-natural (Table 11). Gorse and broom, matagouri, and depleted tussock grasslands were considered natural cover as they are likely to provide similar functional protection and indicate early successional recovery following disturbance in natural areas. They were considered when nested within a mosaic of other natural vegetation classes.

| Table II L | DB2 cover classes representing flatur |  |
|------------|---------------------------------------|--|
| LCDB2 code | LCD2 cover types                      |  |
| 10         | Coastal sand and gravel               |  |
| 11         | River and lakeshore gravel and rock   |  |
| 12         | Landslide                             |  |
| 13         | Alpine gravel and rock                |  |
| 14         | Permanent snow and ice                |  |
| 15         | Alpine grass-/herbfield               |  |
| 20         | Lake and pond                         |  |
| 21         | River                                 |  |
| 22         | Estuarine open water                  |  |
| 43         | Tall tussock grassland                |  |
| 44         | Depleted tussock grassland            |  |
| 45         | Herbaceous freshwater vegetation      |  |
| 46         | Herbaceous saline vegetation          |  |
| 47         | Flaxland                              |  |
| 50         | Fernland                              |  |
| 51         | Gorse and broom                       |  |
| 52         | Manuka and or kanuka                  |  |
| 53         | Matagouri                             |  |
| 54         | Broadleaved indigenous hardwoods      |  |
| 55         | Subalpine shrubland                   |  |
| 56         | Mixed exotic                          |  |
| 57         | Grey scrub                            |  |
| 60         | Minor shelterbelts                    |  |
| 61         | Major shelterbelts                    |  |
| 62         | Afforestation                         |  |
| 63         | Afforestation                         |  |
| 65         | Pine forest                           |  |
|            |                                       |  |

76

| LCDB2 code | LCD2 cover types  |
|------------|-------------------|
| 66         | Pine forest       |
| 69         | Indigenous forest |
| 70         | Mangroves         |
|            |                   |

#### 3.1.2 Artificial impervious surfaces

A raster layer describing spatial variation in the cover of impervious surfaces such as roads, car parks, and buildings was provided by Derek Brown (DOC). The layer separates impervious v. pervious areas.

The source layers were LCDB2 and the following 1:50,000 vector layers from LINZ:

- Roads, attributes SHW, sealed, metalled, un-metalled.
- Railway, attribute multiple rails, single rail.
- Tracks, attributes foot track, vehicle track.
- Tunnels, used to erase sections of road and rail network.
- Building point.

The vectors listed above and LCDB2 were gridded to a resolution of 25 m using LENZ level 4 as a template and then merged.

The attributes recorded in the layer are:

• Impervious – Impervious, Pervious

- Surface Native, Exotic, Compacted, Metalled, Sealed, Surface modified
- Source source of data
- Source\_Detail Feature extracted from source data

Grid cells defined as 'compacted' in the *surface* column are split between the 'pervious' and 'impervious' classification in the *impervious* column. Unmetalled roads are classified as impervious whilst foot tracks and vehicle tracks are classed as pervious.

Further investigation is needed to establish if, at a 25 m grid resolution, compaction caused by vehicles and pedestrians on tracks alters the porosity sufficiently to move these classes into the 'impervious' grouping.

Where a tunnel vector intersects with a subterranean vector and a surface vector, the two latter vectors are deleted. This effect is minimal as the tunnel and surface vector generally run perpendicular to each other. For example, the Lyttelton road tunnel intersects the Summit Road and affects 2 grid cells.

#### 3.1.3 Nutrient enrichment

Estimates of nitrate leaching risk load from the soil were based on a leaching model implemented within a catchment framework (Woods et al. 2006). The values output from CLUES were expressed in parts per million, i.e. g m-3.

#### 3.1.4 Introduced fish

The New Zealand Freshwater Fish Database (NZFFD) provided point location data on pest fish presence throughout New Zealand. A total introduced fish score was calculated using different impact indices for each species derived from a risk assessment model developed by Wilding & Rowe (2007). The pestiness scores were based on ecological impact, as we removed the life history characteristic scores and invasiveness values used in the original risk assessment model (Table 12).

| Scientific name             | Common name     | Pestiness score |
|-----------------------------|-----------------|-----------------|
| Ameiurus nebulosus          | Catfish         | 17              |
| Carassius auratus           | Goldfish        | 12.5            |
| Ctenopharyngodon idella     | Grass carp      | 9               |
| Cyprinus carpio             | Koi carp        | 14              |
| Gambusia affinis            | Gambusia        | 14              |
| Hypophthalmichthys molitrix | Silver carp     | 7               |
| Leuciscus idus              | Orfe            | 9               |
| Oncorhynchus mykiss         | Rainbow trout   | 18              |
| Oncorhynchus nerka          | Sockeye salmon  | 7               |
| Oncorhynchus tshawytscha    | Quinnat salmon  | 2               |
| Perca fluviatilis           | Perch           | 24              |
| Poecilia latipinna          | Sailfin         | 4.5             |
| Poecilia reticulata         | Guppy           | 7.5             |
| Salmo salar                 | Atlantic salmon | 8               |
| Salmo trutta                | Brown trout     | 17              |
| Salvelinus fontinalis       | Brook char      | 12              |
| Scardinius erythrophthalmus | Rudd            | 19              |
| Tinca tinca                 | Tench           | 8               |

Table 12 Pestiness score for introduced fish species derived from Wilding and Rowe (2007)

#### 3.1.5 Woody weeds

77

LCDB2 provided spatial information for some weeds affecting wetlands. Two categories were considered: willows, and other woody weeds. The willows can be found under a single LCDB2 code (68: deciduous hardwoods). The other woody weeds were a combination of LCDB2 codes (Table 13).

| Table 13 LCDB2 codes | used to define | the extent of woody | v exotic weeds |
|----------------------|----------------|---------------------|----------------|
|                      |                |                     |                |

| LCDB2 code | LCDB2 name          |
|------------|---------------------|
| 51         | Gorse and broom     |
| 56         | Mixed exotic        |
| 57         | Grey scrub          |
| 60         | Minor shelterbelts  |
| 61         | Major shelterbelts  |
| 62         | Afforestation       |
| 63         | Afforestation       |
| 65         | Pine forest         |
| 66         | Pine forest         |
| 67         | Other exotic forest |
|            |                     |

### 3.1.6 Drainage

NZMS260 topomap provided the stream line and drain line vector file. We processed the vector layer to retrieve drain parts, thus creating our own drain layer. The GIS rule used retrieved straight lines corresponding to drains by using a criterion on number of vertices and slope for each line segment.

#### 3.2. Relating pressure measures to ecological integrity

Before calculating an overall pressure index, we transformed each pressure measure to provide a measure of ecological integrity. Ecological integrity values ranged from zero to one, with shapes designed to reflect qualitative understanding of likely changes in ecological integrity across the gradient of each pressure. For most pressures we have assumed that even at extreme levels of human disturbance some wetland function, biodiversity content, or restoration potential will remain. Thus, ecological integrity values do not fall to zero except where 100% impervious cover would result in the complete loss of the wetland's biodiversity.

The curves were chosen as follows:

*Loss of natural cover*: the variable used is the proportion of natural cover. Values were derived in the catchment and in the buffer zone. They were expressed as a proportion (0-1) and transformed using a decreasing line for the buffer and an S-shape curve for the contributing catchment. The linear function decreases to a minimum of 0.3 for no naturalness. The S-shape function initially decreases slowly, then steepens around 0.4 and slows down, also reaching a minimum of 0.3.

- *Imperviousness*: the variable used is the proportion of impervious surface. Values were derived in the wetland and in the buffer zone. A decreasing function started at 1 if there is no impervious area, declining to 0 for 100% impervious surface, with a value of 0.5 for a 20% impervious surface.
- *Nutrient enrichment*: the variable used is the mean value derived from a nitrate leaching index model developed by Landcare Research as part of the CLUEs project. This acts as a surrogate measure of nutrient enrichment associated with land intensification. Values were derived in the catchment and in the buffer zone. The catchment function was S-shaped, becoming steeper around 20 ppm and reaching a minimum at 0.2. The buffer zone function had an extra parameter (the **core to edge** ratio) to account for edge effects. The core to edge ratio was estimated using a 30 m internal buffer. The chosen function decreased from 1, with a slope varying with the core to edge ratio. If the ratio is low (strong edge effect), the slope is steep, reflecting greater loss of EI. If the ratio is 1 or more (core is bigger than the edge), the nitrate risk has no effect, as the wetland has a sufficient buffer strip to deal with local nitrate leaching risk.
- *Introduced fish*: the variable used is the sum of pestiness scores for all the present introduced fish species (the maximum value is the sum of pestiness scores for all introduced species, i.e. 209.5). Values were derived in the catchment. The function started at 1 when no introduced fish species were present, decreasing steeply to reach a 0.8 value for a pestiness score of 50. The curve has an infinite limit set at 0.75.
- *Woody weeds*: the variable used is the proportion of woody weeds (as a fraction). Values were derived in the wetland. Two functions were used to separate willow effects from gorse and other weed effects. For willows, the curve starts at 1 and decreases at an increasing rate to a minimum value of 0.25. For gorse, the curve shape is similar with a final value set at 0.75 as the impact on wetland biota is thought to be less than for willows.
- *Drainage*: the variable used is the proportion of drains based on the drain layer described above. Values were derived in the wetland and in the buffer zone. The curve is a decreasing line reaching a minimum of 0.1 if 100% of the area was affected by drainage.

| TLA Region                | Pakihi/<br>gumland | Bog   | Swamp | Marsh | Fen   | Seepage | Inland saline | Undefined | Total  |
|---------------------------|--------------------|-------|-------|-------|-------|---------|---------------|-----------|--------|
| Northland                 | 2729               | 864   | 9386  | 1023  | 43    | 24      |               | 44        | 14114  |
| Auckland                  | 242                | 63    | 1475  | 586   | 42    | 139     |               | 334       | 2639   |
| Waikato                   | 45                 | 13163 | 13006 | 1915  | 51    | 6       |               | 85        | 28226  |
| Bay of Plenty             | 10                 | 51    | 1556  | 1595  | 27    | 42      |               | 23        | 3304   |
| Manawatu–<br>Wanganui     |                    | 3     | 2415  | 2549  | 1942  | 69      |               | 5         | 6983   |
| Taranaki                  |                    | 84    | 1746  | 1074  | 76    | 45      |               | 20        | 3045   |
| Hawkes Bay –<br>East Cape | 150                | 25    | 2049  | 656   | 445   | 62      |               | 7         | 3394   |
| Wellington                |                    |       | 2384  | 339   | 16    | 27      |               | 8         | 2774   |
| Tasman                    | 3087               | 24    | 776   | 775   | 428   | 131     |               | 3         | 5224   |
| Marlborough               |                    |       | 731   | 658   | 56    | 100     |               | 0         | 1545   |
| West Coast                | 49158              | 4484  | 24038 | 2653  | 3939  | 111     |               | 13        | 84396  |
| Canterbury                |                    |       | 10689 | 6392  | 2419  | 348     |               | 3         | 19851  |
| Otago                     |                    | 1412  | 9493  | 1764  | 13412 | 642     | 292           | 35        | 27050  |
| Southland                 | 1494               | 19888 | 10331 | 1094  | 14113 | 297     |               | 14        | 47231  |
| TOTAL                     | 56628              | 40061 | 90075 | 23073 | 37009 | 2043    | 292           | 595       | 249776 |

Table 14 Current extent (ha) of wetland classes per TLA region

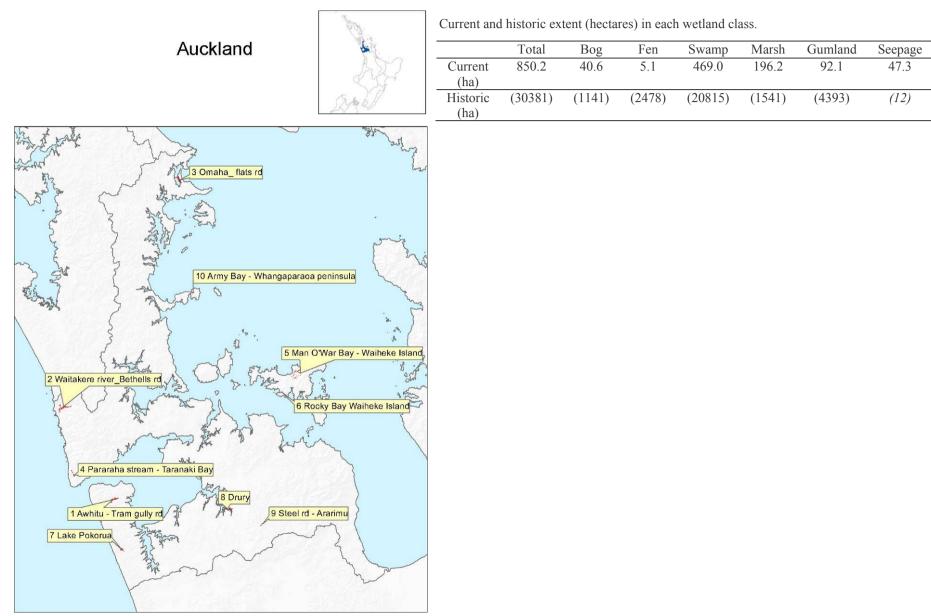
# Table 15 Historic extent (ha) of wetland classes per TLA region

|                           |                   |        |         | -      | 0      |         |               |         |
|---------------------------|-------------------|--------|---------|--------|--------|---------|---------------|---------|
| TLA Region                | Pakihi<br>Gumland | Bog    | Swamp   | Marsh  | Fen    | Seepage | Inland saline | Total   |
| Northland                 | 66551             | 15651  | 141850  | 26592  | 7808   | 0       | 0             | 258451  |
| Auckland                  | 7377              | 2717   | 40189   | 4234   | 3310   | 24      | 0             | 57851   |
| Waikato                   | 1392              | 70625  | 220585  | 40066  | 23848  | 0       | 0             | 356516  |
| Bay of Plenty             | 823               | 1024   | 31497   | 5593   | 4153   | 0       | 0             | 43089   |
| Manawatu–Wanganui         | 0                 | 1695   | 221338  | 37064  | 4413   | 1       | 0             | 264511  |
| Taranaki                  | 0                 | 82     | 31018   | 7562   | 1568   | 48      | 0             | 40278   |
| Hawkes Bay – East<br>Cape | 79                | 116    | 136940  | 39863  | 3299   | 75      | 0             | 180371  |
| Wellington                | 0                 | 0      | 101326  | 17259  | 4218   | 0       | 0             | 122804  |
| Tasman                    | 12981             | 593    | 6026    | 7570   | 44     | 125     | 0             | 27339   |
| Marlborough               | 0                 | 0      | 10573   | 1710   | 399    | 102     | 0             | 12785   |
| West Coast                | 216338            | 13597  | 92903   | 28289  | 7053   | 2       | 0             | 358182  |
| Canterbury                | 0                 | 0      | 163100  | 17514  | 6046   | 456     | 0             | 187115  |
| Otago                     | 0                 | 4431   | 62849   | 11818  | 28382  | 1739    | 1586          | 110804  |
| Southland                 | 33917             | 42585  | 240814  | 35694  | 97556  | 418     | 0             | 450985  |
| TOTAL                     | 339458            | 153116 | 1501008 | 280828 | 192097 | 2990    | 1586          | 2471081 |
|                           |                   |        |         |        |        |         |               |         |

#### Appendix 5. Priority lists per biogeographic unit.

Biogeographic units are listed in alphabetical order below (for locations, refer to Figure 1 p.14).

- 1. Auckland
- 2. Banks Peninsula
- 3. Bay of Plenty
- 4. Canterbury
- 5. Clutha
- 6. Coromandel
- 7. East Cape
- 8. Fiordland
- 9. Grey–Buller
- 10. Hawkes Bay
- 11. Manawatu–Wairarapa
- 12. Marlborough
- 13. Mokau
- 14. Motueka–Nelson
- 15. Northland Eastern


16. Northland – Northern
17. Northland – Western
18. Northwest Nelson – Paparoa
19. Otago Peninsula
20. Palliser–Kidnappers
21. Southland
22. Stewart Island
23. Taieri
24. Taranaki
25. Waikato
26. Waitaki
27. Wanganui–Rangitikei
28. Wellington
29.Westland

For each biogeographic unit, the following information is presented:

- A table summarising the current and historic extent of each wetland class. When the current extent is greater than the historic extent, the cell is italicised. This inconsistency is sometimes seen as the extents do not always match spatially.
- A map displaying the biogeographic unit with only the first ten wetland sites, with their rank and name.
- A table displaying the first twenty wetland sites, and any additional wetland site corresponding to a missing wetland class, with the following attributes:
  - Easting, Northing and mapsheet refer to the point location of the wetland site and the map sheet number of the NZMS 260 topomap series.
  - Area (ha) is the total area of the site in hectares,
  - CumCE is the cumulative conservation effectiveness as we go down the list (section 3.4.4).
  - Cum.area is the proportion of cumulative area protected as we go down the list (see section 4.4 for interpretation details).
  - EI index is the Ecological Integrity index of the wetland site, as computed in section 3.4.3
  - HLeft is the irreplaceability measure as computed in section 3.4.4
  - Bog, Fen, Swamp, Marsh, Seepage, Pakihi/Gumland, and Inland Saline present the cumulative percentage of current extent over the total current extent (not in brackets), and the cumulative proportion of current extent over the total historic extent (in brackets). No proportion (-) is shown when the historic extent is greater than the current extent.
- A table displaying the EI index and its components for naturalness (in the subcatchment and the buffer), imperviousness, nitrate leaching risk, pestiness, woody weeds, drainage and the resulting EI index.

The wetland names were derived from the databases given by the Regional Councils. Otherwise, the names of the first ten sites were completed by local experts at DOC (Sjaan Charteris for Canterbury, Natasha Grainger for Westland), or by assigning the closest visible feature on the topomap.

### 1. Auckland



| Rank | Idunique | Names                                | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog  | Fen    | Swamp | Marsh | Pakihi<br>/gumland | Seepage |
|------|----------|--------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|--------|-------|-------|--------------------|---------|
| 1    | 201066   | Awhitu_tram gully Rd                 | R12          | 2653051 | 6456763  | 86.9         | 0.47       | 0.09         | 0.49        | 0.22  |      |        | 15%   |       |                    | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (0%)  |       |                    | (-)     |
| 2    | 200990   | Waitakere<br>River_Bethells Rd       | Q11          | 2640408 | 6480055  | 116.4        | 0.59       | 0.21         | 0.66        | 0.43  |      |        | 16%   | 56%   |                    | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (0%)  | (7%)  |                    | (-)     |
| 3    | 200272   | Omaha_ flats Rd                      | R09          | 2669874 | 6537898  | 56.9         | 0.62       | 0.27         | 0.41        | 0.22  |      |        | 26%   | 56%   |                    | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (1%)  | (7%)  |                    | (-)     |
| 4    | 201039   | Pararaha stream_Taranaki Bay         | Q11          | 2642919 | 6463447  | 23.2         | 0.64       | 0.29         | 0.92        | 0.23  |      |        | 29%   | 56%   |                    | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (1%)  | (7%)  |                    | (-)     |
| 5    | 200926   | Man O'War Bay_Waiheke<br>Island      | S11          | 2699706 | 6488856  | 73.4         | 0.66       | 0.37         | 0.31        | 0.27  |      |        | 38%   | 64%   | 8%                 | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (1%)  | (9%)  | (0%)               | (-)     |
| 6    | 200984   | Rocky Bay Waiheke Island             | S11          | 2695697 | 6483930  | 13.4         | 0.67       | 0.38         | 0.72        | 0.22  |      |        | 40%   | 64%   | 8%                 | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       |      |        | (1%)  | (9%)  | (0%)               | (-)     |
| 7    | 201108   | Lake Pokorua                         | R12          | 2655315 | 6444185  | 39.7         | 0.68       | 0.42         | 0.31        | 0.26  | 84%  |        | 41%   | 64%   | 8%                 | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) |        | (1%)  | (9%)  | (0%)               | (-)     |
| 8    | 201086   | Drury                                | R12          | 2682481 | 6454359  | 32.2         | 0.69       | 0.45         | 0.25        | 0.22  | 84%  |        | 47%   | 64%   | 8%                 | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) |        | (1%)  | (9%)  | (0%)               | (-)     |
| 9    | 201201   | Steel Rd – Ararimu                   | S12          | 2690724 | 6450585  | 12.5         | 0.69       | 0.47         | 0.42        | 0.18  | 84%  | 100%   | 48%   | 64%   | 8%                 | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (1%)  | (9%)  | (0%)               | (-)     |
| 10   | 200707   | Army Bay – Whangaparaoa<br>peninsula | R10          | 2673049 | 6509233  | 22.8         | 0.70       | 0.49         | 0.32        | 0.21  | 84%  | 100%   | 49%   | 64%   | 26%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (1%)  | (9%)  | (1%)               | (-)     |
| 11   | 201077   | 0                                    | R12          | 2657260 | 6455156  | 24.4         | 0.70       | 0.52         | 0.25        | 0.22  | 84%  | 100%   | 53%   | 64%   | 26%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (1%)  | (9%)  | (1%)               | (-)     |
| 12   | 200532   | 0                                    | R10          | 2664043 | 6519544  | 19.7         | 0.71       | 0.54         | 0.38        | 0.31  | 84%  | 100%   | 55%   | 68%   | 26%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 13   | 201040   | 0                                    | R11          | 2674890 | 6462364  | 13.9         | 0.71       | 0.55         | 0.30        | 0.22  | 84%  | 100%   | 57%   | 68%   | 26%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 14   | 201060   | 0                                    | R12          | 2689958 | 6457304  | 13.9         | 0.71       | 0.56         | 0.26        | 0.22  | 84%  | 100%   | 60%   | 68%   | 26%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 15   | 200704   | 0                                    | R10          | 2661100 | 6509653  | 12.4         | 0.72       | 0.58         | 0.30        | 0.22  | 84%  | 100%   | 61%   | 68%   | 29%                | 0%      |
|      |          |                                      |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |

| Rank | Idunique | Names | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog  | Fen    | Swamp | Marsh | Pakihi<br>/gumland | Seepage |
|------|----------|-------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|--------|-------|-------|--------------------|---------|
| 16   | 200583   | 0     | R10          | 2662713 | 6516695  | 5.7          | 0.72       | 0.58         | 0.63        | 0.22  | 84%  | 100%   | 62%   | 68%   | 29%                | 0%      |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 17   | 200340   | 0     | R09          | 2670886 | 6534729  | 8.9          | 0.72       | 0.59         | 0.35        | 0.22  | 84%  | 100%   | 64%   | 68%   | 29%                | 0%      |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 18   | 200689   | 0     | R10          | 2660761 | 6510679  | 10.7         | 0.72       | 0.60         | 0.27        | 0.22  | 84%  | 100%   | 66%   | 68%   | 29%                | 0%      |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 19   | 200717   | 0     | R10          | 2674459 | 6508700  | 11.3         | 0.73       | 0.61         | 0.35        | 0.25  | 84%  | 100%   | 66%   | 68%   | 40%                | 0%      |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |
| 20   | 201111   | 0     | R12          | 2674173 | 6443478  | 9.4          | 0.73       | 0.62         | 0.30        | 0.22  | 84%  | 100%   | 68%   | 68%   | 40%                | 2%      |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (0.2%) | (2%)  | (9%)  | (1%)               | (-)     |

| Rank | Idunique | Names                             | Non-naturalness<br>in subcat | Non-<br>naturalness in<br>buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody weeds | Drainage | EI index |
|------|----------|-----------------------------------|------------------------------|----------------------------------|----------------|-----------------------------|-----------|-------------|----------|----------|
| 1    | 201066   | Awhitu_tram gully Rd              | 0.50                         | 0.66                             | 0.99           | 0.95                        | 1         | 0.99        | 1        | 0.49     |
| 2    | 200990   | Waitakere River_Bethells Rd       | 0.87                         | 0.85                             | 0.86           | 0.98                        | 0.79      | 0.98        | 1        | 0.66     |
| 3    | 200272   | Omaha_ flats Rd                   | 0.41                         | 0.71                             | 0.81           | 0.98                        | 1         | 0.99        | 1        | 0.41     |
| 4    | 201039   | Pararaha stream_Taranaki Bay      | 0.97                         | 0.93                             | 1              | 0.98                        | 1         | 0.99        | 1        | 0.92     |
| 5    | 200926   | Man O'War Bay_Waiheke Island      | 0.31                         | 0.35                             | 0.87           | 0.97                        | 1         | 0.99        | 1        | 0.31     |
| 6    | 200984   | Rocky Bay Waiheke Island          | 0.73                         | 0.80                             | 0.85           | 0.98                        | 1         | 0.99        | 1        | 0.72     |
| 7    | 201108   | Lake Pokorua                      | 0.32                         | 0.32                             | 1              | 0.96                        | 1         | 0.99        | 1        | 0.31     |
| 8    | 201086   | Drury                             | 0.30                         | 0.69                             | 0.95           | 0.92                        | 0.85      | 0.99        | 1        | 0.25     |
| 9    | 201201   | Steel Rd – Ararimu                | 0.42                         | 0.46                             | 0.87           | 0.96                        | 1         | 0.99        | 1        | 0.42     |
| 10   | 200707   | Army Bay – Whangaparaoa peninsula | 0.32                         | 0.52                             | 0.54           | 0.98                        | 1         | 0.99        | 1        | 0.32     |
| 11   | 201077   | 0                                 | 0.30                         | 0.65                             | 0.88           | 0.90                        | 0.85      | 0.99        | 1        | 0.25     |
| 12   | 200532   | 0                                 | 0.38                         | 0.59                             | 0.98           | 0.98                        | 1         | 0.99        | 1        | 0.38     |
| 13   | 201040   | 0                                 | 0.30                         | 0.58                             | 1              | 0.98                        | 1         | 0.99        | 1        | 0.30     |
| 14   | 201060   | 0                                 | 0.31                         | 0.92                             | 1              | 0.96                        | 0.85      | 0.99        | 1        | 0.26     |
| 15   | 200704   | 0                                 | 0.30                         | 0.44                             | 0.75           | 0.98                        | 1         | 0.99        | 1        | 0.30     |
| 16   | 200583   | 0                                 | 0.92                         | 0.63                             | 0.91           | 0.99                        | 1         | 0.99        | 1        | 0.63     |
| 17   | 200340   | 0                                 | 0.35                         | 0.53                             | 1              | 0.98                        | 1         | 0.99        | 1        | 0.35     |
| 18   | 200689   | 0                                 | 0.33                         | 0.57                             | 0.83           | 0.98                        | 0.85      | 0.99        | 1        | 0.27     |
| 19   | 200717   | 0                                 | 0.36                         | 0.50                             | 1              | 0.97                        | 1         | 0.99        | 1        | 0.35     |
| 20   | 201111   | 0                                 | 0.30                         | 0.32                             | 0.65           | 0.78                        | 1         | 0.99        | 1        | 0.30     |

## 2. Banks Peninsula

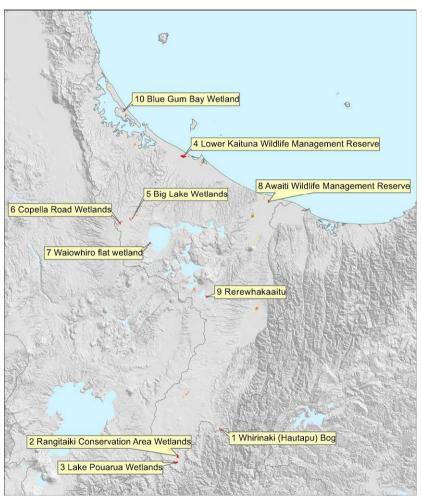
# Banks Peninsula



|               | Total | Swamp | Marsh | Seepage |
|---------------|-------|-------|-------|---------|
| Current (ha)  | 34.4  | 8.6   | 24.3  | 1.5     |
| Historic (ha) | (356) | (297) | (47)  | (12)    |



| Rank | Idunique | Names                   | Map<br>sheet | Easting | Northing | Area<br>(ha) | cum.<br>CE | Cum.<br>area | EI<br>index | HLef<br>t | Swamp | Marsh | Seepage |
|------|----------|-------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-----------|-------|-------|---------|
| 1    | 1201617  | Wairewa                 | 137          | 2324378 | 5689413  | 11.4         | 0.56       | 0.43         | 0.23        | 0.49      | 100%  | 29%   | 0%      |
|      |          |                         |              |         |          |              |            |              |             |           | (2%)  | (11%) | (<1%)   |
| 2    | 1201592  | Little Okains           | H37          | 2284025 | 5701812  | 9.4          | 0.67       | 0.79         | 0.30        | 0.77      | 100%  | 79%   | 0%      |
|      |          |                         |              |         |          |              |            |              |             |           | (2%)  | (31%) | (<1%)   |
| 3    | 1201615  | French Farm Wetland     | 137          | 2308057 | 5697517  | 1.5          | 0.69       | 0.85         | 0.30        | 0.43      | 100%  | 79%   | 100%    |
|      |          |                         |              |         |          |              |            |              |             |           | (2%)  | (31%) | (12%)   |
| 4    | 1201624  | Goughs                  | L37          | 2419057 | 5686547  | 1.1          | 0.70       | 0.89         | 0.30        | 0.77      | 100%  | 84%   | 100%    |
|      |          |                         |              |         |          |              |            |              |             |           | (2%)  | (34%) | (12%)   |
| 5    | 1201581  | Bradley–Herbert complex | N36          | 2492214 | 5712958  | 3.0          | 0.70       | 1            | 0.08        | 0.77      | 100%  | 100%  | 100%    |
|      |          |                         |              |         |          |              |            |              |             |           | (2%)  | (40%) | (12%)   |


| Rank | Idunique | Names                   | Non-naturalness<br>in subcat | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-------------------------|------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 1201617  | Wairewa                 | 0.31                         | 0.77                         | 0.99           | 0.98                        | 0.78      | 0.94           | 1        | 0.23     |
| 2    | 1201592  | Little Okains           | 0.30                         | 0.47                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.30     |
| 3    | 1201615  | French Farm Wetland     | 0.30                         | 0.30                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.30     |
| 4    | 1201624  | Goughs                  | 0.31                         | 0.40                         | 0.94           | 0.98                        | 1         | 0.99           | 1        | 0.30     |
| 5    | 1201581  | Bradley–Herbert complex | 0.30                         | 0.36                         | 1              | 0.98                        | 1         | 0.25           | 1        | 0.08     |

# 3. Bay of Plenty

# Bay of Plenty



|               | Total   | Bog   | Fen    | Swamp   | Marsh  | Gumland | Seepage |
|---------------|---------|-------|--------|---------|--------|---------|---------|
| Current (ha)  | 3020.8  | 25.1  | 46.0   | 1511.2  | 1413.4 | 0.3     | 24.8    |
| Historic (ha) | (29136) | (888) | (3184) | (21569) | (2981) | (513)   | (0)     |



| Rank | Idunique | Names                                                    | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog | Fen         | Swamp       | Marsh      | Pakihi/<br>Gumland | Seepage |
|------|----------|----------------------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-----|-------------|-------------|------------|--------------------|---------|
| 1    | 400141   | Whirinaki (Hautapu) Bog                                  | V18          | 2823637 | 6258156  | 36.7         | 0.23       | 0.01         | 0.30        | 0.21  |     | 69%         | 0.5%        |            |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (0.03%)     |            |                    |         |
| 2    | 400363   | Rangitaiki Conservation<br>Area Wetlands                 | U19          | 2805064 | 6246289  | 145.0        | 0.37       | 0.06         | 0.35        | 0.35  |     | 69%         | 10%         |            |                    |         |
| 2    | 400255   | T 1 D 117 (1 1                                           | 1110         | 20042(( | (242200  | 151.5        | 0.42       | 0.11         | 0.00        | 0.25  |     | (1%)        | (1%)        |            |                    |         |
| 3    | 400355   | Lake Pouarua Wetlands                                    | U19          | 2804266 | 6243299  | 151.5        | 0.43       | 0.11         | 0.32        | 0.35  |     | 69%<br>(1%) | 20%<br>(1%) |            |                    |         |
| 4    | 400146   | Lower Kaituna Wildlife<br>Management Reserve<br>Wetlands | U14          | 2807679 | 6377861  | 190.3        | 0.46       | 0.17         | 0.16        | 0.35  |     | 69%         | 32%         |            |                    |         |
|      | 4001(2   | D' I I III (1 1                                          | 1117         | 070470/ | (2502(2  | 56.0         | 0.40       | 0.10         | 0.51        | 0.25  |     | (1%)        | (2%)        |            |                    |         |
| 5    | 400163   | Big Lake Wetlands                                        | U15          | 2784706 | 6350262  | 56.8         | 0.48       | 0.19         | 0.51        | 0.35  |     | 69%         | 35%         |            |                    |         |
|      | 400450   |                                                          | 1117         | 0770500 | (240212  | 120.0        | 0.52       | 0.02         | 0.51        | 0.72  |     | (1%)        | (3%)        | 00/        |                    |         |
| 6    | 400450   | Copella Road Wetlands                                    | U15          | 2779500 | 6348312  | 120.9        | 0.52       | 0.23         | 0.51        | 0.72  |     | 69%         | 36%         | 8%         |                    |         |
| 7    | 400003   | Waiowhiro flat Wetland                                   | U16          | 2793191 | 6339682  | 38.4         | 0.53       | 0.24         | 0.49        | 0.35  |     | (1%)<br>69% | (3%)<br>38% | (4%)<br>8% |                    |         |
| /    | 400003   | walowinto nat wetland                                    | 010          | 2795191 | 0559082  | 30.4         | 0.55       | 0.24         | 0.49        | 0.55  |     | (1%)        | (3%)        | 8%<br>(4%) |                    |         |
| 8    | 400041   | Awaiti Wildlife<br>Management Reserve<br>Wetlands        | V15          | 2845261 | 6357832  | 60.2         | 0.54       | 0.26         | 0.31        | 0.35  |     | 69%         | 42%         | 8%         |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (3%)        | (4%)       |                    |         |
| 9    | 400625   | Rerewhakaaitu F                                          | V16          | 2818075 | 6316052  | 74.6         | 0.55       | 0.28         | 0.24        | 0.36  |     | 69%         | 47%         | 8%         |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (3%)        | (4%)       |                    |         |
| 10   | 400502   | Blue Gum Bay Wetland                                     | U14          | 2781823 | 6398204  | 70.5         | 0.57       | 0.30         | 0.51        | 0.72  |     | 69%         | 47%         | 13%        |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (3%)        | (6%)       |                    |         |
| 11   | 701427   | 0                                                        | V18          | 2823937 | 6257874  | 69.0         | 0.58       | 0.33         | 0.30        | 0.44  |     | 69%         | 51%         | 14%        |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (4%)        | (7%)       |                    |         |
| 12   | 400066   | Lake Aniwhenua<br>Wetlands                               | V16          | 2840237 | 6311293  | 131.7        | 0.59       | 0.37         | 0.26        | 0.74  |     | 69%         | 51%         | 23%        |                    |         |
| 10   | 4000.50  | TZ '- D' TTZ 1 1                                         | T.1.4        | 000046  | (2550) - | 20.5         | 0.60       | 0.00         | 0.04        | 0.05  |     | (1%)        | (4%)        | (11%)      |                    |         |
| 13   | 400352   | Kaituna River Wetlands                                   | U14          | 2809404 | 6377985  | 38.7         | 0.60       | 0.38         | 0.36        | 0.35  |     | 69%         | 53%         | 23%        |                    |         |
| 1.4  | 4000277  | 17 0                                                     | T T 4 4      | 0705400 | (202225  | (2.1         | 0.70       | 0.40         | 0.00        | 0.40  |     | (1%)        | (4%)        | (11%)      |                    |         |
| 14   | 400377   | Kopurererua Stream<br>Wetland A                          | U14          | 2786403 | 6382985  | 63.1         | 0.60       | 0.40         | 0.28        | 0.48  |     | 69%         | 56%         | 24%        |                    |         |
|      |          |                                                          |              |         |          |              |            |              |             |       |     | (1%)        | (4%)        | (12%)      |                    |         |

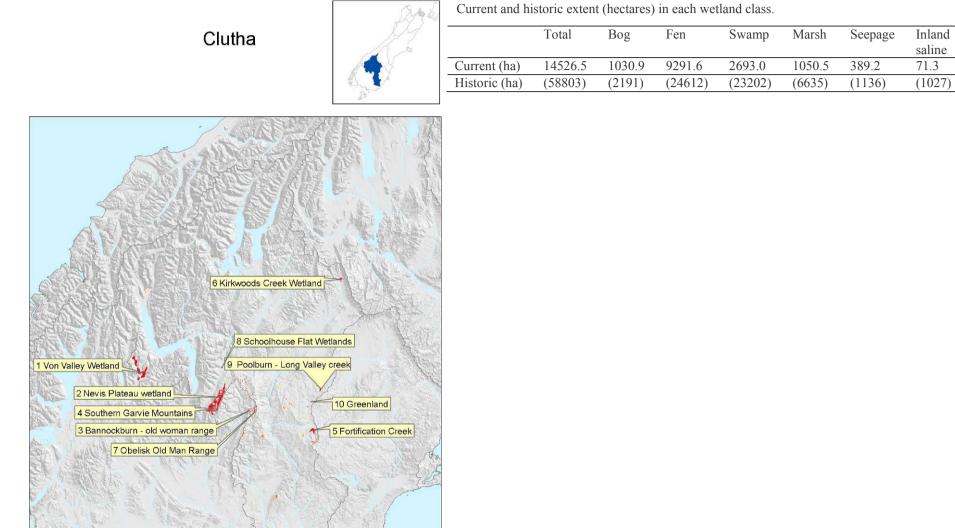
| Rank | Idunique | Names                                          | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog  | Fen  | Swamp | Marsh | Pakihi/<br>Gumland | Seepage |
|------|----------|------------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|------|-------|-------|--------------------|---------|
| 15   | 400044   | Tumurau (Braemar)<br>Lagoon Wetlands           | V15          | 2838182 | 6351391  | 118.6        | 0.61       | 0.44         | 0.10        | 0.36  |      | 69%  | 63%   | 25%   |                    |         |
|      |          | 0                                              |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (12%) |                    |         |
| 16   | 400275   | Lower Mangatiti Stream<br>Wetlands             | U18          | 2808965 | 6273213  | 80.4         | 0.62       | 0.47         | 0.24        | 0.74  |      | 69%  | 63%   | 30%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (15%) |                    |         |
| 17   | 400219   | Rotomahana MAH/4/W3                            | V16          | 2812378 | 6319190  | 62.6         | 0.62       | 0.49         | 0.32        | 0.74  |      | 69%  | 63%   | 34%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (17%) |                    |         |
| 18   | 400127   | Roy Road Lagoon                                | U15          | 2787282 | 6351749  | 25.8         | 0.63       | 0.49         | 0.34        | 0.35  |      | 69%  | 65%   | 34%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (17%) |                    |         |
| 19   | 400032   | Lakes Aroarotamahine<br>and Te Paritu Wetlands | U13          | 2799921 | 6429395  | 7.8          | 0.63       | 0.50         | 0.97        | 0.35  |      | 69%  | 65%   | 34%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (17%) |                    |         |
| 20   | 400573   | Waitangi Soda spring<br>Wetland                | V15          | 2821416 | 6345743  | 37.5         | 0.63       | 0.51         | 0.31        | 0.74  |      | 69%  | 65%   | 37%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       |      | (1%) | (5%)  | (18%) |                    |         |
| 46   | 400380   | Poike Wetlands                                 | U14          | 2788347 | 6380776  | 17.2         | 0.68       | 0.7          | 0.31        | 0.34  | 51%  | 88%  | 83%   | 37%   |                    |         |
|      |          |                                                |              |         |          |              |            |              |             |       | (2%) | (1%) | (6%)  | (18%) |                    |         |
| 153  | 400077   | Matamanu Wetlands                              | v15          | 2829153 | 6363695  | 3.1          | 0.74       | 0.96         | 0.41        | 0.81  | 98%  | 99%  | 99%   | 94%   |                    | 3%      |
|      |          |                                                |              |         |          |              |            |              |             |       | (3%) | (1%) | (7%)  | (46%) |                    | (-)     |
| 215  | 400529   | Tahuna Road Wetland                            | v15          | 2843969 | 6341110  | 1.1          | 0.74       | 0.99         | 0.24        | 0.58  | 100% | 100% | 100%  | 99%   | 100%               | 55%     |
|      |          |                                                |              |         |          |              |            |              |             |       | (3%) | (1%) | (7%)  | (48%) | (<1%)              | (-)     |


| Rank | Idunique | Names                                                    | Non-naturalness<br>in subcat | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|----------------------------------------------------------|------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|-------------|
| 1    | 400141   | Whirinaki (Hautapu) Bog                                  | 0.31                         | 0.68                         | 0.86           | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 2    | 400363   | Rangitaiki Conservation<br>Area Wetlands                 | 0.35                         | 0.58                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.35        |
| 3    | 400355   | Lake Pouarua Wetlands                                    | 0.32                         | 0.53                         | 0.97           | 0.94                        | 1         | 0.99           | 1        | 0.32        |
| 4    | 400146   | Lower Kaituna Wildlife<br>Management Reserve<br>Wetlands | 0.36                         | 0.35                         | 1              | 0.95                        | 0.78      | 0.60           | 1        | 0.16        |
| 5    | 400163   | Big Lake Wetlands                                        | 0.51                         | 0.94                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.51        |
| 6    | 400450   | Copella Road Wetlands                                    | 0.51                         | 0.89                         | 0.99           | 0.83                        | 1         | 0.99           | 1        | 0.51        |
| 7    | 400003   | Waiowhiro flat Wetland                                   | 0.50                         | 0.78                         | 0.80           | 0.96                        | 1         | 0.99           | 1        | 0.49        |
| 8    | 400041   | Awaiti Wildlife<br>Management Reserve<br>Wetlands        | 0.33                         | 0.35                         | 0.87           | 0.95                        | 1         | 0.94           | 1        | 0.31        |
| 9    | 400625   | Rerewhakaaitu F                                          | 0.31                         | 0.62                         | 1              | 0.84                        | 0.83      | 0.92           | 1        | 0.24        |
| 10   | 400502   | Blue Gum Bay Wetland                                     | 0.52                         | 0.86                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.51        |
| 11   | 701427   | 0                                                        | 0.31                         | 0.60                         | 0.91           | 0.98                        | 1         | 0.99           | 1        | 0.30        |
| 12   | 400066   | Lake Aniwhenua Wetlands                                  | 0.33                         | 0.62                         | 0.94           | 0.97                        | 0.80      | 0.99           | 1        | 0.26        |
| 13   | 400352   | Kaituna River Wetlands                                   | 0.36                         | 0.74                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.36        |
| 14   | 400377   | Kopurererua Stream<br>Wetland A                          | 0.36                         | 0.49                         | 0.55           | 0.95                        | 0.80      | 0.99           | 1        | 0.28        |
| 15   | 400044   | Tumurau (Braemar)<br>Lagoon Wetlands                     | 0.30                         | 0.58                         | 0.86           | 0.80                        | 0.81      | 0.42           | 1        | 0.10        |
| 16   | 400275   | Lower Mangatiti Stream<br>Wetlands                       | 0.30                         | 0.60                         | 0.84           | 0.96                        | 0.80      | 0.99           | 1        | 0.24        |
| 17   | 400219   | Rotomahana MAH/4/W3                                      | 0.33                         | 0.89                         | 1              | 0.94                        | 1         | 0.99           | 1        | 0.32        |
| 18   | 400127   | Roy Road Lagoon                                          | 0.35                         | 0.42                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.34        |
| 19   | 400032   | Lakes Aroarotamahine and<br>Te Paritu Wetlands           | 0.99                         | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.97        |
| 20   | 400573   | Waitangi Soda spring<br>Wetland                          | 0.37                         | 0.59                         | 0.85           | 0.91                        | 0.83      | 0.99           | 1        | 0.31        |
| 46   | 400380   | Poike Wetlands                                           | 0.32                         | 0.64                         | 0.59           | 0.96                        | 1         | 0.99           | 1        | 0.31        |
| 153  | 400077   | Matamanu Wetlands                                        | 0.41                         | 0.82                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.41        |
| 215  | 400529   | Tahuna Road Wetland                                      | 0.33                         | 0.31                         | 0.98           | 0.82                        | 0.79      | 0.99           | 1        | 0.24        |

## 4. Canterbury

# Canterbury

| Г | × 1     |
|---|---------|
|   | 524     |
|   | The     |
|   | 17      |
|   | 12 -    |
|   | AS NO   |
|   | a mis   |
|   | they st |
|   | B.      |


|               | Total    | Fen    | Swamp    | Marsh   | Seepage |
|---------------|----------|--------|----------|---------|---------|
| Current (ha)  | 11556.0  | 1169.4 | 6401.1   | 3702.6  | 282.8   |
| Historic (ha) | (164869) | (2366) | (150249) | (12068) | (186)   |



| Rank | Idunique | Names                                | Map<br>sheet | Easting | Northing | area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen  | Swamp | Marsh | Seepage |
|------|----------|--------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|-------|-------|---------|
| 1    | 1200197  | Lake Stream – Cameron Fan<br>Wetland | J35          | 2362945 | 5743877  | 1405.4       | 0.49       | 0.12         | 0.45        | 0.31  | 1%   | 20%   | 3%    |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (1%)  | (1%)  |         |
| 2    | 1200902  | Titan Stream (Hydra Waters?)         | K35          | 2392297 | 5759664  | 268.0        | 0.52       | 0.14         | 0.61        | 0.28  | 1%   | 24%   | 3%    |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (1%)  | (1%)  |         |
| 3    | 1200528  | Rangitata/Potts River Wetland        | J35          | 2348880 | 5742143  | 367.1        | 0.54       | 0.18         | 0.44        | 0.28  | 1%   | 30%   | 3%    |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (1%)  | (1%)  |         |
| 4    | 1201634  | Western Kaitorete Barrier            | 137          | 2306927 | 5691991  | 680.4        | 0.56       | 0.23         | 0.23        | 0.33  | 1%   | 39%   | 5%    |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (2%)  |         |
| 5    | 1200870  | Lakes Emma and Roundabout            | J36          | 2357158 | 5732495  | 174.8        | 0.58       | 0.25         | 0.67        | 0.30  | 1%   | 41%   | 6%    |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (2%)  |         |
| 6    | 1200262  | Upper Harding Stream                 | J35          | 2364439 | 5750728  | 222.9        | 0.60       | 0.27         | 0.96        | 0.55  | 2%   | 42%   | 10%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (3%)  |         |
| 7    | 1201127  | 0                                    | L34          | 2439822 | 5786023  | 247.6        | 0.61       | 0.29         | 0.34        | 0.29  | 2%   | 46%   | 10%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (3%)  |         |
| 8    | 1200866  | 0                                    | J36          | 2358983 | 5730856  | 151.2        | 0.62       | 0.30         | 0.48        | 0.29  | 2%   | 48%   | 10%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (3%)  |         |
| 9    | 1200508  | 0                                    | J36          | 2337877 | 5727854  | 157.2        | 0.62       | 0.32         | 0.40        | 0.29  | 2%   | 51%   | 10%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (1%) | (2%)  | (3%)  |         |
| 10   | 1200896  | 0                                    | K35          | 2389645 | 5762398  | 217.5        | 0.63       | 0.33         | 0.39        | 0.46  | 8%   | 53%   | 11%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (4%) | (2%)  | (3%)  |         |
| 11   | 1200141  | Idaburn Swamp                        | K35          | 2390454 | 5766393  | 132.4        | 0.63       | 0.35         | 0.44        | 0.34  | 9%   | 55%   | 11%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (4%) | (2%)  | (3%)  |         |
| 12   | 1201487  | 0                                    | L35          | 2435026 | 5768539  | 135.3        | 0.64       | 0.36         | 0.96        | 0.69  | 14%  | 55%   | 13%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (2%)  | (4%)  |         |
| 13   | 1200899  | 0                                    | K35          | 2393073 | 5757345  | 105.8        | 0.65       | 0.37         | 0.96        | 0.62  | 14%  | 55%   | 16%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (2%)  | (5%)  |         |
| 14   | 1200477  | 0                                    | J36          | 2341859 | 5723087  | 110.8        | 0.65       | 0.38         | 0.34        | 0.28  | 14%  | 56%   | 16%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (2%)  | (5%)  |         |
| 15   | 1200839  | Lake Hawdon                          | L34          | 2410153 | 5793427  | 131.0        | 0.66       | 0.39         | 0.26        | 0.28  | 14%  | 58%   | 16%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (2%)  | (5%)  |         |
| 16   | 1200539  | 0                                    | J36          | 2366265 | 5724567  | 68.4         | 0.66       | 0.39         | 0.49        | 0.28  | 14%  | 59%   | 16%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (3%)  | (5%)  |         |
| 17   | 1200256  | Maori Lakes                          | J35          | 2360176 | 5744906  | 172.3        | 0.66       | 0.41         | 0.26        | 0.38  | 14%  | 61%   | 17%   |         |
|      |          |                                      |              |         |          |              |            |              |             |       | (7%) | (3%)  | (5%)  |         |
| 18   | 1201174  | 0                                    | J37          | 2350244 | 5703056  | 108.5        | 0.67       | 0.42         | 0.81        | 0.71  | 23%  | 62%   | 17%   |         |

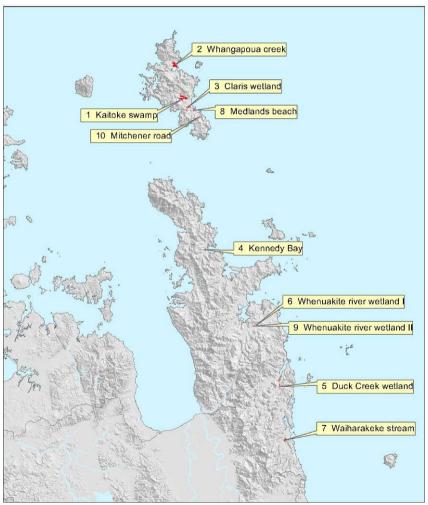
| Rank | Idunique | Names                   | Map   | Easting | Northing | area | Cum. | Cum. | EI    | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-------------------------|-------|---------|----------|------|------|------|-------|-------|-------|-------|-------|---------|
|      |          |                         | sheet |         |          | (ha) | CE   | area | index |       |       |       |       |         |
|      |          |                         |       |         |          |      |      |      |       |       | (11%) | (3%)  | (5%)  |         |
| 19   | 1201154  | 0                       | L34   | 2440405 | 5782572  | 89.2 | 0.67 | 0.42 | 0.30  | 0.31  | 23%   | 63%   | 17%   |         |
|      |          |                         |       |         |          |      |      |      |       |       | (11%) | (3%)  | (5%)  |         |
| 20   | 1200885  | Lake Clearwater Complex | J36   | 2354915 | 5737848  | 98.3 | 0.67 | 0.43 | 0.52  | 0.60  | 23%   | 63%   | 19%   |         |
|      |          |                         |       |         |          |      |      |      |       |       | (11%) | (3%)  | (6%)  |         |
| 46   | 1201485  | Cheeseman Huts          | 134   | 2446941 | 5772613  | 44.0 | 0.72 | 0.58 | 0.88  | 0.77  | 53%   | 74%   | 35%   | 1%      |
|      |          |                         |       |         |          |      |      |      |       |       | (26%) | (3%)  | (11%) | (2%)    |

| Rank | Idunique | Names                                | Non-naturalness<br>in subcat | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody weeds | Drainage | EI index |
|------|----------|--------------------------------------|------------------------------|------------------------------|----------------|-----------------------------|-----------|-------------|----------|----------|
| 1    | 1200197  | Lake Stream – Cameron Fan<br>Wetland | 0.90                         | 0.55                         | 0.99           | 1                           | 0.83      | 0.99        | 1        | 0.45     |
| 2    | 1200902  | Titan Stream (Hydra Waters?)         | 0.77                         | 0.76                         | 1              | 0.98                        | 0.81      | 0.99        | 1        | 0.61     |
| 3    | 1200528  | Rangitata/Potts River Wetland        | 0.82                         | 0.57                         | 1              | 0.98                        | 0.79      | 0.99        | 1        | 0.44     |
| 4    | 1201634  | Western Kaitorete Barrier            | 0.30                         | 0.67                         | 0.98           | 0.96                        | 0.77      | 0.98        | 1        | 0.23     |
| 5    | 1200870  | Lakes Emma and Roundabout            | 0.91                         | 0.83                         | 1              | 0.98                        | 0.82      | 0.99        | 1        | 0.67     |
| 6    | 1200262  | Upper Harding Stream                 | 0.99                         | 1                            | 1              | 0.99                        | 1         | 0.99        | 1        | 0.96     |
| 7    | 1201127  | 0                                    | 0.36                         | 0.34                         | 1              | 0.98                        | 1         | 0.99        | 1        | 0.34     |
| 8    | 1200866  | 0                                    | 0.96                         | 0.49                         | 1              | 0.98                        | 1         | 0.99        | 1        | 0.48     |
| 9    | 1200508  | 0                                    | 0.95                         | 0.52                         | 1              | 0.97                        | 0.79      | 0.99        | 1        | 0.40     |
| 10   | 1200896  | 0                                    | 0.43                         | 0.40                         | 1              | 0.99                        | 1         | 0.99        | 1        | 0.39     |
| 11   | 1200141  | Idaburn Swamp                        | 0.95                         | 0.56                         | 0.86           | 0.99                        | 0.80      | 0.99        | 1        | 0.44     |
| 12   | 1201487  | 0                                    | 0.99                         | 1                            | 1              | 0.98                        | 1         | 0.99        | 1        | 0.96     |
| 13   | 1200899  | 0                                    | 0.99                         | 1                            | 1              | 0.99                        | 1         | 0.99        | 1        | 0.96     |
| 14   | 1200477  | 0                                    | 0.89                         | 0.35                         | 1              | 0.97                        | 1         | 0.99        | 1        | 0.34     |
| 15   | 1200839  | Lake Hawdon                          | 0.31                         | 0.52                         | 0.79           | 0.98                        | 0.84      | 0.99        | 1        | 0.26     |
| 16   | 1200539  | 0                                    | 0.69                         | 0.50                         | 1              | 0.98                        | 1         | 0.99        | 1        | 0.49     |
| 17   | 1200256  | Maori Lakes                          | 0.32                         | 0.50                         | 0.96           | 0.98                        | 0.81      | 0.98        | 1        | 0.26     |
| 18   | 1201174  | 0                                    | 0.91                         | 0.82                         | 1              | 0.97                        | 1         | 0.99        | 1        | 0.81     |
| 19   | 1201154  | 0                                    | 0.31                         | 0.35                         | 1              | 0.97                        | 1         | 0.99        | 1        | 0.30     |
| 20   | 1200885  | Lake Clearwater Complex              | 0.80                         | 0.52                         | 0.97           | 0.98                        | 1         | 0.99        | 1        | 0.52     |
| 46   | 1201485  | Cheeseman Huts                       | 0.99                         | 1                            | 0.89           | 0.99                        | 1         | 0.99        | 1        | 0.88     |



| Rank | IDunique | Name                                                    | Map<br>sheet | Easting   | Northing | Area (ha) | Cum.<br>CE | Cum.<br>Area | EI<br>index | HLeft | Bog          | Fen          | Swamp       | Marsh       | Seepage | Inland saline |
|------|----------|---------------------------------------------------------|--------------|-----------|----------|-----------|------------|--------------|-------------|-------|--------------|--------------|-------------|-------------|---------|---------------|
| 1    | 1300073  | Von Valley Wetland<br>Management Area                   | E42          | 2141809   | 5547143  | 2492.4    | 0.60       | 0.17         | 0.68        | 0.57  |              | 15%          | 33%         | 20%         |         |               |
|      |          | Management Area                                         |              |           |          |           |            |              |             |       |              | (6%)         | (4%)        | (3%)        |         |               |
| 2    | 1300048  | Nevis Plateau Wetland<br>Management Area                | F43          | 2189632   | 5528100  | 3953.0    | 0.79       | 0.43         | 0.92        | 0.68  |              | 56%          | 33%         | 20%         |         |               |
|      |          | Munugement / neu                                        |              |           |          |           |            |              |             |       |              | (22%)        | (4%)        | (3%)        |         |               |
| 3    | 1300214  | Bannockburn – Old<br>woman range                        | F42          | 2206669   | 5536215  | 669.2     | 0.81       | 0.47         | 0.91        | 0.68  | 2%           | 62%          | 33%         | 20%         |         |               |
|      |          |                                                         |              |           |          |           |            |              |             |       | (1%)         | (24%)        | (4%)        | (3%)        |         |               |
| 4    | 1300061  | Southern Garvie<br>Mountains Wetland<br>Management Area | F43          | 2187494   | 5522453  | 602.0     | 0.83       | 0.51         | 0.93        | 0.68  | 2%           | 69%          | 33%         | 20%         |         |               |
|      |          | Munugement / neu                                        |              |           |          |           |            |              |             |       | (1%)         | (27%)        | (4%)        | (3%)        |         |               |
| 5    | 1300021  | Fortification Creek<br>Wetland Management<br>Area       | G43          | 2248788   | 5509277  | 533.8     | 0.84       | 0.55         | 0.91        | 0.71  | 32%          | 71%          | 33%         | 20%         |         |               |
|      |          | Alca                                                    |              |           |          |           |            |              |             |       | (15%)        | (28%)        | (4%)        | (3%)        |         |               |
| 6    | 1300033  | Kirkwoods Creek<br>Wetland Management<br>Area           | H40          | 2266097   | 5602944  | 236.5     | 0.85       | 0.57         | 0.73        | 0.44  | 32%          | 71%          | 39%         | 27%         |         |               |
|      |          | / IICu                                                  |              |           |          |           |            |              |             |       | (15%)        | (28%)        | (4%)        | (4%)        |         |               |
| 7    | 1300251  | Obelisk Old Man<br>Range                                | G43          | 2213194   | 5522430  | 297.2     | 0.85       | 0.59         | 0.94        | 0.72  | 53%          | 72%          | 39%         | 27%         |         |               |
|      |          | -                                                       |              |           |          |           |            |              |             |       | (25%)        | (28%)        | (4%)        | (4%)        |         |               |
| 8    | 1300059  | Schoolhouse Flat<br>Wetlands                            | F42          | 2192278   | 5548035  | 58.5      | 0.86       | 0.59         | 0.37        | 0.37  | 53%          | 72%          | 39%         | 28%         |         | 68%           |
|      |          |                                                         |              |           |          |           |            |              |             |       | (25%)        | (28%)        | (4%)        | (4%)        |         | (5%)          |
| 9    | 1301339  | Herbaceous<br>Freshwater Vegetation                     | H42          | 2253716   | 5535138  | 223.5     | 0.86       | 0.60         | 0.59        | 0.42  | 53%          | 72%          | 47%         | 28%         |         | 68%           |
|      |          |                                                         |              |           |          |           |            |              |             |       | (25%)        | (28%)        | (5%)        | (4%)        |         | (5%)          |
| 10   | 1300248  | Greenland                                               | G43          | 2246554   | 5526161  | 114.9     | 0.86       | 0.61         | 0.90        | 0.43  | 53%          | 72%          | 51%         | 28%         |         | 68%           |
|      | 1200244  |                                                         | G 42         | 22 400 40 | 5500110  | 100.0     | 0.07       | 0.60         | 0.05        | 0.51  | (25%)        | (28%)        | (6%)        | (4%)        |         | (5%)          |
| 11   | 1300244  | Teviot swamp                                            | G43          | 2248948   | 5502110  | 180.2     | 0.87       | 0.62         | 0.95        | 0.71  | 63%          | 73%          | 51%         | 28%         |         | 68%           |
| 10   | 1200246  |                                                         | 0.45         | 222(212   | 54(05(0  | 102.7     | 0.07       | 0.64         | 0.00        | 0.74  | (30%)        | (28%)        | (6%)        | (4%)        |         | (5%)          |
| 12   | 1300246  | Blue Mountain bog                                       | G45          | 2226313   | 5468560  | 193.7     | 0.87       | 0.64         | 0.96        | 0.74  | 82%<br>(38%) | 73%<br>(28%) | 51%<br>(6%) | 28%<br>(4%) |         | 68%<br>(5%)   |

| Rank | IDunique                    | Name                                                        | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>Area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Seepage | Inland saline |
|------|-----------------------------|-------------------------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|---------|---------------|
| 13   | 1300016                     | Diamond<br>Lake/Earnslaw Burn<br>Wetland Management<br>Area | E40          | 2145049 | 5596628  | 120.3        | 0.87       | 0.65         | 0.64        | 0.42  | 82%   | 73%   | 56%   | 28%   |         | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (28%) | (6%)  | (4%)  |         | (5%)          |
| 14   | 1300226                     | Pinelheugh                                                  | G43          | 2234581 | 5525155  | 115.1        | 0.87       | 0.65         | 0.95        | 0.68  | 82%   | 74%   | 56%   | 28%   |         | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (29%) | (6%)  | (4%)  |         | (5%)          |
| 15   | 1300225                     | Mt Benger                                                   | G43          | 2217692 | 5505960  | 141.6        | 0.88       | 0.66         | 0.78        | 0.68  | 82%   | 75%   | 56%   | 28%   |         | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (29%) | (6%)  | (4%)  |         | (5%)          |
| 16   | 1301611                     | Herbaceous<br>Freshwater Vegetation                         | F43          | 2209744 | 5520556  | 103.3        | 0.88       | 0.67         | 0.95        | 0.68  | 82%   | 76%   | 56%   | 28%   |         | 68%           |
|      |                             | -                                                           |              |         |          |              |            |              |             |       | (38%) | (30%) | (6%)  | (4%)  |         | (5%)          |
| 17   | 1300219 Whitcoomb -<br>Lake | Whitcoomb – Gem<br>Lake                                     | F43          | 2206186 | 5508064  | 105.7        | 0.88       | 0.68         | 0.84        | 0.68  | 82%   | 77%   | 56%   | 28%   |         | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (30%) | (6%)  | (4%)  |         | (5%)          |
| 18   | 1400263                     | Mt Tennyson string bog                                      | F43          | 2184464 | 5520242  | 88.6         | 0.88       | 0.68         | 0.93        | 0.68  | 82%   | 78%   | 56%   | 28%   |         | 68%           |
|      |                             | -                                                           |              |         |          |              |            |              |             |       | (38%) | (31%) | (6%)  | (4%)  |         | (5%)          |
| 19   | 1300111                     | Cairn Road Swamp                                            | G46          | 2220278 | 5426771  | 221.0        | 0.89       | 0.70         | 0.31        | 0.58  | 82%   | 80%   | 59%   | 28%   |         | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (31%) | (7%)  | (4%)  |         | (5%)          |
| 20   | 1301851                     | Herbaceous<br>Freshwater Vegetation                         | H43          | 2251869 | 5504112  | 82.2         | 0.89       | 0.70         | 0.90        | 0.68  | 82%   | 81%   | 59%   | 28%   |         | 68%           |
|      |                             | -                                                           |              |         |          |              |            |              |             |       | (38%) | (32%) | (7%)  | (4%)  |         | (5%)          |
| 29   | 1400273                     | Whitecoombe Range<br>Wetland                                | F43          | 2205820 | 5507036  | 105.5        | 0.90       | 0.75         | 0.51        | 0.65  | 82%   | 83%   | 68%   | 37%   | 20%     | 68%           |
|      |                             |                                                             |              |         |          |              |            |              |             |       | (38%) | (33%) | (8%)  | (6%)  | (9%)    | (5%)          |

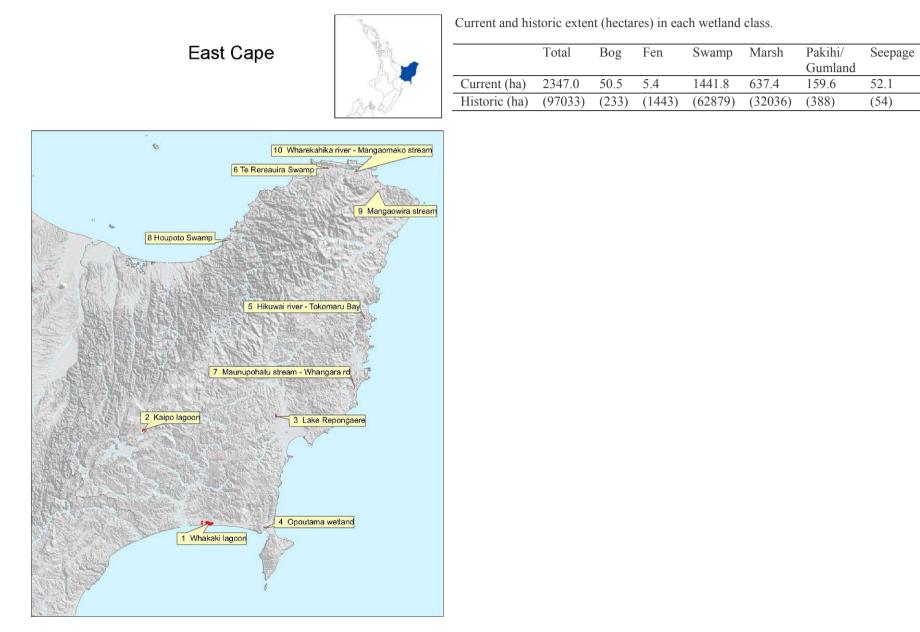

| Rank | Idunique | Names                                                 | Non-naturalness<br>in subcat | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-------------------------------------------------------|------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 1300073  | Von Valley Wetland Management<br>Area                 | 0.96                         | 0.83                         | 0.99           | 1                           | 0.83      | 0.99           | 1        | 0.68     |
| 2    | 1300048  | Nevis Plateau Wetland<br>Management Area              | 0.99                         | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.92     |
| 3    | 1300214  | Bannockburn – Old woman range                         | 0.98                         | 0.95                         | 1              | 0.93                        | 1         | 0.99           | 1        | 0.91     |
| 4    | 1300061  | Southern Garvie Mountains<br>Wetland Management Area  | 0.99                         | 0.99                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.93     |
| 5    | 1300021  | Fortification Creek Wetland<br>Management Area        | 0.99                         | 0.98                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.91     |
| 6    | 1300033  | Kirkwoods Creek Wetland<br>Management Area            | 0.99                         | 1                            | 0.92           | 0.98                        | 0.81      | 0.99           | 1        | 0.73     |
| 7    | 1300251  | Obelisk Old Man Range                                 | 0.99                         | 1                            | 0.98           | 0.95                        | 1         | 0.99           | 1        | 0.94     |
| 8    | 1300059  | Schoolhouse Flat Wetlands                             | 0.95                         | 0.38                         | 1              | 0.92                        | 1         | 0.99           | 1        | 0.37     |
| 9    | 1301339  | Herbaceous Freshwater Vegetation                      | 0.63                         | 0.60                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.59     |
| 10   | 1300248  | Greenland                                             | 0.92                         | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.90     |
| 11   | 1300244  | Teviot swamp                                          | 0.99                         | 1                            | 1              | 0.96                        | 1         | 0.99           | 1        | 0.95     |
| 12   | 1300246  | Blue Mountain bog                                     | 0.99                         | 1                            | 1              | 1                           | 1         | 0.99           | 1        | 0.96     |
| 13   | 1300016  | Diamond Lake/Earnslaw Burn<br>Wetland Management Area | 0.95                         | 0.65                         | 0.87           | 0.96                        | 1         | 0.99           | 1        | 0.64     |
| 14   | 1300226  | Pinelheugh                                            | 0.99                         | 1                            | 1              | 0.96                        | 1         | 0.99           | 1        | 0.95     |
| 15   | 1300225  | Mt Benger                                             | 0.99                         | 1                            | 0.79           | 0.99                        | 1         | 0.99           | 1        | 0.78     |
| 16   | 1301611  | Herbaceous Freshwater Vegetation                      | 0.99                         | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.95     |
| 17   | 1300219  | Whitcoomb – Gem Lake                                  | 0.86                         | 0.87                         | 1              | 0.91                        | 1         | 0.99           | 1        | 0.84     |
| 18   | 1400263  | Mt Tennyson string bog                                | 0.99                         | 1                            | 1              | 0.94                        | 1         | 0.99           | 1        | 0.93     |
| 19   | 1300111  | Cairn Road Swamp                                      | 0.32                         | 0.41                         | 0.92           | 0.99                        | 1         | 0.99           | 1        | 0.31     |
| 20   | 1301851  | Herbaceous Freshwater Vegetation                      | 0.99                         | 1                            | 0.99           | 0.92                        | 1         | 0.99           | 1        | 0.90     |
| 29   | 1400273  | Whitecoombe Range Wetland                             | 0.52                         | 0.77                         | 1              | 0.90                        | 1         | 0.99           | 1        | 0.51     |

### 6. Coromandel

# Coromandel



|               | Total   | Bog   | Fen    | Swamp   | Marsh | Seepage |
|---------------|---------|-------|--------|---------|-------|---------|
| Current (ha)  | 737.4   | 0     | 36.5   | 575.1   | 123.6 | 2.2     |
| Historic (ha) | (25984) | (108) | (1128) | (24507) | (236) | (5)     |

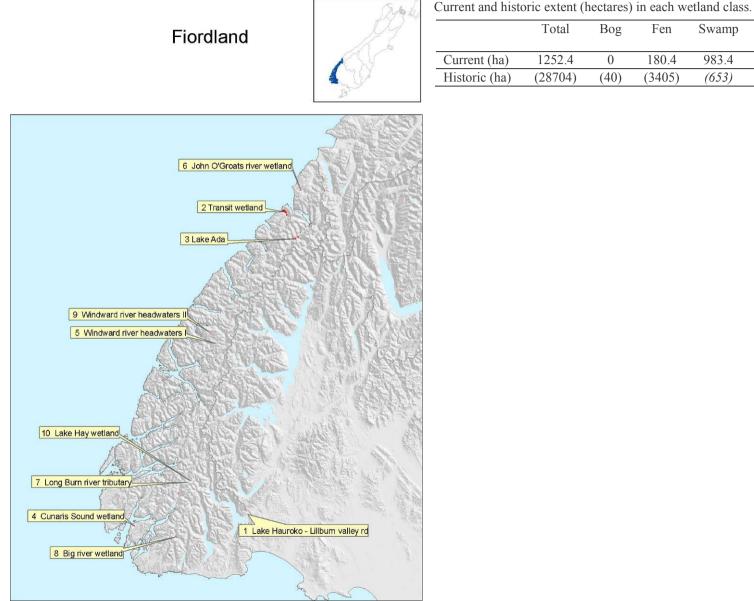



| Rank    | Idunique | Names                       | Map sheet   | Easting | Northing      | Area (ha) | Cum.CE | Cum.area | Elindex | HLeft | Fen             | Swamp | Marsh | Seepage |
|---------|----------|-----------------------------|-------------|---------|---------------|-----------|--------|----------|---------|-------|-----------------|-------|-------|---------|
| 1       | 200053   | Kaitoka swamp               | T09         | 2730361 | 6549818       | 222.0     | 0.73   | 0.30     | 0.93    | 0.28  |                 | 35%   | 18%   |         |
|         |          |                             |             |         |               |           |        |          |         |       |                 | (1%)  | (10%) |         |
| 2       | 200002   | Whangapoua creek            | S08         | 2727657 | 6560641       | 173.8     | 0.82   | 0.54     | 0.71    | 0.33  |                 | 60%   | 44%   |         |
|         |          |                             |             |         |               |           |        |          |         |       |                 | (1%)  | (24%) |         |
| 3       | 200108   | Claris Wetland              | T09         | 2731999 | 6546372       | 72.3      | 0.85   | 0.64     | 0.82    | 0.26  | 100%            | 66%   | 46%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (25%) |         |
| 4       | 300003   | Kennedy Bay                 | T10         | 2737756 | 6499379       | 24.4      | 0.87   | 0.67     | 0.88    | 0.22  | 100%            | 70%   | 46%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (25%) |         |
| 5       | 300010   | Duck Creek Wetland          | T12         | 2762193 | 6455041       | 65.5      | 0.88   | 0.76     | 0.30    | 0.22  | 100%            | 82%   | 46%   |         |
| 3       | 300010   | Duck Creek wettaild         | 112         | 2702195 | 0433041       | 03.3      | 0.88   | 0.70     | 0.50    | 0.22  | 100%            | 8270  | 4070  |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (25%) |         |
| 6       | 300006   | Whenuakite River Wetland I  | T11         | 2754525 | 6474515       | 15.7      | 0.88   | 0.78     | 0.71    | 0.26  | 100%            | 84%   | 47%   |         |
|         |          |                             |             |         |               |           |        |          |         |       |                 |       |       |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (25%) |         |
| 7       | 300021   | Waiharakeke stream          | T12         | 2764027 | 6436496       | 34.1      | 0.90   | 0.83     | 0.86    | 0.66  | 100%            | 85%   | 68%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | ( <b>a a</b> () |       | / / · |         |
| <u></u> |          |                             |             |         | < - 1 = 0 1 0 | • • •     |        |          |         | o 4 - | (3%)            | (2%)  | (37%) |         |
| 8       | 200117   | Medlands beach              | T09         | 2733849 | 6545849       | 29.9      | 0.90   | 0.87     | 0.57    | 0.45  | 100%            | 89%   | 78%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (42%) |         |
| 9       | 300007   | Whenuakite River Wetland II | T11         | 2753512 | 6474154       | 12.9      | 0.91   | 0.89     | 0.51    | 0.22  | 100%            | 91%   | 78%   |         |
| 7       | 300007   | whendakite Kiver wetland II | 111         | 2733312 | 04/4134       | 12.9      | 0.91   | 0.89     | 0.51    | 0.22  | 10070           | 91/0  | /0/0  |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (42%) |         |
| 10      | 200186   | Mitchener road              | Т09         | 2735840 | 6543358       | 18.6      | 0.91   | 0.91     | 0.94    | 0.60  | 100%            | 92%   | 88%   |         |
|         |          |                             |             |         |               |           |        |          |         |       |                 |       |       |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (48%) |         |
| 11      | 200001   | 0                           | S08         | 2724831 | 6562094       | 5.5       | 0.92   | 0.92     | 0.81    | 0.23  | 100%            | 93%   | 88%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (48%) |         |
| 12      | 300001   | 0                           | T10         | 2730980 | 6507027       | 6.8       | 0.92   | 0.93     | 0.60    | 0.22  | 100%            | 94%   | 88%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (48%) |         |
| 13      | 300009   | 0                           | T12         | 2760862 | 6458862       | 8.0       | 0.92   | 0.94     | 0.30    | 0.22  | 100%            | 95%   | 88%   |         |
|         |          |                             |             |         |               |           |        |          |         |       | (3%)            | (2%)  | (48%) |         |
| 14      | 300008   | 0                           | T12         | 2763871 | 6459379       | 5.9       | 0.92   | 0.95     | 0.31    | 0.22  | 100%            | 97%   | 88%   |         |
| 1.5     | 200002   |                             | <b>T</b> 10 | 0501644 | (50(105       | 0.1       | 0.02   | 0.05     | 0.00    | 0.00  | (3%)            | (2%)  | (48%) |         |
| 15      | 300002   | 0                           | T10         | 2731641 | 6506185       | 2.1       | 0.92   | 0.95     | 0.83    | 0.22  | 100%            | 97%   | 88%   |         |
| 1.(     | 200011   | 0                           | <b>T10</b>  | 07(0040 | (1553/5       | 4 4       | 0.02   | 0.07     | 0.20    | 0.00  | (3%)            | (2%)  | (48%) |         |
| 16      | 300011   | 0                           | T12         | 2763049 | 6455367       | 4.4       | 0.92   | 0.96     | 0.30    | 0.22  | 100%            | 98%   | 88%   |         |

| Rank | Idunique | Names | Map sheet | Easting | Northing | Area (ha) | Cum.CE | Cum.area | Elindex | HLeft | Fen  | Swamp | Marsh | Seepage |
|------|----------|-------|-----------|---------|----------|-----------|--------|----------|---------|-------|------|-------|-------|---------|
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (48%) |         |
| 17   | 300012   | 0     | T12       | 2755561 | 6455161  | 2.7       | 0.92   | 0.96     | 0.56    | 0.22  | 100% | 98%   | 88%   |         |
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (48%) |         |
| 18   | 200098   | 0     | T09       | 2731323 | 6548224  | 4.7       | 0.92   | 0.97     | 0.66    | 0.77  | 100% | 98%   | 91%   |         |
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (50%) |         |
| 19   | 300015   | 0     | T12       | 2765720 | 6452531  | 4.3       | 0.92   | 0.97     | 0.26    | 0.34  | 100% | 99%   | 92%   |         |
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (50%) |         |
| 20   | 300016   | 0     | T12       | 2766317 | 6451288  | 6.4       | 0.92   | 0.98     | 0.31    | 0.58  | 100% | 99%   | 95%   |         |
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (52%) |         |
| 23   | 200215   | 0     | t09       | 2733895 | 6541580  | 4.5       | 0.93   | 0.99     | 0.36    | 0.77  | 100% | 100%  | 99%   | 21%     |
|      |          |       |           |         |          |           |        |          |         |       | (3%) | (2%)  | (53%) | (9%)    |

| Rank | Idunique | Names                       | Non-naturalness | Non-naturalness | Imperviousness | Nitrate leaching | Pestiness | Woody | Drainage | EI    |
|------|----------|-----------------------------|-----------------|-----------------|----------------|------------------|-----------|-------|----------|-------|
|      |          |                             | in subcat       | in buffer       |                | risk             |           | weeds |          | index |
| 1    | 200053   | Kaitoka swamp               | 0.98            | 0.96            | 0.94           | 0.98             | 1         | 0.99  | 1        | 0.93  |
| 2    | 200002   | Whangapoua creek            | 0.92            | 0.72            | 0.98           | 0.98             | 1         | 0.99  | 1        | 0.71  |
| 3    | 200108   | Claris Wetland              | 0.95            | 0.83            | 1              | 0.98             | 1         | 0.99  | 1        | 0.82  |
| 4    | 300003   | Kennedy Bay                 | 0.98            | 0.89            | 1              | 0.98             | 1         | 0.99  | 1        | 0.88  |
| 5    | 300010   | Duck Creek Wetland          | 0.31            | 0.73            | 0.88           | 0.98             | 1         | 0.99  | 1        | 0.30  |
| 5    | 300006   | Whenuakite River Wetland I  | 0.96            | 0.72            | 1              | 0.97             | 1         | 0.99  | 1        | 0.71  |
| 7    | 300021   | Waiharakeke stream          | 0.87            | 0.91            | 1              | 0.97             | 1         | 0.99  | 1        | 0.86  |
| 8    | 200117   | Medlands beach              | 0.94            | 0.67            | 0.58           | 0.97             | 1         | 0.99  | 1        | 0.57  |
| )    | 300007   | Whenuakite River Wetland II | 0.51            | 0.76            | 1              | 0.95             | 1         | 0.99  | 1        | 0.51  |
| 0    | 200186   | Mitchener road              | 0.99            | 0.96            | 1              | 0.98             | 1         | 0.99  | 1        | 0.94  |
| 1    | 200001   | 0                           | 0.99            | 0.82            | 1              | 0.98             | 1         | 0.99  | 1        | 0.81  |
| 12   | 300001   | 0                           | 0.72            | 0.73            | 0.61           | 0.92             | 1         | 0.99  | 1        | 0.60  |
| 13   | 300009   | 0                           | 0.31            | 0.52            | 1              | 0.98             | 1         | 0.99  | 1        | 0.30  |
| 14   | 300008   | 0                           | 0.31            | 0.84            | 0.77           | 0.97             | 1         | 0.99  | 1        | 0.31  |
| 15   | 300002   | 0                           | 0.98            | 1               | 0.88           | 0.95             | 1         | 0.99  | 1        | 0.83  |
| 16   | 300011   | 0                           | 0.30            | 0.66            | 0.70           | 0.98             | 1         | 0.99  | 1        | 0.30  |
| 17   | 300012   | 0                           | 0.95            | 0.69            | 0.98           | 0.98             | 0.83      | 0.99  | 1        | 0.56  |
| 18   | 200098   | 0                           | 0.67            | 1               | 0.84           | 0.97             | 1         | 0.99  | 1        | 0.66  |
| 19   | 300015   | 0                           | 0.30            | 0.30            | 1              | 0.98             | 1         | 0.85  | 1        | 0.26  |
| 20   | 300016   | 0                           | 0.31            | 0.69            | 0.67           | 0.95             | 1         | 0.99  | 1        | 0.31  |
| 23   | 200215   | 0                           | 0.90            | 0.38            | 0.37           | 0.97             | 1         | 0.96  | 1        | 0.36  |

# 7. East Cape




| Rank | Idunique | Names                                    | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen | Swamp | Marsh | Pakihi/<br>gumland |
|------|----------|------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-----|-------|-------|--------------------|
| 1    | 701366   | Wakaki lagoon                            | X19          | 2903395 | 6229891  | 650.9        | 0.53       | 0.28         | 0.27        | 0.22  |       |     | 44%   | 2%    |                    |
|      |          |                                          |              |         |          |              |            |              |             |       |       |     | (1%)  | (<1%) |                    |
| 2    | 700110   | Kaipo lagoon                             | W18          | 2874584 | 6271914  | 147.3        | 0.61       | 0.34         | 0.96        | 0.38  |       |     | 51%   | 2%    | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       |       |     | (1%)  | (<1%) | (12%)              |
| 3    | 700091   | Lake Repongaere                          | Y18          | 2934391 | 6278418  | 104.3        | 0.62       | 0.38         | 0.30        | 0.22  |       |     | 58%   | 2%    | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       |       |     | (1%)  | (<1%) | (12%)              |
| 4    | 701358   | Opoutama Wetland                         | X19          | 2929360 | 6227924  | 68.9         | 0.63       | 0.41         | 0.36        | 0.21  |       |     | 58%   | 13%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       |       |     | (1%)  | (<1%) | (12%)              |
| 5    | 701537   | Hikuwai River Tokomaru Bay               | Z16          | 2974686 | 6322388  | 20.3         | 0.64       | 0.42         | 0.97        | 0.22  |       |     | 59%   | 14%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       |       |     | (1%)  | (<1%) | (12%)              |
| 6    | 400034   | Te Rereauira Swamp                       | Y14          | 2957565 | 6390751  | 66.7         | 0.65       | 0.45         | 0.52        | 0.34  | 50%   |     | 60%   | 18%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (1%)  | (<1%) | (12%)              |
| 7    | 700059   | Maunupohatu stream – Whangara Rd         | Z17          | 2970170 | 6291416  | 61.7         | 0.66       | 0.48         | 0.30        | 0.22  | 50%   |     | 64%   | 20%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (1%)  | (<1%) | (12%)              |
| 8    | 400082   | Houpoto Swamp                            | X15          | 2912781 | 6358139  | 47.2         | 0.67       | 0.50         | 0.32        | 0.21  | 50%   |     | 64%   | 27%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (1%)  | (1%)  | (12%)              |
| 9    | 700019   | Mangaowira stream                        | Z14          | 2980679 | 6380394  | 14.6         | 0.67       | 0.50         | 0.96        | 0.22  | 50%   |     | 65%   | 27%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (1%)  | (1%)  | (12%)              |
| 10   | 701575   | Wharekahika River – Mangaomeko<br>stream | Z14          | 2970214 | 6389076  | 12.9         | 0.68       | 0.51         | 0.86        | 0.22  | 50%   |     | 65%   | 27%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (2%)  | (1%)  | (12%)              |
| 11   | 701532   | 0                                        | Z16          | 2972993 | 6313549  | 29.6         | 0.68       | 0.52         | 0.33        | 0.22  | 50%   |     | 67%   | 29%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (2%)  | (1%)  | (12%)              |
| 12   | 700534   | 0                                        | Y14          | 2969918 | 6388114  | 9.8          | 0.68       | 0.52         | 0.95        | 0.22  | 50%   |     | 67%   | 29%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (11%) |     | (2%)  | (1%)  | (12%)              |
| 13   | 701560   | 0                                        | Z14          | 2979601 | 6384366  | 31.1         | 0.69       | 0.54         | 0.42        | 0.29  | 62%   |     | 69%   | 29%   | 30%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (13%) |     | (2%)  | (1%)  | (12%)              |
| 14   | 700082   | 0                                        | W18          | 2869334 | 6267771  | 41.6         | 0.70       | 0.55         | 0.97        | 0.70  | 62%   |     | 69%   | 29%   | 56%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (13%) |     | (2%)  | (1%)  | (23%)              |
| 15   | 701472   | 0                                        | X18          | 2918356 | 6274390  | 27.8         | 0.70       | 0.57         | 0.30        | 0.21  | 62%   |     | 69%   | 33%   | 56%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (13%) |     | (2%)  | (1%)  | (23%)              |
| 16   | 701534   | 0                                        | X16          | 2907033 | 6316484  | 25.3         | 0.70       | 0.58         | 0.30        | 0.22  | 62%   |     | 71%   | 33%   | 56%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (13%) |     | (2%)  | (1%)  | (23%)              |
| 17   | 701533   | 0                                        | Z16          | 2971138 | 6315148  | 24.3         | 0.70       | 0.59         | 0.31        | 0.22  | 62%   |     | 72%   | 35%   | 56%                |
|      |          |                                          |              |         |          |              |            |              |             |       | (13%) |     | (2%)  | (1%)  | (23%)              |

| Rank | Idunique | Names                 | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/<br>gumland |
|------|----------|-----------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|--------------------|
| 18   | 700038   | 0                     | Z15          | 2981293 | 6353608  | 20.4         | 0.71       | 0.60         | 0.35        | 0.22  | 62%   |       | 73%   | 35%   | 56%                |
|      |          |                       |              |         |          |              |            |              |             |       | (13%) |       | (2%)  | (1%)  | (23%)              |
| 19   | 701428   | 0                     | W18          | 2867144 | 6258249  | 9.8          | 0.71       | 0.60         | 0.69        | 0.21  | 62%   |       | 73%   | 36%   | 56%                |
|      |          |                       |              |         |          |              |            |              |             |       | (13%) |       | (2%)  | (1%)  | (23%)              |
| 20   | 400140   | Owhakatoro Road Swamp | W16          | 2853040 | 6332929  | 14.5         | 0.71       | 0.61         | 0.45        | 0.21  | 62%   |       | 73%   | 39%   | 56%                |
|      |          |                       |              |         |          |              |            |              |             |       | (13%) |       | (2%)  | (1%)  | (23%)              |
| 23   | 701547   | 0                     | Z14          | 2996053 | 6370856  | 4.1          | 0.71       | 0.63         | 0.80        | 0.12  | 62%   | 69%   | 76%   | 39%   | 56%                |
|      |          |                       |              |         |          |              |            |              |             |       | (13%) | (<1%) | (2%)  | (1%)  | (23%)              |

| Rank | Idunique | Names                                 | Non-naturalness in subcatchment | Non-naturalness in buffer | Imperviousness | Nitrate<br>Leaching risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|---------------------------------------|---------------------------------|---------------------------|----------------|--------------------------|-----------|----------------|----------|-------------|
| 1    | 701366   | Wakaki lagoon                         | 0.32                            | 0.78                      | 1              | 0.97                     | 0.85      | 0.99           | 1        | 0.27        |
| 2    | 700110   | Kaipo lagoon                          | 0.99                            | 1                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96        |
| 3    | 700091   | Lake Repongaere                       | 0.31                            | 0.36                      | 0.96           | 0.98                     | 1         | 0.98           | 1        | 0.30        |
| 4    | 701358   | Opoutama Wetland                      | 0.36                            | 0.37                      | 0.89           | 0.98                     | 1         | 0.99           | 1        | 0.36        |
| 5    | 701537   | Hikuwai River Tokomaru Bay            | 0.99                            | 1                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.97        |
| 6    | 400034   | Te Rereauira Swamp                    | 0.53                            | 0.69                      | 0.78           | 0.99                     | 1         | 0.99           | 1        | 0.52        |
| 7    | 700059   | Maunupohatu stream – Whangara Rd      | 0.31                            | 0.40                      | 0.71           | 0.98                     | 1         | 0.98           | 1        | 0.30        |
| 8    | 400082   | Houpoto Swamp                         | 0.32                            | 0.49                      | 1              | 0.98                     | 1         | 0.99           | 1        | 0.32        |
| 9    | 700019   | Mangaowira stream                     | 0.98                            | 1                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.96        |
| 10   | 701575   | Wharekahika River – Mangaomeko stream | 0.99                            | 0.87                      | 1              | 0.97                     | 1         | 0.99           | 1        | 0.86        |
| 11   | 701532   | 0                                     | 0.33                            | 0.46                      | 0.80           | 0.97                     | 1         | 0.99           | 1        | 0.33        |
| 12   | 700534   | 0                                     | 0.97                            | 1                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.95        |
| 13   | 701560   | 0                                     | 0.44                            | 0.42                      | 0.98           | 0.98                     | 1         | 0.99           | 1        | 0.42        |
| 14   | 700082   | 0                                     | 0.99                            | 1                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.97        |
| 15   | 701472   | 0                                     | 0.30                            | 0.63                      | 0.84           | 0.97                     | 1         | 0.99           | 1        | 0.30        |
| 16   | 701534   | 0                                     | 0.35                            | 0.30                      | 0.98           | 0.96                     | 1         | 0.99           | 1        | 0.30        |
| 17   | 701533   | 0                                     | 0.32                            | 0.48                      | 1              | 0.97                     | 1         | 0.99           | 1        | 0.31        |
| 18   | 700038   | 0                                     | 0.35                            | 0.65                      | 0.87           | 0.97                     | 1         | 0.99           | 1        | 0.35        |
| 19   | 701428   | 0                                     | 0.99                            | 0.83                      | 1              | 0.98                     | 0.84      | 0.99           | 1        | 0.69        |
| 20   | 400140   | Owhakatoro Road Swamp                 | 0.90                            | 0.46                      | 0.92           | 0.98                     | 1         | 0.99           | 1        | 0.45        |
| 23   | 701547   | 0                                     | 0.91                            | 0.81                      | 1              | 0.99                     | 1         | 0.99           | 1        | 0.80        |

#### 8. Fiordland



Current and historic extent (hectares) in each wetland class.

Pakihi/

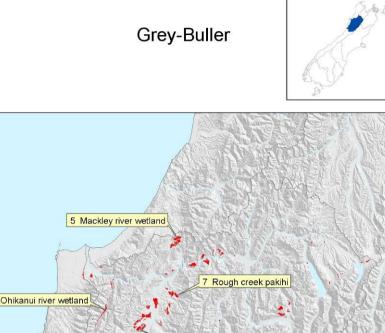
Gumland

54

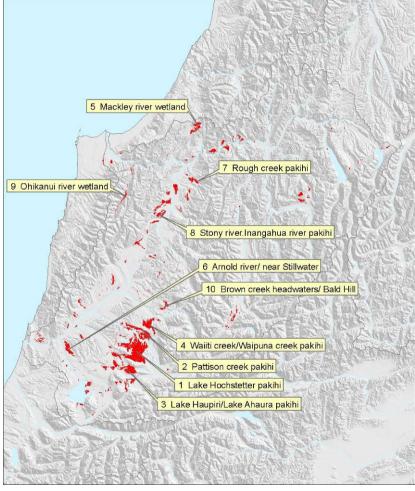
(24587)

Seepage

34.3


(19)

| Rank | Idunique | Names                             | Map<br>sheet | Easting | Northing | Area (ha) | Cum.CE | Cum.area | EI index | HLeft | Fen   | Swamp | Pakihi/<br>gumland | Seepage |
|------|----------|-----------------------------------|--------------|---------|----------|-----------|--------|----------|----------|-------|-------|-------|--------------------|---------|
| 1    | 1410764  | Lake Hauroko – Lillburn valley Rd | c45          | 2075746 | 5455266  | 15.3      | 0.29   | 0.01     | 0.96     | 0.09  |       |       | 28%<br>(<1%)       |         |
| 2    | 1400304  | Transit Wetland (Lower and mid    | d40          | 2094545 | 5608768  | 327.1     | 0.71   | 0.27     | 0.96     | 0.95  |       | 31%   | 61%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       |       | (-)   | (<1%)              |         |
| 3    | 1400275  | Lake Ada                          | d40          | 2100546 | 5596033  | 245.0     | 0.81   | 0.47     | 0.79     | 0.99  | 1%    | 56%   | 61%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (<1%) | (-)   | (<1%)              |         |
| 4    | 1410784  | Cunaris sound Wetland             | a45          | 2018044 | 5449308  | 8.9       | 0.81   | 0.48     | 0.96     | 0.09  | 1%    | 56%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (<1%) | (-)   | (<1%)              |         |
| 5    | 1410150  | Windward River headwaters         | c42          | 2059192 | 5541928  | 13.7      | 0.81   | 0.49     | 0.91     | 0.31  | 9%    | 56%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (<1%) | (-)   | (<1%)              |         |
| 6    | 1410006  | John O'Groats River Wetland       | d40          | 2102475 | 5619893  | 42.4      | 0.83   | 0.52     | 0.97     | 1     | 9%    | 60%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (<1%) | (-)   | (<1%)              |         |
| 7    | 1410722  | Long Burn River tributary         | b44          | 2045024 | 5471510  | 13.6      | 0.83   | 0.53     | 0.90     | 0.31  | 17%   | 60%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (1%)  | (-)   | (<1%)              |         |
| 8    | 1410804  | Big River Wetland                 | b45          | 2039075 | 5443886  | 30.0      | 0.84   | 0.56     | 0.95     | 0.96  | 18%   | 63%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (1%)  | (-)   | (<1%)              |         |
| 9    | 1410114  | Windward River headwaters II      | c42          | 2055769 | 5547695  | 8.3       | 0.84   | 0.56     | 0.93     | 0.31  | 22%   | 63%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (1%)  | (-)   | (<1%)              |         |
| 10   | 1410720  | Lake Hay Wetland                  | b44          | 2046687 | 5472162  | 8.5       | 0.85   | 0.57     | 0.92     | 0.31  | 27%   | 63%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (1%)  | (-)   | (<1%)              |         |
| 11   | 1410828  | Herbaceous Freshwater Vegetat     | b46          | 2043343 | 5438850  | 7.6       | 0.85   | 0.57     | 0.96     | 0.31  | 31%   | 63%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 12   | 1410733  | Herbaceous Freshwater Vegetat     | b45          | 2040315 | 5465825  | 23.1      | 0.86   | 0.59     | 0.94     | 1     | 31%   | 66%   | 77%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 13   | 1410864  | Herbaceous Freshwater Vegetat     | b46          | 2024182 | 5432914  | 3.5       | 0.86   | 0.60     | 0.88     | 0.09  | 31%   | 66%   | 84%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 14   | 1410615  | Herbaceous Freshwater Vegetat     | b44          | 2047308 | 5498352  | 7.2       | 0.86   | 0.60     | 0.89     | 0.31  | 35%   | 66%   | 84%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 15   | 1410056  | Herbaceous Freshwater Vegetat     | c41          | 2071293 | 5561922  | 6.6       | 0.86   | 0.61     | 0.96     | 0.31  | 39%   | 66%   | 84%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 16   | 1410117  | Herbaceous Freshwater Vegetat     | c42          | 2056895 | 5547457  | 6.8       | 0.86   | 0.61     | 0.94     | 0.31  | 43%   | 66%   | 84%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |
| 17   | 1410629  | Herbaceous Freshwater Vegetat     | b44          | 2040794 | 5494755  | 6.7       | 0.87   | 0.62     | 0.96     | 0.31  | 46%   | 66%   | 84%                |         |
|      |          |                                   |              |         |          |           |        |          |          |       | (2%)  | (-)   | (<1%)              |         |


| Rank | Idunique | Names                         | Map<br>sheet | Easting | Northing | Area (ha) | Cum.CE | Cum.area | EI index | HLeft | Fen  | Swamp | Pakihi/<br>gumland | Seepage |
|------|----------|-------------------------------|--------------|---------|----------|-----------|--------|----------|----------|-------|------|-------|--------------------|---------|
| 18   | 1410386  | Herbaceous Freshwater Vegetat | c43          | 2057911 | 5523553  | 6.7       | 0.87   | 0.62     | 0.92     | 0.31  | 50%  | 66%   | 84%                |         |
|      |          |                               |              |         |          |           |        |          |          |       | (3%) | (-)   | (<1%)              |         |
| 19   | 1410895  | Herbaceous Freshwater Vegetat | b46          | 2035721 | 5434308  | 20.4      | 0.87   | 0.64     | 0.95     | 1     | 50%  | 68%   | 84%                |         |
|      |          |                               |              |         |          |           |        |          |          |       | (3%) | (-)   | (<1%)              |         |
| 20   | 1410071  | Herbaceous Freshwater Vegetat | c42          | 2067327 | 5554698  | 6.2       | 0.88   | 0.64     | 0.93     | 0.31  | 54%  | 68%   | 84%                |         |
|      |          |                               |              |         |          |           |        |          |          |       | (3%) | (-)   | (<1%)              |         |
| 98   | 1410022  | Herbaceous Freshwater Vegetat | c41          | 2079316 | 5582332  | 4.3       | 0.97   | 0.95     | 0.97     | 1     | 99%  | 97%   | 100%               | 13%     |
|      |          |                               |              |         |          |           |        |          |          |       | (5%) | (-)   | (<1%)              | (-)     |

| Rank | Idunique | Names                             | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-----------------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 1410764  | Lake Hauroko – Lillburn valley Rd | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 2    | 1400304  | Transit Wetland (Lower and mid    | 0.99                            | 1                            | 1              | 1                           | 1         | 0.99           | 1        | 0.96     |
| 3    | 1400275  | Lake Ada                          | 0.99                            | 0.98                         | 1              | 0.98                        | 0.84      | 0.99           | 1        | 0.79     |
| 4    | 1410784  | Cunaris sound Wetland             | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.96     |
| 5    | 1410150  | Windward River headwaters         | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.91     |
| 6    | 1410006  | John O'Groats River Wetland       | 0.99                            | 0.98                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.97     |
| 7    | 1410722  | Long Burn River tributary         | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.90     |
| 8    | 1410804  | Big River Wetland                 | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.95     |
| 9    | 1410114  | Windward River headwaters II      | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.93     |
| 10   | 1410720  | Lake Hay Wetland                  | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.92     |
| 11   | 1410828  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 12   | 1410733  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.95                        | 1         | 0.99           | 1        | 0.94     |
| 13   | 1410864  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.91                        | 1         | 0.99           | 1        | 0.88     |
| 14   | 1410615  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.89     |
| 15   | 1410056  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 16   | 1410117  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.94     |
| 17   | 1410629  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 18   | 1410386  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.93                        | 1         | 0.99           | 1        | 0.92     |
| 19   | 1410895  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.95     |
| 20   | 1410071  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.95                        | 1         | 0.99           | 1        | 0.93     |
| 98   | 1410022  | Herbaceous Freshwater Vegetat     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.97     |

## 9. Grey–Buller



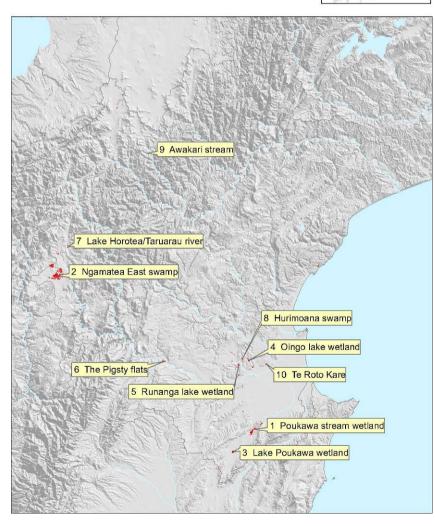
|               | Total    | Bog   | Fen   | Swamp   | Marsh  | Pakihi/<br>Gumland | Seepage |
|---------------|----------|-------|-------|---------|--------|--------------------|---------|
| Current (ha)  | 20196.4  | 4.5   | 106.0 | 1806.9  | 1234.8 | 16963              | 81.5    |
| Historic (ha) | (102379) | (437) | (0)   | (10076) | (9321) | (82521)            | (24)    |



| Rank | Idunique | Names                               | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|-------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-----|-------|-------|--------------------|---------|
| 1    | 1100331  | Lake Hochstetter pakihi             | k31          | 2397472 | 5860421  | 5390.9       | 0.67       | 0.27         | 0.74        | 0.53  |     | 9%    |       | 31%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  |       | (6%)               |         |
| 2    | 1100360  | Pattison creek pakihi               | 131          | 2412603 | 5869438  | 1531.9       | 0.71       | 0.34         | 0.76        | 0.53  |     | 9%    |       | 40%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  |       | (8%)               |         |
| 3    | 1100330  | Lake Haupiri/Lake Ahaura pakihi     | k32          | 2403351 | 5857969  | 1451.5       | 0.75       | 0.42         | 0.75        | 0.53  |     | 9%    |       | 48%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  |       | (10%)              |         |
| 4    | 1101083  | Waiiti creek / Waipuna creek pakihi | k31          | 2409096 | 5867787  | 1093.5       | 0.78       | 0.47         | 0.94        | 0.53  |     | 10%   |       | 55%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  |       | (11%)              |         |
| 5    | 1100519  | Mackley River Wetland               | 129          | 2433298 | 5933381  | 631.9        | 0.79       | 0.50         | 0.96        | 0.51  |     | 11%   | 13%   | 58%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  | (2%)  | (12%)              |         |
| 6    | 1100305  | Arnold River / near Stillwater      | k32          | 2386107 | 5849598  | 653.6        | 0.80       | 0.53         | 0.60        | 0.53  |     | 11%   | 13%   | 61%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  | (2%)  | (13%)              |         |
| 7    | 1100528  | Rough creek pakihi                  | 130          | 2424479 | 5919259  | 375.4        | 0.81       | 0.55         | 0.96        | 0.53  |     | 11%   | 13%   | 64%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (2%)  | (2%)  | (13%)              |         |
| 8    | 1100549  | Stony River Inangahua River pakihi  | 130          | 2414997 | 5912553  | 336.4        | 0.82       | 0.57         | 0.96        | 0.53  |     | 15%   | 13%   | 65%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (13%)              |         |
| 9    | 1100438  | Ohikanui River Wetland              | k29          | 2381296 | 5920955  | 403.0        | 0.83       | 0.59         | 0.80        | 0.53  |     | 15%   | 13%   | 68%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (14%)              |         |
| 10   | 1101086  | Brown creek headwaters / Bald Hill  | 131          | 2415064 | 5874805  | 311.1        | 0.83       | 0.60         | 0.81        | 0.53  |     | 17%   | 13%   | 69%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (14%)              |         |
| 11   | 1100375  | 0                                   | k30          | 2408420 | 5902695  | 264.8        | 0.84       | 0.62         | 0.95        | 0.53  |     | 17%   | 13%   | 71%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (15%)              |         |
| 12   | 1100551  | 0                                   | 130          | 2416321 | 5917232  | 584.8        | 0.84       | 0.65         | 0.41        | 0.53  |     | 19%   | 13%   | 74%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (15%)              |         |
| 13   | 900122   | Deepdale Terrace Wetland            | 129          | 2438502 | 5934546  | 216.9        | 0.85       | 0.66         | 0.97        | 0.53  |     | 19%   | 13%   | 75%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (3%)  | (2%)  | (15%)              |         |
| 14   | 1100329  | Added polygon from satellite image  | k32          | 2400580 | 5851260  | 291.5        | 0.85       | 0.67         | 0.71        | 0.52  |     | 24%   | 13%   | 76%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (4%)  | (2%)  | (16%)              |         |
| 15   | 1100520  | 0                                   | 129          | 2416008 | 5931452  | 244.0        | 0.86       | 0.68         | 0.84        | 0.53  |     | 24%   | 13%   | 78%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (4%)  | (2%)  | (16%)              |         |
| 16   | 1100316  | 0                                   | k32          | 2402776 | 5846626  | 235.4        | 0.86       | 0.70         | 0.81        | 0.51  |     | 24%   | 17%   | 79%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (4%)  | (2%)  | (16%)              |         |
| 17   | 1100317  | Added polygon from satellite image  | k32          | 2404867 | 5848435  | 241.0        | 0.86       | 0.71         | 0.71        | 0.50  |     | 37%   | 18%   | 79%                |         |
|      |          |                                     |              |         |          |              |            |              |             |       |     | (7%)  | (2%)  | (16%)              |         |

| Rank | Idunique | Names                                   | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|-----------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-----|-------|-------|--------------------|---------|
| 18   | 900770   | Tutaki West Branch Headwater Wetlands 1 | m30          | 2466362 | 5916740  | 180.8        | 0.87       | 0.72         | 0.96        | 0.55  | 8%  | 37%   | 18%   | 80%                |         |
|      |          |                                         |              |         |          |              |            |              |             |       | (-) | (7%)  | (2%)  | (16%)              |         |
| 19   | 1100395  | 0                                       | 131          | 2442220 | 5872906  | 170.2        | 0.87       | 0.72         | 0.83        | 0.46  | 8%  | 39%   | 30%   | 80%                |         |
|      |          |                                         |              |         |          |              |            |              |             |       | (-) | (7%)  | (4%)  | (16%)              |         |
| 20   | 1100535  | 0                                       | 129          | 2430099 | 5925963  | 171.0        | 0.87       | 0.73         | 0.87        | 0.53  | 8%  | 40%   | 30%   | 81%                |         |
|      |          |                                         |              |         |          |              |            |              |             |       | (-) | (7%)  | (4%)  | (17%)              |         |
| 36   | 1100488  | Added polygon from satellite image      | k29          | 2398590 | 5932520  | 83.6         | 0.90       | 0.85         | 0.96        | 0.55  | 8%  | 65%   | 33%   | 92%                | 5%      |
|      |          |                                         |              |         |          |              |            |              |             |       | (-) | (12%) | (4%)  | (19%)              | (-)     |

| Rank | Idunique | Names                                   | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-----------------------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 1100331  | Lake Hochstetter pakihi                 | 0.92                            | 0.90                         | 0.96           | 0.99                        | 0.84      | 0.99           | 1        | 0.74     |
| 2    | 1100360  | Pattison creek pakihi                   | 0.98                            | 0.92                         | 0.93           | 1                           | 0.84      | 0.99           | 1        | 0.76     |
| 3    | 1100330  | Lake Haupiri/Lake Ahaura pakihi         | 0.91                            | 1                            | 0.96           | 0.99                        | 0.84      | 0.99           | 1        | 0.75     |
| 4    | 1101083  | Waiiti creek / Waipuna creek pakihi     | 0.99                            | 1                            | 0.95           | 1                           | 1         | 0.99           | 1        | 0.94     |
| 5    | 1100519  | Mackley River Wetland                   | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.96     |
| 6    | 1100305  | Arnold River / near Stillwater          | 0.61                            | 1                            | 0.97           | 1                           | 1         | 0.99           | 1        | 0.60     |
| 7    | 1100528  | Rough creek pakihi                      | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.96     |
| 8    | 1100549  | Stony River Inangahua River pakihi      | 0.99                            | 0.98                         | 1              | 0.99                        | 1         | 0.99           | 1        | 0.96     |
| 9    | 1100438  | Ohikanui River Wetland                  | 0.99                            | 0.99                         | 1              | 0.97                        | 0.84      | 0.99           | 1        | 0.80     |
| 10   | 1101086  | Brown creek headwaters / Bald Hill      | 0.99                            | 1                            | 1              | 0.99                        | 0.84      | 0.99           | 1        | 0.81     |
| 11   | 1100375  | 0                                       | 0.99                            | 1                            | 0.96           | 0.99                        | 1         | 0.99           | 1        | 0.95     |
| 12   | 1100551  | 0                                       | 0.99                            | 0.50                         | 0.94           | 0.95                        | 0.84      | 0.99           | 1        | 0.41     |
| 13   | 900122   | Deepdale Terrace Wetland                | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.97     |
| 14   | 1100329  | Added polygon from satellite image      | 0.86                            | 1                            | 0.95           | 0.99                        | 0.84      | 0.98           | 1        | 0.71     |
| 15   | 1100520  | 0                                       | 0.99                            | 0.98                         | 1              | 1                           | 1         | 0.99           | 1        | 0.84     |
| 16   | 1100316  | 0                                       | 0.99                            | 0.82                         | 1              | 0.99                        | 1         | 0.99           | 1        | 0.81     |
| 17   | 1100317  | Added polygon from satellite image      | 0.86                            | 0.96                         | 1              | 0.91                        | 0.84      | 0.99           | 1        | 0.71     |
| 18   | 900770   | Tutaki West Branch Headwater Wetlands 1 | 0.99                            | 1                            | 1              | 1                           | 1         | 0.99           | 1        | 0.96     |
| 19   | 1100395  | 0                                       | 0.94                            | 0.84                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.83     |
| 20   | 1100535  | 0                                       | 0.99                            | 0.88                         | 1              | 0.91                        | 1         | 0.99           | 1        | 0.87     |
| 36   | 1100488  | Added polygon from satellite image      | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.96     |


### 10. Hawkes Bay

# Hawkes Bay

| Ser.       |  |
|------------|--|
| AND IN     |  |
| A CONTRACT |  |
| Stor 1     |  |
| ~ Yd       |  |
| SPA al     |  |

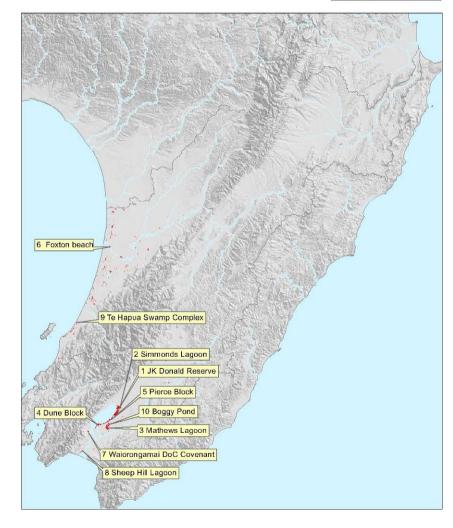
| Current and historic extent | (hectares) in each wetland class. |
|-----------------------------|-----------------------------------|
|-----------------------------|-----------------------------------|

|               | Total   | Fen    | Swamp   | Marsh  | Seepage |
|---------------|---------|--------|---------|--------|---------|
| Current (ha)  | 1019.2  | 420.6  | 429.2   | 152.9  | 16.4    |
| Historic (ha) | (33902) | (2715) | (27457) | (3714) | (15)    |



| Rank | Idunique | Names                         | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|---------|
| 1    | 701158   | Poukawa stream                | v22          | 2832896 | 6157701  | 116.0        | 0.39       | 0.11         | 0.21        | 0.19  |       | 28%   | 2%    |         |
|      |          |                               |              |         |          |              |            |              |             |       |       | (<1%) | (<1%) |         |
| 2    | 700159   | Ngamatea East Swamp           | u20          | 2779147 | 6200149  | 438.7        | 0.74       | 0.54         | 0.65        | 0.44  | 87%   | 28%   | 41%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (<1%) | (2%)  |         |
| 3    | 701149   | Lake Poukawa Wetland          | v22          | 2827189 | 6151760  | 34.8         | 0.75       | 0.58         | 0.47        | 0.19  | 87%   | 36%   | 41%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 4    | 701210   | Oingo lake Wetland            | v21          | 2831801 | 6176091  | 56.2         | 0.76       | 0.63         | 0.26        | 0.19  | 87%   | 50%   | 41%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 5    | 701200   | Runanga lake Wetland          | v21          | 2828522 | 6174869  | 36.5         | 0.77       | 0.67         | 0.30        | 0.19  | 87%   | 59%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 6    | 701220   | The Pigsty flats              | u21          | 2808308 | 6176343  | 30.5         | 0.77       | 0.70         | 0.30        | 0.19  | 87%   | 66%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 7    | 700158   | Lake Horotea / Taruarau River | u20          | 2782035 | 6207401  | 21.4         | 0.78       | 0.72         | 0.95        | 0.47  | 92%   | 66%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 8    | 701226   | Hurimoana swamp               | v21          | 2829642 | 6176837  | 20.4         | 0.78       | 0.74         | 0.30        | 0.19  | 92%   | 71%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 9    | 700139   | Awakari stream                | u19          | 2803921 | 6232915  | 7.1          | 0.79       | 0.74         | 0.87        | 0.20  | 92%   | 73%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 10   | 701215   | Te Roto Kare                  | v21          | 2836252 | 6175602  | 15.0         | 0.79       | 0.76         | 0.31        | 0.19  | 92%   | 76%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (14%) | (1%)  | (2%)  |         |
| 11   | 700164   | 0                             | u20          | 2779570 | 6205438  | 10.2         | 0.80       | 0.77         | 0.96        | 0.47  | 95%   | 76%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 12   | 701230   | 0                             | v21          | 2827041 | 6178455  | 12.1         | 0.80       | 0.78         | 0.30        | 0.19  | 95%   | 79%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 13   | 702000   | 0                             | v22          | 2823269 | 6147464  | 11.8         | 0.80       | 0.79         | 0.30        | 0.19  | 95%   | 82%   | 42%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 14   | 701285   | 0                             | u20          | 2792941 | 6193029  | 11.0         | 0.80       | 0.80         | 0.55        | 0.28  | 95%   | 82%   | 49%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 15   | 701250   | 0                             | u21          | 2787436 | 6182907  | 7.1          | 0.80       | 0.81         | 0.43        | 0.19  | 95%   | 84%   | 49%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 16   | 701201   | 0                             | v21          | 2828680 | 6172571  | 15.2         | 0.80       | 0.82         | 0.19        | 0.19  | 95%   | 87%   | 49%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 17   | 701308   | 0                             | u20          | 2779224 | 6205757  | 7.6          | 0.81       | 0.83         | 0.95        | 0.47  | 97%   | 87%   | 49%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |
| 18   | 701240   | 0                             | u21          | 2786501 | 6182849  | 3.5          | 0.81       | 0.83         | 0.71        | 0.19  | 97%   | 88%   | 49%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (15%) | (1%)  | (2%)  |         |

| Rank | Idunique | Names | Map   | Easting | Northing | Area | Cum. | Cum. | EI    | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-------|-------|---------|----------|------|------|------|-------|-------|-------|-------|-------|---------|
|      |          |       | sheet |         |          | (ha) | CE   | area | index |       |       |       |       |         |
| 19   | 701408   | 0     | u19   | 2795632 | 6245284  | 8.0  | 0.81 | 0.84 | 0.30  | 0.19  | 97%   | 90%   | 49%   |         |
|      |          |       |       |         |          |      |      |      |       |       | (15%) | (1%)  | (2%)  |         |
| 20   | 700325   | 0     | w20   | 2850414 | 6202188  | 12.9 | 0.81 | 0.85 | 0.30  | 0.28  | 97%   | 90%   | 56%   |         |
|      |          |       |       |         |          |      |      |      |       |       | (15%) | (1%)  | (3%)  |         |
| 50   | 701343   | 0     | v19   | 2829741 | 6222546  | 3.2  | 0.83 | 0.96 | 0.30  | 0.42  | 99%   | 99%   | 89%   | 4%      |
|      |          |       |       |         |          |      |      |      |       |       | (15%) | (1%)  | (4%)  | (-)     |


| Rank | Idunique | Names                         | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-------------------------------|---------------------------------|------------------------------|----------------|---------------------|-----------|----------------|----------|----------|
| 1    | 701158   | Poukawa stream                | 0.30                            | 0.31                         | 0.59           | risk<br>0.96        | 0.85      | 0.80           | 1        | 0.21     |
| 2    | 700159   | Ngamatea East Swamp           | 0.66                            | 0.99                         | 1              | 0.98                | 1         | 0.99           | 1        | 0.65     |
| 3    | 701149   | Lake Poukawa Wetland          | 0.48                            | 1                            | 1              | 0.97                | 1         | 0.99           | 1        | 0.47     |
| 4    | 701210   | Oingo lake Wetland            | 0.31                            | 0.64                         | 1              | 0.97                | 0.85      | 0.99           | 1        | 0.26     |
| 5    | 701200   | Runanga lake Wetland          | 0.31                            | 0.68                         | 1              | 0.97                | 1         | 0.99           | 1        | 0.30     |
| 6    | 701220   | The Pigsty flats              | 0.30                            | 0.42                         | 1              | 0.94                | 1         | 0.99           | 1        | 0.30     |
| 7    | 700158   | Lake Horotea / Taruarau River | 0.99                            | 1                            | 1              | 0.97                | 1         | 0.99           | 1        | 0.95     |
| 8    | 701226   | Hurimoana swamp               | 0.30                            | 0.49                         | 1              | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 9    | 700139   | Awakari stream                | 0.99                            | 1                            | 1              | 0.98                | 1         | 0.89           | 1        | 0.87     |
| 10   | 701215   | Te Roto Kare                  | 0.31                            | 0.68                         | 1              | 0.98                | 1         | 0.99           | 1        | 0.31     |
| 11   | 700164   | 0                             | 0.99                            | 1                            | 1              | 0.98                | 1         | 0.99           | 1        | 0.96     |
| 12   | 701230   | 0                             | 0.30                            | 0.30                         | 1              | 0.97                | 1         | 0.99           | 1        | 0.30     |
| 13   | 702000   | 0                             | 0.30                            | 0.44                         | 0.79           | 0.96                | 1         | 0.98           | 1        | 0.30     |
| 14   | 701285   | 0                             | 0.97                            | 1                            | 0.56           | 0.98                | 1         | 0.99           | 1        | 0.55     |
| 15   | 701250   | 0                             | 0.44                            | 0.74                         | 1              | 0.98                | 1         | 0.99           | 1        | 0.43     |
| 16   | 701201   | 0                             | 0.31                            | 0.40                         | 1              | 0.97                | 1         | 0.62           | 1        | 0.19     |
| 17   | 701308   | 0                             | 0.99                            | 1                            | 1              | 0.96                | 1         | 0.99           | 1        | 0.95     |
| 18   | 701240   | 0                             | 0.72                            | 0.99                         | 1              | 0.98                | 1         | 0.99           | 1        | 0.71     |
| 19   | 701408   | 0                             | 0.30                            | 0.36                         | 0.91           | 0.39                | 1         | 0.99           | 1        | 0.30     |
| 20   | 700325   | 0                             | 0.30                            | 0.30                         | 0.99           | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 50   | 701343   | 0                             | 0.31                            | 0.44                         | 1              | 0.97                | 1         | 0.99           | 1        | 0.30     |

### 11. Manawatu–Wairarapa

# Manawatu - Wairarapa

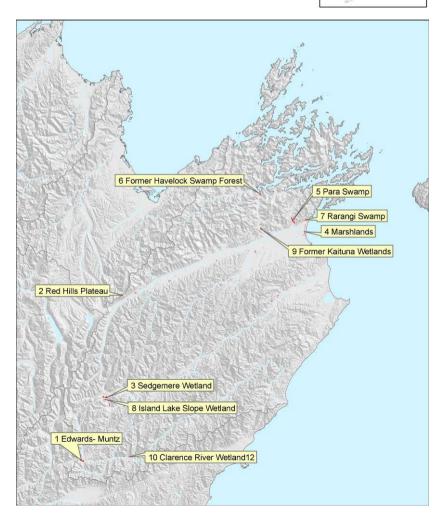


|               | Total    | Bog    | Fen    | Swamp    | Marsh   | Seepage |
|---------------|----------|--------|--------|----------|---------|---------|
| Current (ha)  | 3407.8   | 3.4    | 18.5   | 2855.6   | 499.4   | 31      |
| Historic (ha) | (254257) | (1266) | (1290) | (230068) | (21631) | (2)     |



| Rank | Idunique | Names                                        | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLef<br>t | Bog   | Fen | Swamp       | Marsh        | Seepage |
|------|----------|----------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-----------|-------|-----|-------------|--------------|---------|
| 1    | 800175   | JK Donald Reserve                            | s27          | 2703769 | 5998041  | 410.1        | 0.41       | 0.12         | 0.24        | 0.18      |       |     | 12%         | 13%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (<1%)       | (<1%)        |         |
| 2    | 800167   | Simmonds Lagoon                              | s27          | 2704840 | 6000823  | 213.6        | 0.48       | 0.18         | 0.37        | 0.17      |       |     | 20%         | 13%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (<1%)       | (<1%)        |         |
| 3    | 800197   | Mathews Lagoon                               | s27          | 2699541 | 5991473  | 218.2        | 0.51       | 0.25         | 0.24        | 0.17      |       |     | 27%         | 13%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (<1%)       | (<1%)        |         |
| 4    | 800189   | Dune Block                                   | s27          | 2696077 | 5992880  | 206.6        | 0.54       | 0.31         | 0.25        | 0.17      |       |     | 34%         | 14%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (<1%)       | (<1%)        |         |
| 5    | 800186   | Pierce Block                                 | s27          | 2700852 | 5995013  | 166.7        | 0.56       | 0.36         | 0.30        | 0.17      |       |     | 40%         | 15%          |         |
| -    | 500 (05  |                                              |              | 2500550 | (0552.12 | 50 5         | 0.50       | 0.05         | 0.50        | 0.15      |       |     | (<1%)       | (<1%)        |         |
| 6    | 509685   | Foxton beach                                 | s24          | 2700570 | 6077342  | 53.7         | 0.58       | 0.37         | 0.58        | 0.17      |       |     | 42%         | 15%          |         |
| -    | 000004   |                                              | 27           | 2(00522 | 5000005  | 74.0         | 0.50       | 0.20         | 0.40        | 0.17      |       |     | (1%)        | (<1%)        |         |
| 7    | 800204   | Waiorongamai DoC Covenant                    | s27          | 2690533 | 5988925  | 74.9         | 0.59       | 0.39         | 0.42        | 0.17      |       |     | 45%         | 15%          |         |
| 8    | 800227   | Cheen IIII Lessen                            | r27          | 2687634 | 5980329  | 49.2         | 0.60       | 0.41         | 0.54        | 0.17      |       |     | (1%)<br>47% | (<1%)<br>15% |         |
| 8    | 800227   | Sheep Hill Lagoon                            | r27          | 208/034 | 5980529  | 49.2         | 0.60       | 0.41         | 0.54        | 0.17      |       |     | 4/%<br>(1%) | 13%<br>(<1%) |         |
| 9    | 800038   | Te Hapua Swamp Complex                       | r25          | 2685307 | 6041154  | 59.6         | 0.61       | 0.43         | 0.40        | 0.18      |       |     | 48%         | (<1%)        |         |
| 9    | 800038   | Te Hapua Swallip Colliplex                   | 123          | 2083307 | 0041134  | 39.0         | 0.01       | 0.45         | 0.40        | 0.10      |       |     | 48%<br>(1%) | (<1%)        |         |
| 10   | 800194   | Boggy Pond                                   | s27          | 2699915 | 5992818  | 60.2         | 0.61       | 0.44         | 0.34        | 0.17      |       |     | 51%         | 16%          |         |
| 10   | 000174   | boggy rolld                                  | 527          | 2077713 | 5772010  | 00.2         | 0.01       | 0.11         | 0.54        | 0.17      |       |     | (1%)        | (<1%)        |         |
| 11   | 800166   | Lake Wairarapa                               | s27          | 2696792 | 5993226  | 79.7         | 0.62       | 0.47         | 0.25        | 0.17      |       |     | 53%         | 17%          |         |
| 11   | 000100   | Luite Waharapa                               | 527          | 20/01/2 | 00000000 | 12.1         | 0.02       | 0.17         | 0.20        | 0.17      |       |     | (1%)        | (<1%)        |         |
| 12   | 800223   | Lake Pounui                                  | r27          | 2686335 | 5982575  | 21.4         | 0.62       | 0.47         | 0.78        | 0.17      |       |     | 54%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (1%)        | (<1%)        |         |
| 13   | 517648   | Moutoa Flax Reserve                          | s24          | 2705860 | 6072401  | 38.1         | 0.63       | 0.48         | 0.41        | 0.17      |       |     | 55%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (1%)        | (<1%)        |         |
| 14   | 800103   | Allen/Lowes bush                             | s26          | 2728238 | 6019980  | 50.8         | 0.63       | 0.50         | 0.28        | 0.17      |       |     | 57%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           |       |     | (1%)        | (<1%)        |         |
| 15   | 500976   | Lake Horowhenua                              | s25          | 2701080 | 6065112  | 43.6         | 0.64       | 0.51         | 0.30        | 0.17      | 8%    |     | 59%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           | (<1%) |     | (1%)        | (<1%)        |         |
| 16   | 500939   | Makuera Swamp Wildlife<br>Management Reserve | s24          | 2718942 | 6076003  | 45.7         | 0.64       | 0.52         | 0.25        | 0.17      | 8%    |     | 60%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           | (<1%) |     | (1%)        | (<1%)        |         |
| 17   | 701100   | 0                                            | v23          | 2810651 | 6125847  | 44.9         | 0.64       | 0.54         | 0.25        | 0.17      | 8%    |     | 62%         | 17%          |         |
|      |          |                                              |              |         |          |              |            |              |             |           | (<1%) |     | (1%)        | (<1%)        |         |

| Rank | Idunique   |                                      | Map<br>heet    | Easting | Northing   | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLef<br>t     | Bog     | Fen       | Swamp | Marsh    | Seepage    |
|------|------------|--------------------------------------|----------------|---------|------------|--------------|------------|--------------|-------------|---------------|---------|-----------|-------|----------|------------|
| 18   | 500904     |                                      | s24            | 2702275 | 6093876    | 42.7         | 0.65       | 0.55         | 0.25        | 0.17          | 8%      |           | 63%   | 17%      |            |
|      |            |                                      |                |         |            |              |            |              |             |               | (<1%)   |           | (1%)  | (<1%)    |            |
| 19   | 800047     | Te Harakeke Swamp                    | r26            | 2682261 | 6037053    | 33.4         | 0.65       | 0.56         | 0.32        | 0.18          | 8%      |           | 65%   | 17%      |            |
|      |            |                                      |                |         |            |              |            |              |             |               | (<1%)   |           | (1%)  | (<1%)    |            |
| 20   | 501071     | Lake Papaitonga                      | s25            | 2698247 | 6060109    | 29.8         | 0.65       | 0.57         | 0.31        | 0.17          | 8%      |           | 66%   | 17%      |            |
|      |            |                                      |                |         |            |              |            |              |             |               | (<1%)   |           | (1%)  | (<1%)    |            |
| 29   | 800089     | Mt Cone                              | s26            | 2707838 | 6024749    | 10.8         | 0.67       | 0.63         | 0.93        | 0.25          | 8%      |           | 71%   | 29%      | 1%         |
|      |            |                                      |                | 2708572 |            |              |            |              |             |               | (<1%)   |           | (1%)  | (1%)     | (-)        |
| 56   | 501005     | Koputaroa Scientific (snail) Reserve | lex<br>Reserve |         | 6068122    | 11.7         | 0.70       | 0.73         | 0.29        | 0.18          | 8%      | 30%       | 79%   | 51%      | 1%         |
|      |            |                                      |                |         |            |              |            |              |             |               | (<1%)   | (<1%)     | (1%)  | (1%)     | (-)        |
|      | Ecological | integrity index                      |                |         |            |              |            |              |             |               |         |           |       |          |            |
| Rank | Idunique   | Names                                |                |         | aturalness | Non-natu     |            | Imper        | viousness   | ]             | Nitrate | Pestiness | woody | Drainage | e EI index |
|      |            |                                      |                |         | atchment   | in buffer    |            |              |             | leaching risk |         |           | weeds |          |            |
| 1    | 800175     | JK Donald Reserve                    |                | 0.30    |            |              | 0.53       |              | 1           |               | 0.93    | 0.82      | 0.99  | 1        | 0.24       |
| 2    | 800167     | Simmonds Lagoon                      |                |         | 0.90       |              | 0.51       |              | 0.99        |               | 0.97    | 0.78      | 0.93  | 1        | 0.37       |
| 3    | 800197     | Mathews Lagoon                       |                |         | 0.32       |              | 0.70       |              | 1           |               | 0.96    | 0.77      | 0.99  | 1        | 0.24       |
| 4    | 800189     | Dune Block                           |                |         | .33        | 0.91         |            | 1            |             |               | 0.96    | 0.77      | 0.99  | 1        | 0.25       |
| 5    | 800186     | Pierce Block                         |                |         | .30        | 0.7          | 3          |              | 1           |               | 0.94    | 1         | 0.99  | 1        | 0.30       |
| 6    | 509685     | Foxton beach                         |                | 0       | 0.93       |              | 59         |              | 1           |               | 0.98    | 1         | 0.99  | 1        | 0.58       |
| 7    | 800204     | Waiorongamai DoC Covenant            |                | 0       | .72        | 0.4          | 4          | (            | ).97        |               | 0.97    | 1         | 0.94  | 1        | 0.42       |
| 8    | 800227     | Sheep Hill Lagoon                    |                | 0       | .67        | 0.8          | 51         |              | 1           |               | 0.96    | 0.82      | 0.99  | 1        | 0.54       |
| 9    | 800038     | Te Hapua Swamp Complex               |                | 0       | .41        | 0.5          | 0          | (            | ).95        |               | 0.97    | 1         | 0.99  | 1        | 0.40       |
| 10   | 800194     | Boggy Pond                           |                | 0       | .35        | 0.7          | '9         | (            | ).95        |               | 0.96    | 1         | 0.99  | 1        | 0.34       |
| 11   | 800166     | Lake Wairarapa                       |                | 0       | .33        | 0.9          | 18         |              | 1           |               | 0.96    | 0.77      | 0.99  | 1        | 0.25       |
| 12   | 800223     | Lake Pounui                          |                | 0       | .97        | 0.9          | 7          |              | 1           |               | 0.98    | 0.82      | 0.98  | 1        | 0.78       |
| 13   | 517648     | Moutoa Flax Reserve                  |                | 0       | .42        | 0.4          | -6         |              | 1           |               | 0.96    | 1         | 0.99  | 1        | 0.41       |
| 14   | 800103     | Allen/Lowes bush                     |                | 0       | .30        | 0.3          | 0          | (            | ).99        |               | 0.95    | 1         | 0.94  | 1        | 0.28       |
| 15   | 500976     | Lake Horowhenua                      |                | 0       | .30        | 0.5          | 8          | (            | 0.96        |               | 0.99    | 1         | 0.99  | 1        | 0.30       |
| 16   | 500939     | Makuera Swamp Wildlife Management Re | eserve         | 0       | .30        | 0.3          | 0          |              | 1           |               | 0.89    | 1         | 0.82  | 1        | 0.25       |
| 17   | 701100     | 0                                    |                | 0       | .30        | 0.8          | 3          |              | 1           |               | 0.96    | 0.85      | 0.99  | 1        | 0.25       |
| 18   | 500904     | pukepuke                             |                | 0       | .30        | 0.7          | 3          |              | 1           |               | 0.94    | 0.85      | 0.99  | 1        | 0.25       |
| 19   | 800047     | Te Harakeke Swamp                    |                |         | .32        | 0.7          |            | (            | 0.94        |               | 0.97    | 1         | 0.99  | 1        | 0.32       |
| 20   | 501071     | Lake Papaitonga                      |                | 0       | .36        | 0.8          | 3          |              | 1           |               | 0.96    | 0.85      | 0.99  | 1        | 0.31       |
| 29   | 800089     | Mt Cone                              |                | 0       | .99        | 1            |            |              | 1           |               | 0.94    | 1         | 0.99  | 1        | 0.93       |
|      | 000007     |                                      |                |         |            |              |            |              |             |               |         |           |       |          |            |

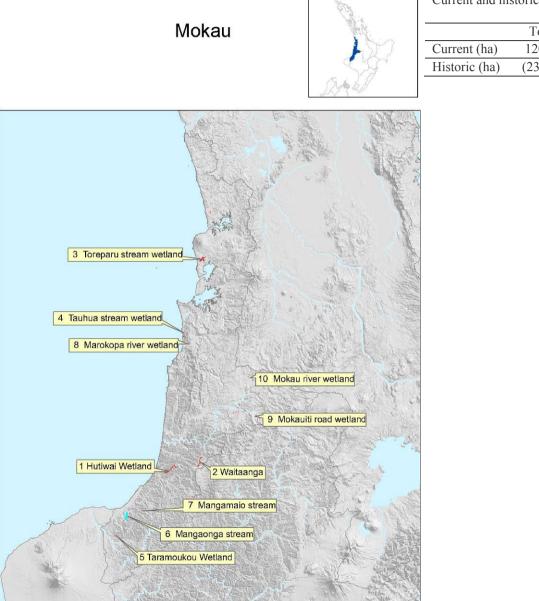

### 12. Marlborough

# Marlborough

|    |   |     | S. | (r. ) |
|----|---|-----|----|-------|
|    |   | Į   | 1  |       |
|    |   |     | 6  |       |
| Å  |   |     |    |       |
| E. | 3 | JA. |    |       |

| Current and historic extent (hectares) in each wetland class. |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

|               | Total   | Fen    | Swamp   | Marsh  | Seepage |
|---------------|---------|--------|---------|--------|---------|
| Current (ha)  | 1709.5  | 87.9   | 852.1   | 669.4  | 100.1   |
| Historic (ha) | (14756) | (1863) | (11028) | (1755) | (109)   |




| Rank | Idunique | Names                           | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen  | Swamp | Marsh | Seepage |
|------|----------|---------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|-------|-------|---------|
| 1    | 1201413  | Edwards–Muntz                   | n32          | 2510419 | 5851417  | 130.6        | 0.50       | 0.08         | 0.83        | 0.35  | 32%  | 12%   |       |         |
|      |          |                                 | _            |         |          |              |            |              |             |       | (2%) | (1%)  |       |         |
| 2    | 900613   | Red Hills Plateau               | n29          | 2510919 | 5943215  | 52.7         | 0.55       | 0.11         | 0.96        | 0.36  | 32%  | 18%   |       |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (1%)  |       |         |
| 3    | 1000876  | Sedgemere Wetland               | n30          | 2502465 | 5897193  | 132.7        | 0.59       | 0.18         | 0.35        | 0.47  | 40%  | 27%   | 7%    |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (2%)  | (3%)  |         |
| 4    | 1000658  | Marshlands                      | p26          | 2608095 | 6017599  | 93.9         | 0.61       | 0.24         | 0.31        | 0.40  | 40%  | 37%   | 9%    |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (3%)  | (3%)  |         |
| 5    | 1000754  | Para Swamp                      | o29          | 2556507 | 5921446  | 128.3        | 0.62       | 0.31         | 0.18        | 0.36  | 40%  | 52%   | 9%    |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (4%)  | (3%)  |         |
| 6    | 1000433  | Former Havelock Swamp Forest    | p28          | 2575441 | 5973748  | 47.8         | 0.64       | 0.34         | 0.42        | 0.36  | 40%  | 58%   | 9%    |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (4%)  | (3%)  |         |
| 7    | 1000795  | Rarangi Swamp                   | o29          | 2561746 | 5925030  | 62.9         | 0.65       | 0.38         | 0.34        | 0.40  | 40%  | 64%   | 10%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (2%) | (5%)  | (4%)  |         |
| 8    | 1000562  | Island Lake Slope Wetland       | n30          | 2505164 | 5892928  | 25.8         | 0.65       | 0.39         | 0.46        | 0.33  | 57%  | 65%   | 10%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (4%)  |         |
| 9    | 1000434  | Former Kaituna Wetlands         | p27          | 2574678 | 5987591  | 73.6         | 0.67       | 0.44         | 0.30        | 0.68  | 57%  | 65%   | 21%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (8%)  |         |
| 10   | 1000325  | Clarence River Wetland12        | o31          | 2534167 | 5881658  | 55.6         | 0.68       | 0.47         | 0.36        | 0.68  | 57%  | 65%   | 29%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (11%) |         |
| 11   | 1000563  | Island Lake Stream Wetland      | p27          | 2575261 | 5989884  | 41.5         | 0.68       | 0.49         | 0.33        | 0.66  | 58%  | 65%   | 35%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (13%) |         |
| 12   | 1001202  | Riparian forest remnant Wetland | p27          | 2584243 | 5990768  | 16.0         | 0.69       | 0.50         | 0.78        | 0.66  | 58%  | 66%   | 37%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (14%) |         |
| 13   | 1000780  | Pukaka Swamp                    | 027          | 2559684 | 5995151  | 20.5         | 0.69       | 0.51         | 0.38        | 0.44  | 58%  | 67%   | 38%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (14%) |         |
| 14   | 1000245  | Cabbage Tree Gully Swamp        | 028          | 2536193 | 5952346  | 23.9         | 0.69       | 0.53         | 0.30        | 0.45  | 58%  | 69%   | 39%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (5%)  | (15%) |         |
| 15   | 1000241  | Brown River Forest              | n30          | 2518162 | 5911030  | 21.8         | 0.70       | 0.54         | 0.25        | 0.36  | 58%  | 72%   | 39%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (6%)  | (15%) |         |
| 16   | 1000560  | Island Gully Wetland3           | n30          | 2502903 | 5895059  | 11.2         | 0.70       | 0.55         | 0.43        | 0.30  | 69%  | 72%   | 39%   |         |
| . –  | 4000.000 |                                 |              |         |          | 45.5         | 0 = 0      | 0            | 0.55        | 0.1-  | (3%) | (6%)  | (15%) |         |
| 17   | 1000403  | Eves Stream Wetlands3           | o28          | 2547402 | 5953405  | 17.9         | 0.70       | 0.56         | 0.30        | 0.45  | 69%  | 74%   | 40%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (6%)  | (15%) |         |
| 18   | 1000531  | Hillersden Stream Wetland       | n30          | 2494815 | 5893338  | 15.4         | 0.70       | 0.57         | 0.30        | 0.40  | 69%  | 75%   | 40%   |         |
|      |          |                                 |              |         |          |              |            |              |             |       | (3%) | (6%)  | (15%) |         |

| Rank | Idunique | Names                 | Мар   | Easting | Northing | Area | Cum. | Cum. | EI    | HLeft | Fen  | Swamp | Marsh | Seepage |
|------|----------|-----------------------|-------|---------|----------|------|------|------|-------|-------|------|-------|-------|---------|
|      |          |                       | sheet |         |          | (ha) | CE   | area | index |       |      |       |       |         |
| 19   | 1001063  | Two Bay Swamp         | o29   | 2554860 | 5920212  | 13.7 | 0.70 | 0.58 | 0.30  | 0.36  | 69%  | 77%   | 40%   |         |
|      |          |                       |       |         |          |      |      |      |       |       | (3%) | (6%)  | (15%) |         |
| 20   | 1000558  | Island Gully Wetland1 | n30   | 2494245 | 5892641  | 12.1 | 0.71 | 0.58 | 0.30  | 0.29  | 83%  | 77%   | 40%   |         |
|      |          |                       |       |         |          |      |      |      |       |       | (4%) | (6%)  | (15%) |         |
| 24   | 1001200  | lowland swamp Wetland | p28   | 2597196 | 5965056  | 18.1 | 0.72 | 0.61 | 0.44  | 0.76  | 87%  | 78%   | 44%   | 5%      |
|      |          |                       |       |         |          |      |      |      |       |       | (4%) | (6%)  | (17%) | (5%)    |

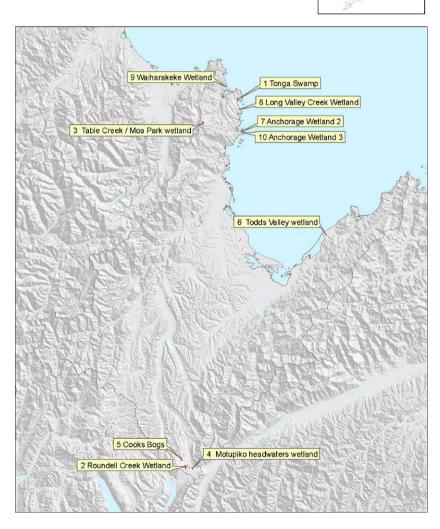
| Rank | Idunique | Names                           | Non-<br>naturalness<br>in subcatchment | Non-<br>naturalness<br>in buffer | Imperviousness | Nitrate<br>leachin<br>g risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|---------------------------------|----------------------------------------|----------------------------------|----------------|------------------------------|-----------|----------------|----------|----------|
| 1    | 1201413  | Edwards–Muntz                   | 0.96                                   | 0.84                             | 0.94           | 0.99                         | 1         | 0.99           | 1        | 0.83     |
| 2    | 900613   | Red Hills Plateau               | 0.99                                   | 1                                | 1              | 0.97                         | 1         | 0.99           | 1        | 0.96     |
| 3    | 1000876  | Sedgemere Wetland               | 0.35                                   | 0.36                             | 1              | 0.98                         | 1         | 0.99           | 1        | 0.35     |
| 4    | 1000658  | Marshlands                      | 0.32                                   | 0.32                             | 0.98           | 0.97                         | 1         | 0.99           | 1        | 0.31     |
| 5    | 1000754  | Para Swamp                      | 0.37                                   | 0.81                             | 0.65           | 0.97                         | 1         | 0.48           | 1        | 0.18     |
| 6    | 1000433  | Former Havelock Swamp Forest    | 0.43                                   | 0.49                             | 0.82           | 0.97                         | 1         | 0.99           | 1        | 0.42     |
| 7    | 1000795  | Rarangi Swamp                   | 0.56                                   | 0.37                             | 0.97           | 0.97                         | 1         | 0.92           | 1        | 0.34     |
| 8    | 1000562  | Island Lake Slope Wetland       | 0.47                                   | 0.52                             | 1              | 0.97                         | 1         | 0.99           | 1        | 0.46     |
| 9    | 1000434  | Former Kaituna Wetlands         | 0.31                                   | 0.53                             | 0.88           | 0.97                         | 1         | 0.99           | 1        | 0.30     |
| 10   | 1000325  | Clarence River Wetland12        | 0.78                                   | 0.44                             | 1              | 0.98                         | 0.83      | 0.99           | 1        | 0.36     |
| 11   | 1000563  | Island Lake Stream Wetland      | 0.33                                   | 0.52                             | 1              | 0.98                         | 1         | 0.99           | 1        | 0.33     |
| 12   | 1001202  | Riparian forest remnant Wetland | 0.79                                   | 1                                | 0.84           | 0.97                         | 1         | 0.99           | 1        | 0.78     |
| 13   | 1000780  | Pukaka Swamp                    | 0.55                                   | 0.68                             | 0.77           | 0.98                         | 0.84      | 0.84           | 1        | 0.38     |
| 14   | 1000245  | Cabbage Tree Gully Swamp        | 0.30                                   | 0.45                             | 0.99           | 0.98                         | 1         | 0.99           | 1        | 0.30     |
| 15   | 1000241  | Brown River Forest              | 0.73                                   | 0.30                             | 0.99           | 0.97                         | 0.84      | 0.99           | 1        | 0.25     |
| 16   | 1000560  | Island Gully Wetland3           | 0.97                                   | 0.44                             | 1              | 0.97                         | 1         | 0.99           | 1        | 0.43     |
| 17   | 1000403  | Eves Stream Wetlands3           | 0.97                                   | 0.30                             | 1              | 0.97                         | 1         | 0.99           | 1        | 0.30     |
| 18   | 1000531  | Hillersden Stream Wetland       | 0.30                                   | 0.30                             | 1              | 0.98                         | 1         | 0.99           | 1        | 0.30     |
| 19   | 1001063  | Two Bay Swamp                   | 0.91                                   | 0.30                             | 1              | 0.98                         | 1         | 0.99           | 1        | 0.30     |
| 20   | 1000558  | Island Gully Wetland1           | 0.94                                   | 0.30                             | 0.90           | 0.97                         | 1         | 0.99           | 1        | 0.30     |
| 24   | 1001200  | lowland swamp Wetland           | 0.45                                   | 1                                | 1              | 0.98                         | 1         | 0.99           | 1        | 0.44     |

### 13. Mokau



|               | Total   | Bog   | Fen   | Swamp   | Marsh  | Seepage |
|---------------|---------|-------|-------|---------|--------|---------|
| Current (ha)  | 1208.3  | 96.1  | 5.6   | 836.7   | 253.5  | 16.4    |
| Historic (ha) | (23638) | (715) | (371) | (17411) | (5126) | (15)    |

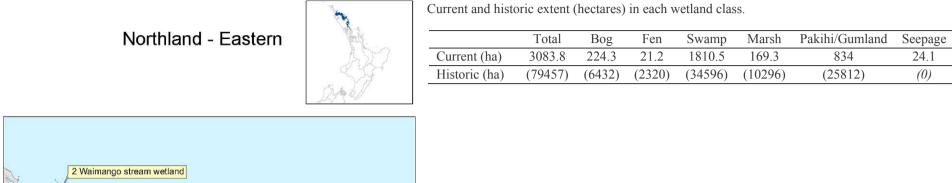
| Rank | Idunique | Names                                             | Map sheet | Easting | Northing | area  | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen | Swamp | Marsh | Seepage |
|------|----------|---------------------------------------------------|-----------|---------|----------|-------|------------|--------------|-------------|-------|-------|-----|-------|-------|---------|
| 1    | 600844   | Hutiwai Wetland                                   | r18       | 2654309 | 6263464  | 239.6 | 0.67       | 0.20         | 0.97        | 0.30  |       |     | 24%   | 16%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       |       |     | (1%)  | (1%)  |         |
| 2    | 509498   | Waitaanga                                         | r18       | 2668214 | 6267017  | 158.2 | 0.76       | 0.33         | 0.97        | 0.30  |       |     | 42%   | 20%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       |       |     | (2%)  | (1%)  |         |
| 3    | 300117   | Toreparu stream Wetland                           | r15       | 2669542 | 6361852  | 224.0 | 0.79       | 0.52         | 0.29        | 0.30  |       |     | 66%   | 31%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       |       |     | (3%)  | (2%)  |         |
| 4    | 300129   | Tauhua stream Wetland                             | r16       | 2660773 | 6326197  | 76.6  | 0.81       | 0.58         | 0.75        | 0.41  | 57%   |     | 68%   | 35%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (8%)  |     | (3%)  | (2%)  |         |
| 5    | 600881   | Taramoukou Wetland                                | q19       | 2628777 | 6232530  | 33.9  | 0.82       | 0.61         | 0.85        | 0.30  | 57%   |     | 72%   | 35%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (8%)  |     | (3%)  | (2%)  |         |
| 6    | 600210   | Mangaonga stream                                  | q19       | 2633833 | 6241838  | 33.9  | 0.83       | 0.64         | 0.81        | 0.30  | 57%   |     | 76%   | 35%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (8%)  |     | (4%)  | (2%)  |         |
| 7    | 600205   | Mangamaio stream                                  | q19       | 2641707 | 6244024  | 21.8  | 0.84       | 0.66         | 0.77        | 0.30  | 57%   |     | 79%   | 35%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (8%)  |     | (4%)  | (2%)  |         |
| 8    | 300135   | Marokopa River Wetland                            | r16       | 2662767 | 6322241  | 32.9  | 0.85       | 0.69         | 0.78        | 0.43  | 88%   |     | 79%   | 36%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (2%)  |         |
| 9    | 300180   | Mokauiti road Wetland                             | s17       | 2694342 | 6288485  | 20.9  | 0.85       | 0.70         | 0.42        | 0.30  | 88%   |     | 81%   | 37%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (2%)  |         |
| 10   | 300152   | Mokau River Wetland                               | s17       | 2691315 | 6306564  | 36.6  | 0.85       | 0.74         | 0.22        | 0.30  | 88%   |     | 85%   | 40%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (2%)  |         |
| 11   | 300105   | 0                                                 | r14       | 2673042 | 6383959  | 28.1  | 0.86       | 0.76         | 0.31        | 0.30  | 88%   |     | 86%   | 45%   |         |
|      |          |                                                   | × 10      |         |          |       |            |              |             |       | (12%) |     | (4%)  | (2%)  |         |
| 12   | 300113   | 0                                                 | r15       | 2678545 | 6368850  | 23.6  | 0.86       | 0.78         | 0.30        | 0.30  | 88%   |     | 88%   | 48%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (2%)  |         |
| 13   | 600184   | Herbaceous Freshwater Vegetation                  | r18       | 2663847 | 6250907  | 24.6  | 0.86       | 0.80         | 0.30        | 0.30  | 88%   |     | 88%   | 58%   |         |
|      |          |                                                   |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (3%)  |         |
| 14   | 300502   | lowland podocarp hardwood swamp<br>forest remnant | s17       | 2695903 | 6299107  | 19.2  | 0.86       | 0.82         | 0.35        | 0.30  | 88%   |     | 88%   | 65%   |         |
|      |          | lorest remnant                                    |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (3%)  |         |
| 15   | 300176   | 0                                                 | r17       | 2686220 | 6290419  | 14.0  | 0.87       | 0.83         | 0.34        | 0.30  | 88%   |     | 90%   | 65%   |         |
| 10   | 500170   |                                                   |           | 2000220 | 02/011/  | 1     | 0.07       | 0.00         | 0.0 .       | 0.00  | (12%) |     | (4%)  | (3%)  |         |
| 16   | 300182   | 0                                                 | s17       | 2695262 | 6287162  | 12.6  | 0.87       | 0.84         | 0.35        | 0.30  | 88%   |     | 91%   | 68%   |         |
|      | 200102   | -                                                 | 51,       | 10/0102 | 520,102  |       | 0.07       | 0.01         | 0.20        | 0.00  | (12%) |     | (4%)  | (3%)  |         |
| 17   | 600843   | Mohakatino Swamp                                  | r18       | 2650313 | 6273842  | 6.6   | 0.87       | 0.84         | 0.50        | 0.30  | 88%   |     | 91%   | 68%   |         |
|      |          | P                                                 |           |         |          |       |            |              |             |       | (12%) |     | (4%)  | (3%)  |         |
| 18   | 500217   | 0                                                 | r18       | 2665521 | 6250209  | 12.9  | 0.87       | 0.85         | 0.31        | 0.30  | 88%   |     | 91%   | 73%   |         |

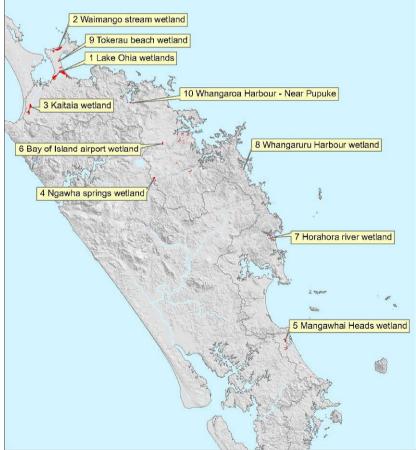

| Rank | Idunique   | Names                                        | Map shee | et Easting                      | Northing | area               | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft               | Bog       | Fen            | Swamp | Marsh | Seepage  |
|------|------------|----------------------------------------------|----------|---------------------------------|----------|--------------------|------------|--------------|-------------|---------------------|-----------|----------------|-------|-------|----------|
|      |            |                                              |          |                                 |          |                    | CL         | arca         | muex        |                     | (12%)     |                | (4%)  | (4%)  |          |
| 19   | 600212     | Herbaceous Freshwater Vegetation             | q19      | 2635132                         | 6242866  | 5.0                | 0.87       | 0.86         | 0.58        | 0.30                | 88%       |                | 92%   | 73%   |          |
|      |            | -                                            | -        |                                 |          |                    |            |              |             |                     | (12%)     |                | (4%)  | (4%)  |          |
| 20   | 300130     | 0                                            | r16      | 2670155                         | 6325994  | 7.8                | 0.87       | 0.86         | 0.36        | 0.30                | 88%       |                | 93%   | 73%   |          |
|      |            |                                              |          |                                 |          |                    |            |              |             |                     | (12%)     |                | (4%)  | (4%)  |          |
| 28   | 300143     | 0                                            | r16      | 2682553                         | 6313593  | 10.6               | 0.88       | 0.92         | 0.30        | 0.37                | 95%       | 42%            | 96%   | 86%   |          |
|      |            |                                              |          |                                 |          |                    |            |              |             |                     | (13%)     | (1%)           | (4%)  | (4%)  |          |
| 30   | 600267     | 0                                            | q19      | 2637640                         | 6223074  | 3.0                | 0.88       | 0.93         | 0.73        | 0.33                | 95%       | 42%            | 96%   | 90%   | 1%       |
|      |            |                                              |          |                                 |          |                    |            |              |             |                     | (13%)     | (1%)           | (4%)  | (5%)  | (-)      |
|      | Ecological | integrity index                              |          |                                 |          |                    |            |              |             |                     |           |                |       |       |          |
| Rank | Idunique   | Names                                        |          | Non-naturalness in subcatchment |          | turalness<br>uffer | Imper      | viousness    |             | itrate<br>ning risk | Pestiness | Woody<br>weeds |       | nage  | EI index |
| 1    | 600844     | Hutiwai Wetland                              |          | 0.99                            |          | 1                  |            | 1            |             | 0.98                | 1         | 0.99           |       | 1     | 0.97     |
| 2    | 509498     | Waitaanga                                    |          | 0.98                            |          | 1                  |            | 1            | (           | 0.98                | 1         | 0.99           |       | 1     | 0.97     |
| 3    | 300117     | Toreparu stream Wetland                      |          | 0.31                            | 0.       | 54                 |            | 1            | (           | 0.94                | 1         | 0.95           |       | 1     | 0.29     |
| 4    | 300129     | Tauhua stream Wetland                        |          | 0.94                            | 0.       | 76                 |            | 1            | (           | 0.98                | 1         | 0.99           |       | 1     | 0.75     |
| 5    | 600881     | Taramoukou Wetland                           |          | 0.99                            |          | 1                  | (          | 0.86         | (           | 0.98                | 1         | 0.99           |       | 1     | 0.85     |
| 6    | 600210     | Mangaonga stream                             |          | 0.89                            | 0.       | 83                 | (          | 0.99         | (           | 0.97                | 1         | 0.99           |       | 1     | 0.81     |
| 7    | 600205     | Mangamaio stream                             |          | 0.81                            | 0.       | 79                 | (          | 0.99         | (           | 0.97                | 1         | 0.99           |       | 1     | 0.77     |
| 8    | 300135     | Marokopa River Wetland                       |          | 0.99                            | 0.       | 98                 |            | 1            | (           | 0.95                | 0.84      | 0.99           |       | 1     | 0.78     |
| 9    | 300180     | Mokauiti road Wetland                        |          | 0.43                            | 0.       | 56                 |            | 1            | (           | 0.97                | 1         | 0.99           |       | 1     | 0.42     |
| 10   | 300152     | Mokau River Wetland                          |          | 0.31                            | 0.       | 31                 | (          | 0.96         | (           | 0.95                | 0.80      | 0.89           |       | 1     | 0.22     |
| 11   | 300105     | 0                                            |          | 0.32                            | 0.       | 59                 |            | 1            | (           | 0.95                | 1         | 0.99           |       | 1     | 0.31     |
| 12   | 300113     | 0                                            |          | 0.30                            | 0.       | 32                 |            | 1            | (           | 0.91                | 1         | 0.99           |       | 1     | 0.30     |
| 13   | 600184     | Herbaceous Freshwater Vegetation             |          | 0.31                            | 0.       | 47                 |            | 1            | (           | 0.88                | 1         | 0.99           |       | 1     | 0.30     |
| 14   | 300502     | lowland podocarp hardwood swamp forest remna | nt       | 0.35                            | 0.       | 41                 | (          | 0.99         | (           | 0.96                | 1         | 0.99           |       | 1     | 0.35     |
| 15   | 300176     | 0                                            |          | 0.35                            | 0.       | 47                 | (          | 0.85         | (           | 0.91                | 1         | 0.98           |       | 1     | 0.34     |
| 16   | 300182     | 0                                            |          | 0.91                            | 0.       | 35                 |            | 1            | (           | 0.98                | 1         | 0.99           |       | 1     | 0.35     |
| 17   | 600843     | Mohakatino Swamp                             |          | 0.75                            | 0.       | 51                 | (          | 0.92         | (           | 0.98                | 1         | 0.99           |       | 1     | 0.50     |
| 18   | 500217     | 0                                            |          | 0.31                            | 0.       | 37                 | (          | 0.94         | (           | 0.91                | 1         | 0.99           |       | 1     | 0.31     |
| 19   | 600212     | Herbaceous Freshwater Vegetation             |          | 0.92                            | 0.       | 59                 | (          | 0.99         | (           | 0.98                | 1         | 0.99           |       | 1     | 0.58     |
| 20   | 300130     | 0                                            |          | 0.48                            | 0.       | 66                 | (          | 0.46         | (           | 0.96                | 0.80      | 0.98           |       | 1     | 0.36     |
| 28   | 300143     | 0                                            |          | 0.30                            | 0.       | 50                 |            | 1            | (           | 0.94                | 1         | 0.99           |       | 1     | 0.30     |
| 30   | 600267     | 0                                            |          | 0.87                            | 0.       | 74                 |            | 1            | (           | 0.95                | 1         | 0.99           |       | 1     | 0.73     |

#### 14. Motueka-Nelson

### Motueka - Nelson




|               | Total  | Fen  | Swamp  | Marsh | Seepage |
|---------------|--------|------|--------|-------|---------|
| Current (ha)  | 272.8  | 58.6 | 95.2   | 97.8  | 21.1    |
| Historic (ha) | (5802) | (0)  | (5379) | (382) | (41)    |




| Rank | Idunique   | Names                         | Map<br>sheet | Easting | Northing     | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI index | HLeft | Fen | Swamp | Marsh | Seepage |
|------|------------|-------------------------------|--------------|---------|--------------|--------------|------------|--------------|----------|-------|-----|-------|-------|---------|
| 1    | 900752     | Tonga Swamp                   | n26          | 2514192 | 6036421      | 18.3         | 0.51       | 0.07         | 0.97     | 0.20  |     | 19%   |       |         |
|      |            |                               |              |         |              |              |            |              |          |       |     | (<1%) |       |         |
| 2    | 900637     | Roundell Creek Wetland        | n29          | 2500342 | 5937423      | 45.7         | 0.68       | 0.24         | 0.88     | 0.63  | 9%  | 19%   | 42%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (11%) |         |
| 3    | 900851     | Table Creek/ Moa park Wetland | n26          | 2504733 | 6029953      | 34.7         | 0.76       | 0.36         | 0.97     | 1     | 68% | 19%   | 42%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (11%) |         |
| 4    | 900861     | Motupiko headwaters Wetland   | n29          | 2501975 | 5936979      | 15.9         | 0.79       | 0.42         | 0.91     | 0.58  | 68% | 19%   | 58%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (15%) |         |
| 5    | 900107     | Cooks Bogs                    | n29          | 2499016 | 5939579      | 23.8         | 0.83       | 0.51         | 0.90     | 0.90  | 99% | 19%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (16%) |         |
| 6    | 900853     | Todds Vally Wetland           | o27          | 2538152 | 5999839      | 4.0          | 0.83       | 0.52         | 0.88     | 0.20  | 99% | 24%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (16%) |         |
| 7    | 900008     | Anchorage Wetland 2           | n26          | 2514777 | 6027629      | 3.6          | 0.84       | 0.54         | 0.97     | 0.20  | 99% | 27%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (<1%) | (16%) |         |
| 8    | 900483     | Long Valley Creek Wetland     | n26          | 2514393 | 6033733      | 3.5          | 0.85       | 0.55         | 0.96     | 0.20  | 99% | 31%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 9    | 900787     | Waiharakeke Wetland           | n26          | 2511136 | 6039706      | 3.5          | 0.85       | 0.56         | 0.96     | 0.20  | 99% | 35%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 10   | 900009     | Anchorage Wetland 3           | n26          | 2515362 | 6027505      | 2.6          | 0.85       | 0.57         | 0.97     | 0.20  | 99% | 38%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 11   | 900051     | Blue Glen Stream              | n29          | 2501319 | 5949582      | 3.2          | 0.86       | 0.58         | 0.61     | 0.20  | 99% | 41%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 12   | 900582     | Porters Hut Wetland           | n28          | 2509099 | 5950355      | 2.0          | 0.86       | 0.59         | 0.97     | 0.20  | 99% | 43%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 13   | 900485     | Luna Lake                     | m28          | 2465177 | 5977216      | 1.9          | 0.86       | 0.60         | 0.94     | 0.20  | 99% | 45%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 14   | 900413     | Motueka State Forest Swamp    | n26          | 2510345 | 6020162      | 5.2          | 0.87       | 0.62         | 0.27     | 0.20  | 99% | 51%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 15   | 900447     | Nile Road Wetland             | n27          | 2515478 | 5994504      | 4.2          | 0.87       | 0.63         | 0.30     | 0.20  | 99% | 55%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |
| 16   | 900754     | Trafalgar Road Wetland        | n27          | 2514728 | 5993114      | 5.0          | 0.87       | 0.65         | 0.26     | 0.20  | 99% | 60%   | 64%   |         |
| . –  | 0.0.0.75.5 |                               | <i>a</i> –   |         | = 0 0 C - 1- | 0 -          |            | 0            |          | 0.00  | (-) | (1%)  | (16%) |         |
| 17   | 900638     | Ruby Bay Wetland              | n27          | 2514742 | 5998367      | 8.5          | 0.87       | 0.68         | 0.12     | 0.20  | 99% | 69%   | 64%   |         |
|      |            |                               |              |         |              |              |            |              |          |       | (-) | (1%)  | (16%) |         |

| Rank | Idunique | Names                              | Map<br>sheet | Easting                    | Northing | Area<br>(ha)            | Cum.<br>CE | Cum.<br>area | EI index | HLeft                   | Fen       | Swamp          | Marsh    | Seepage  |
|------|----------|------------------------------------|--------------|----------------------------|----------|-------------------------|------------|--------------|----------|-------------------------|-----------|----------------|----------|----------|
| 18   | 900215   | Ex Waiwhero Forest Wetland         | n27          | 2503791                    | 6002232  | 5.1                     | 0.87       | 0.70         | 0.18     | 0.20                    | 99%       | 75%            | 64%      |          |
|      |          |                                    |              |                            |          |                         |            |              |          |                         | (-)       | (1%)           | (16%)    |          |
| 19   | 900870   | Added polygon from satellite image | m27          | 2477251                    | 5988824  | 5.4                     | 0.87       | 0.72         | 0.45     | 0.58                    | 99%       | 75%            | 69%      |          |
|      |          |                                    |              |                            |          |                         |            |              |          |                         | (-)       | (1%)           | (18%)    |          |
| 20   | 900032   | Awaroa Swamp                       | n26          | 2513551                    | 6038045  | 2.5                     | 0.88       | 0.73         | 0.96     | 0.58                    | 99%       | 75%            | 72%      |          |
|      |          |                                    |              |                            |          |                         |            |              |          |                         | (-)       | (1%)           | (18%)    |          |
| 34   | 900649   | Sanctuary Basin Sinkhole           | m28          | 2472661                    | 5965630  | 1.7                     | 0.89       | 0.84         | 0.90     | 0.77                    | 99%       | 92%            | 83%      | 8%       |
|      |          |                                    |              |                            |          |                         |            |              |          |                         | (-)       | (2%)           | (21%)    | (4%)     |
|      | <u> </u> | tegrity index                      |              |                            |          |                         |            |              |          |                         |           |                |          |          |
| Rank | Idunique | Names                              |              | n-naturalnes<br>ubcatchmen |          | n-naturaln<br>in buffer | ess I      | mpervious    | lea      | itrate<br>ching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
| 1    | 900752   | Tonga Swamp                        |              | 0.99                       |          | 0.99                    |            | 1            | (        | .98                     | 1         | 0.99           | 1        | 0.97     |
| 2    | 900637   | Roundell Creek Wetland             |              | 0.96                       |          | 0.89                    |            | 1            | (        | ).96                    | 1         | 0.99           | 1        | 0.88     |
| 3    | 900851   | Table Creek/ Moa park Wetland      |              | 0.99                       |          | 1                       |            | 0.99         | (        | ).99                    | 1         | 0.99           | 1        | 0.97     |
| 4    | 900861   | Motupiko headwaters Wetland        |              | 0.95                       |          | 0.92                    |            | 1            | (        | ).97                    | 1         | 0.99           | 1        | 0.91     |
| 5    | 900107   | Cooks Bogs                         |              | 0.91                       |          | 0.94                    |            | 1            | (        | ).95                    | 1         | 0.99           | 1        | 0.90     |
| 6    | 900853   | Todds Vally Wetland                |              | 0.99                       |          | 0.90                    |            | 1            | (        | ).99                    | 1         | 0.99           | 1        | 0.88     |
| 7    | 900008   | Anchorage Wetland 2                |              | 0.99                       |          | 1                       |            | 1            | (        | ).98                    | 1         | 0.99           | 1        | 0.97     |
| 8    | 900483   | Long Valley Creek Wetland          |              | 0.99                       |          | 1                       |            | 1            | (        | ).98                    | 1         | 0.99           | 1        | 0.96     |
| 9    | 900787   | Waiharakeke Wetland                |              | 0.99                       |          | 1                       |            | 1            | (        | .98                     | 1         | 0.97           | 1        | 0.96     |
| 10   | 900009   | Anchorage Wetland 3                |              | 0.99                       |          | 1                       |            | 1            | (        | .98                     | 1         | 0.99           | 1        | 0.97     |
| 11   | 900051   | Blue Glen Stream                   |              | 0.94                       |          | 0.62                    |            | 0.86         | (        | .98                     | 1         | 0.99           | 1        | 0.61     |
| 12   | 900582   | Porters Hut Wetland                |              | 0.99                       |          | 1                       |            | 1            | (        | ).98                    | 1         | 0.99           | 1        | 0.97     |
| 13   | 900485   | Luna Lake                          |              | 0.99                       |          | 1                       |            | 1            |          | ).95                    | 1         | 0.99           | 1        | 0.94     |
| 14   | 900413   | Motueka State Forest Swamp         |              | 0.30                       |          | 0.41                    |            | 0.68         | (        | .98                     | 1         | 0.89           | 1        | 0.27     |
| 15   | 900447   | Nile Road Wetland                  |              | 0.30                       |          | 0.38                    |            | 0.85         | (        | ).98                    | 1         | 0.99           | 1        | 0.30     |
| 16   | 900754   | Trafalgar Road Wetland             |              | 0.30                       |          | 0.41                    |            | 0.74         | (        | .98                     | 1         | 0.85           | 1        | 0.26     |
| 17   | 900638   | Ruby Bay Wetland                   |              | 0.30                       |          | 0.35                    |            | 0.12         | (        | ).98                    | 1         | 0.99           | 1        | 0.12     |
| 18   | 900215   | Ex Waiwhero Forest Wetland         |              | 0.30                       |          | 0.40                    |            | 0.67         | (        | ).96                    | 0.81      | 0.73           | 1        | 0.18     |
| 19   | 900870   | Added polygon from satellite image |              | 0.99                       |          | 0.46                    |            | 1            | (        | ).99                    | 1         | 0.99           | 1        | 0.45     |
| 20   | 900032   | Awaroa Swamp                       |              | 0.99                       |          | 1                       |            | 0.98         | (        | ).98                    | 1         | 0.99           | 1        | 0.96     |
| 34   | 900649   | Sanctuary Basin Sinkhole           |              | 0.99                       |          | 1                       |            | 1            | (        | ).91                    | 1         | 0.99           | 1        | 0.90     |

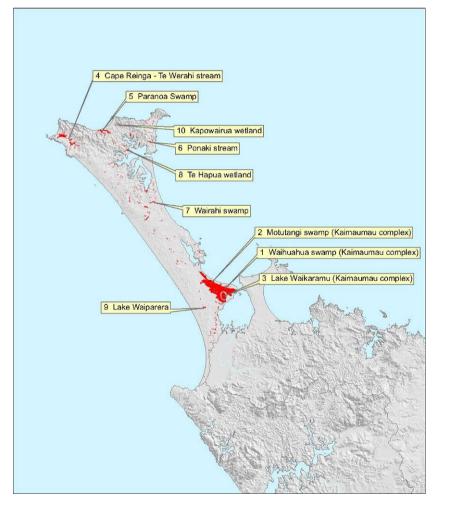
#### 15. Northland – Eastern





| Rank | Idunique | Names                            | Map<br>sheet | Easting       | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog         | Fen | Swamp       | Marsh        | Pakihi/<br>gumland | Seepage |
|------|----------|----------------------------------|--------------|---------------|----------|--------------|------------|--------------|-------------|-------|-------------|-----|-------------|--------------|--------------------|---------|
| 1    | 100594   | Lake Ohia Wetlands               | o04          | 2544694       | 6692372  | 826.9        | 0.52       | 0.26         | 0.28        | 0.27  | 43%         |     | 13%         | 0.2%         | 57%                |         |
|      |          | (Karikari peninsula)             |              |               |          |              |            |              |             |       | (2%)        |     | (1%)        | (<1%)        | (2%)               |         |
| 2    | 100603   | Waimango stream Wetland          | 003          | 2543374       | 6704401  | 328.4        | 0.57       | 0.37         | 0.29        | 0.30  | 43%         |     | 28%         | 0.2%         | 62%                |         |
|      |          | (Karikari peninsula)             |              |               |          |              |            |              |             |       | (2%)        |     | (2%)        | (<1%)        | (2%)               |         |
| 3    | 100601   | Kaitaia Wetland                  | n04          | 2529950       | 6675920  | 327.0        | 0.60       | 0.47         | 0.26        | 0.31  | 43%         |     | 46%         | 0.2%         | 62%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (2%)        | (<1%)        | (2%)               |         |
| 4    | 100903   | Ngawha springs Wetlands          | p05          | 2589305       | 6642752  | 89.1         | 0.62       | 0.50         | 0.62        | 0.29  | 43%         |     | 50%         | 0.2%         | 65%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 5    | 102034   | Mangawhai Heads Wetland          | r08          | 2651924       | 6565648  | 116.6        | 0.64       | 0.53         | 0.37        | 0.28  | 43%         |     | 53%         | 0.2%         | 71%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 6    | 100041   | Bay of Island airport<br>Wetland | p05          | 2593459       | 6659586  | 74.3         | 0.65       | 0.56         | 0.47        | 0.29  | 43%         |     | 56%         | 5%           | 71%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 7    | 100116   | Horahora River Wetland           | q06          | 2645900       | 6614636  | 32.5         | 0.66       | 0.57         | 0.97        | 0.30  | 43%         |     | 58%         | 5%           | 72%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 8    | 100198   | Whangaruru Harbour<br>Wetland    | q05          | 2631794       | 6646978  | 28.7         | 0.66       | 0.58         | 0.90        | 0.31  | 43%         |     | 60%         | 5%           | 72%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 9    | 102206   | Tokerau beach Wetland            | 004          | 2543969       | 6699129  | 74.4         | 0.67       | 0.60         | 0.31        | 0.29  | 43%         |     | 63%         | 9%           | 73%                |         |
|      |          |                                  |              |               |          |              |            |              |             |       | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 10   | 100012   | Whangaroa Harbour –<br>Pupuke    | p04          | 2578119       | 6678907  | 38.6         | 0.68       | 0.61         | 0.59        | 0.31  | 43%         |     | 65%         | 9%           | 73%                |         |
| 1.1  | 100010   |                                  | 0.6          | 0 ( 1 1 0 5 1 |          | 21.0         | 0.60       | 0.60         | 0.00        | 0.00  | (2%)        |     | (3%)        | (<1%)        | (2%)               |         |
| 11   | 100212   | 0                                | q06          | 2644854       | 6615555  | 21.9         | 0.68       | 0.62         | 0.90        | 0.30  | 43%         |     | 66%         | 9%           | 73%                |         |
| 10   | 100155   |                                  | 0.5          | 2601545       | (((1007  | (2.2         | 0.00       | 0.64         | 0.21        | 0.00  | (2%)        |     | (4%)        | (<1%)        | (2%)               |         |
| 12   | 100155   | 0                                | p05          | 2601545       | 6661027  | 63.2         | 0.69       | 0.64         | 0.31        | 0.26  | 59%         |     | 66%         | 12%          | 75%                |         |
| 13   | 102025   | 0                                |              | 2(52075       | (5(1570  | <i>67</i> 1  | 0.00       | 0.((         | 0.20        | 0.20  | (2%)        |     | (4%)        | (<1%)        | (2%)               |         |
| 13   | 102035   | 0                                | r08          | 2652075       | 6561578  | 57.1         | 0.69       | 0.66         | 0.30        | 0.29  | 59%         |     | 68%         | 12%          | 77%                |         |
| 1.4  | 102209   | 0                                | - 0.4        | 2544683       | ((05(40  | 67 A         | 0.70       | 0.00         | 0.21        | 0.20  | (2%)<br>59% |     | (4%)        | (<1%)        | (3%)<br>78%        |         |
| 14   | 102209   | 0                                | 004          | 2544085       | 6695649  | 57.4         | 0.70       | 0.68         | 0.31        | 0.30  |             |     | 71%         | 12%<br>(<1%) | (3%)               |         |
| 1.5  | 1001(1   | 0                                |              | 2(0202)       | (((200)  | <i>E 1</i> 1 | 0.70       | 0.00         | 0.26        | 0.20  | (2%)        |     | (4%)        | · /          |                    |         |
| 15   | 100161   | 0                                | p05          | 2602836       | 6663906  | 54.1         | 0.70       | 0.69         | 0.26        | 0.29  | 59%         |     | 73%         | 17%<br>(<1%) | 78%                |         |
| 16   | 102012   | 0                                |              | 2500(70       | (7220(4  | 171          | 0.70       | 0.70         | 0.00        | 0.26  | (2%)        |     | (4%)        | · /          | (3%)               |         |
| 16   | 102013   | 0                                | n03          | 2508679       | 6722964  | 17.1         | 0.70       | 0.70         | 0.86        | 0.26  | 66%<br>(3%) |     | 73%<br>(4%) | 17%<br>(<1%) | 78%<br>(3%)        |         |

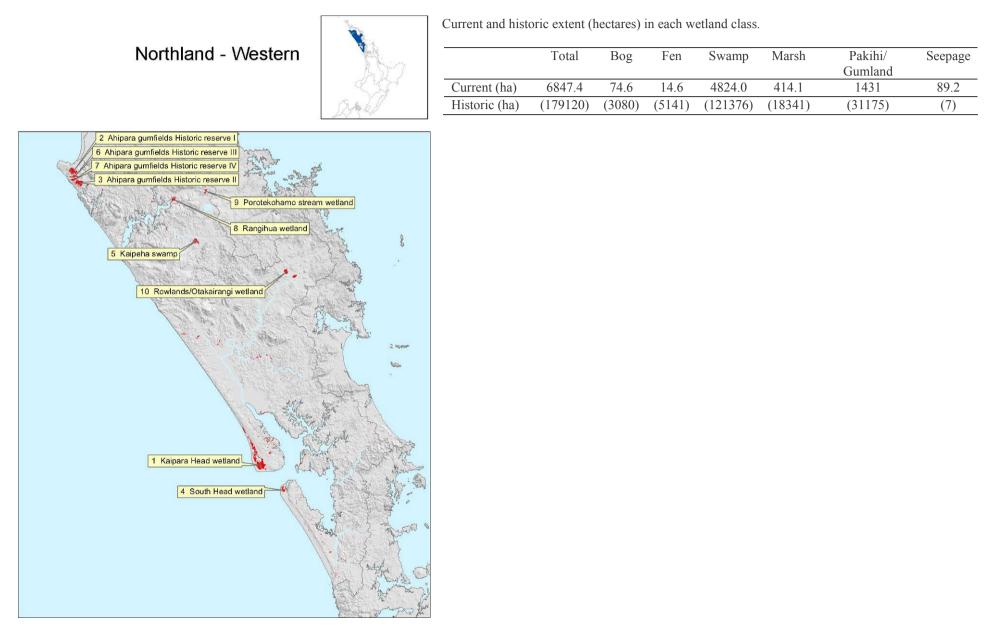
| Rank | Idunique | Names | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog  | Fen   | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|-------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|------|-------|-------|-------|--------------------|---------|
| 17   | 100106   | 0     | p05          | 2606654 | 6646092  | 50.1         | 0.70       | 0.71         | 0.28        | 0.30  | 66%  |       | 76%   | 18%   | 78%                |         |
|      |          |       | 1            |         |          |              |            |              |             |       | (3%) |       | (4%)  | (<1%) | (3%)               |         |
| 18   | 100102   | 0     | q05          | 2614604 | 6650139  | 13.4         | 0.71       | 0.72         | 0.92        | 0.27  | 66%  |       | 76%   | 21%   | 78%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (3%) |       | (4%)  | (<1%) | (3%)               |         |
| 19   | 100274   | 0     | p05          | 2589870 | 6641798  | 32.1         | 0.71       | 0.73         | 0.38        | 0.30  | 66%  |       | 78%   | 21%   | 79%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (3%) |       | (4%)  | (<1%) | (3%)               |         |
| 20   | 100062   | 0     | q05          | 2616422 | 6655709  | 14.9         | 0.71       | 0.73         | 0.74        | 0.30  | 66%  |       | 78%   | 21%   | 79%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (3%) |       | (4%)  | (<1%) | (3%)               |         |
| 45   | 100252   | 0     | p05          | 2605286 | 6659955  | 8.6          | 0.75       | 0.84         | 0.29        | 0.15  | 77%  | 40%   | 87%   | 52%   | 89%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (3%) | (<1%) | (5%)  | (1%)  | (3%)               |         |
| 46   | 100253   | 0     | p05          | 2606141 | 6660143  | 9.4          | 0.75       | 0.84         | 0.30        | 0.20  | 77%  | 66%   | 87%   | 52%   | 89%                | 0.4%    |
|      |          |       | -            |         |          |              |            |              |             |       | (3%) | (1%)  | (5%)  | (1%)  | (3%)               | (-)     |


| Rank | Idunique | Names                                           | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-------------------------------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 100594   | Lake Ohia Wetlands (Karikari peninsula)         | 0.35                            | 0.92                         | 0.97           | 0.99                        | 0.81      | 0.99           | 1        | 0.28     |
| 2    | 100603   | Waimango stream Wetland<br>(Karikari peninsula) | 0.34                            | 0.78                         | 0.98           | 1                           | 0.85      | 0.99           | 1        | 0.29     |
| 3    | 100601   | Kaitaia Wetland                                 | 0.31                            | 0.50                         | 1              | 0.96                        | 0.85      | 0.99           | 1        | 0.26     |
| 4    | 100903   | Ngawha springs Wetlands                         | 0.63                            | 0.83                         | 0.81           | 0.98                        | 1         | 0.99           | 1        | 0.62     |
| 5    | 102034   | Mangawhai Heads Wetland                         | 0.37                            | 0.66                         | 0.93           | 0.99                        | 1         | 0.99           | 1        | 0.37     |
| 6    | 100041   | Bay of Island airport Wetland                   | 0.78                            | 0.47                         | 0.74           | 0.94                        | 1         | 0.99           | 1        | 0.47     |
| 7    | 100116   | Horahora River Wetland                          | 0.98                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.97     |
| 8    | 100198   | Whangaruru Harbour Wetland                      | 0.92                            | 0.96                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.90     |
| 9    | 102206   | Tokerau beach Wetland                           | 0.32                            | 0.73                         | 0.99           | 0.99                        | 1         | 0.97           | 1        | 0.31     |
| 10   | 100012   | Whangaroa Harbour – Pupuke                      | 0.75                            | 0.71                         | 0.83           | 0.70                        | 0.85      | 0.99           | 1        | 0.59     |
| 11   | 100212   | 0                                               | 0.97                            | 0.93                         | 0.91           | 0.99                        | 1         | 0.99           | 1        | 0.90     |
| 12   | 100155   | 0                                               | 0.31                            | 0.48                         | 0.86           | 0.99                        | 1         | 0.99           | 1        | 0.31     |
| 13   | 102035   | 0                                               | 0.31                            | 0.51                         | 0.96           | 0.97                        | 1         | 0.99           | 1        | 0.30     |
| 14   | 102209   | 0                                               | 0.31                            | 0.60                         | 0.97           | 0.99                        | 1         | 0.99           | 1        | 0.31     |
| 15   | 100161   | 0                                               | 0.31                            | 0.67                         | 0.89           | 0.97                        | 0.85      | 0.99           | 1        | 0.26     |
| 16   | 102013   | 0                                               | 0.92                            | 0.87                         | 1              | 0.95                        | 1         | 0.99           | 1        | 0.86     |
| 17   | 100106   | 0                                               | 0.34                            | 0.47                         | 0.79           | 0.96                        | 0.85      | 0.98           | 1        | 0.28     |
| 18   | 100102   | 0                                               | 0.98                            | 0.93                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.92     |
| 19   | 100274   | 0                                               | 0.39                            | 0.72                         | 0.96           | 0.98                        | 1         | 0.99           | 1        | 0.38     |
| 20   | 100062   | 0                                               | 0.96                            | 0.88                         | 0.90           | 0.98                        | 0.85      | 0.99           | 1        | 0.74     |
| 45   | 100252   | 0                                               | 0.30                            | 0.42                         | 1              | 0.99                        | 1         | 0.96           | 1        | 0.29     |
| 46   | 100253   | 0                                               | 0.31                            | 0.34                         | 1              | 0.99                        | 1         | 0.98           | 1        | 0.30     |

#### 16. Northland – Northern

### Northland - Northern




|               | Total   | Bog    | Fen   | Swamp  | Marsh | Pakihi/Gumland |
|---------------|---------|--------|-------|--------|-------|----------------|
| Current (ha)  | 5161.6  | 586.7  | 7.1   | 3223.7 | 735.9 | 608            |
| Historic (ha) | (27973) | (7705) | (479) | (6809) | (451) | (12529)        |



| Rank | Idunique | Names                                      | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLef<br>t | Bog  | Fen | Swamp | Marsh | Pakihi/<br>gumland |
|------|----------|--------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-----------|------|-----|-------|-------|--------------------|
| 1    | 100617   | Waihuahua swamp (Kaimaumau complex)        | o04          | 2532412 | 6699571  | 1588.8       | 0.69       | 0.31         | 0.78        | 0.50      | 21%  |     | 18%   | 19%   | 76%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (2%) |     | (8%)  | (-)   | (7%)               |
| 2    | 100579   | Motutangi swamp (Kaimaumau complex)        | n03          | 2528203 | 6702203  | 1343.3       | 0.76       | 0.57         | 0.39        | 0.80      | 21%  |     | 54%   | 76%   | 76%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (2%) |     | (23%) | (-)   | (7%)               |
| 3    | 100616   | Lake Waikaramu Wetland (Kaimaumau complex) | o04          | 2532452 | 6698405  | 267.1        | 0.78       | 0.62         | 0.72        | 0.36      | 61%  |     | 54%   | 76%   | 76%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (23%) | (-)   | (7%)               |
| 4    | 102108   | Cape Reinga – Te Werahi stream             | m02          | 2484061 | 6747059  | 458.2        | 0.81       | 0.71         | 0.60        | 0.72      | 61%  |     | 69%   | 76%   | 78%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (29%) | (-)   | (7%)               |
| 5    | 100690   | Paranoa Swamp                              | n02          | 2495303 | 6749257  | 229.0        | 0.83       | 0.75         | 0.95        | 0.73      | 61%  |     | 77%   | 76%   | 78%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (32%) | (-)   | (7%)               |
| 6    | 100661   | Ponaki stream Wetland                      | n02          | 2509619 | 6746089  | 38.3         | 0.83       | 0.76         | 0.97        | 0.74      | 61%  |     | 79%   | 76%   | 78%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (33%) | (-)   | (7%)               |
| 7    | 100566   | Wairahi Swamp                              | n03          | 2510949 | 6727253  | 67.3         | 0.84       | 0.77         | 0.40        | 0.70      | 61%  |     | 81%   | 76%   | 79%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (34%) | (-)   | (7%)               |
| 8    | 100676   | Te Hapua Wetland                           | n02          | 2502820 | 6743528  | 28.5         | 0.84       | 0.78         | 0.92        | 0.74      | 61%  |     | 82%   | 76%   | 79%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (5%) |     | (34%) | (-)   | (7%)               |
| 9    | 100503   | Lake Waiparera                             | n04          | 2526258 | 6694800  | 43.7         | 0.84       | 0.79         | 0.44        | 0.46      | 67%  |     | 82%   | 77%   | 79%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (34%) | (-)   | (7%)               |
| 10   | 100672   | Kapowairua Wetland                         | n02          | 2498897 | 6751529  | 13.5         | 0.84       | 0.79         | 0.78        | 0.30      | 67%  |     | 82%   | 77%   | 80%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (34%) | (-)   | (7%)               |
| 11   | 100643   | 0                                          | n02          | 2510565 | 6752159  | 13.6         | 0.84       | 0.79         | 0.88        | 0.36      | 69%  |     | 82%   | 77%   | 80%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (34%) | (-)   | (7%)               |
| 12   | 100666   | 0                                          | n02          | 2508371 | 6752146  | 23.8         | 0.84       | 0.80         | 0.74        | 0.71      | 69%  |     | 82%   | 77%   | 80%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (34%) | (-)   | (7%)               |
| 13   | 100626   | 0                                          | n03          | 2508658 | 6722365  | 42.0         | 0.84       | 0.80         | 0.31        | 0.43      | 74%  |     | 83%   | 78%   | 80%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (35%) | (-)   | (7%)               |
| 14   | 100434   | 0                                          | n03          | 2524808 | 6712007  | 31.8         | 0.84       | 0.81         | 0.30        | 0.35      | 74%  |     | 83%   | 78%   | 83%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (35%) | (-)   | (7%)               |
| 15   | 100656   | 0                                          | n02          | 2505550 | 6748563  | 10.1         | 0.84       | 0.81         | 0.97        | 0.35      | 75%  |     | 83%   | 78%   | 83%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (6%) |     | (35%) | (-)   | (7%)               |
| 16   | 102020   | 0                                          | o04          | 2530747 | 6694691  | 20.1         | 0.85       | 0.82         | 0.50        | 0.36      | 78%  |     | 83%   | 78%   | 83%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (7%) |     | (35%) | (-)   | (7%)               |
| 17   | 102116   | 0                                          | n02          | 2508143 | 6748874  | 8.0          | 0.85       | 0.82         | 0.97        | 0.30      | 78%  |     | 83%   | 78%   | 84%                |
|      |          |                                            |              |         |          |              |            |              |             |           | (7%) |     | (35%) | (-)   | (7%)               |

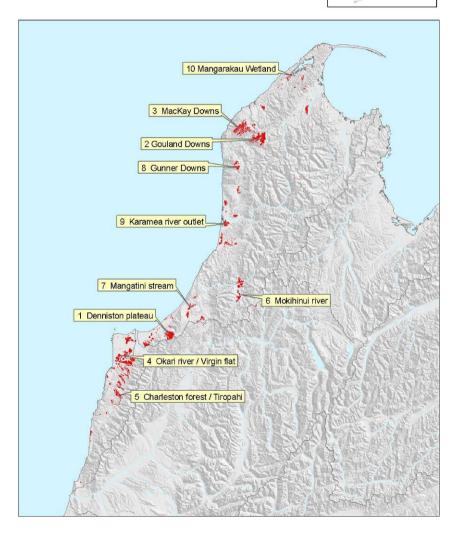
| Rank | Idunique | Names | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLef<br>t | Bog  | Fen  | Swamp | Marsh | Pakihi/<br>gumland |
|------|----------|-------|--------------|---------|----------|--------------|------------|--------------|-------------|-----------|------|------|-------|-------|--------------------|
| 18   | 100678   | 0     | n02          | 2501538 | 6744936  | 17.2         | 0.85       | 0.82         | 0.97        | 0.72      | 78%  |      | 83%   | 78%   | 84%                |
|      |          |       |              |         |          |              |            |              |             |           | (7%) |      | (35%) | (-)   | (7%)               |
| 19   | 100560   | 0     | 004          | 2530055 | 6690989  | 13.0         | 0.85       | 0.82         | 0.60        | 0.31      | 78%  |      | 83%   | 78%   | 85%                |
|      |          |       |              |         |          |              |            |              |             |           | (7%) |      | (35%) | (-)   | (7%)               |
| 20   | 100677   | 0     | n02          | 2502003 | 6743495  | 16.1         | 0.85       | 0.83         | 0.97        | 0.72      | 78%  |      | 84%   | 78%   | 85%                |
|      |          |       |              |         |          |              |            |              |             |           | (7%) |      | (35%) | (-)   | (7%)               |
| 22   | 100471   | 0     | n03          | 2509567 | 6724144  | 9.6          | 0.85       | 0.83         | 0.93        | 0.39      | 80%  | 100% | 84%   | 78%   | 85%                |
|      |          |       |              |         |          |              |            |              |             |           | (7%) | (1%) | (35%) | (-)   | (7%)               |

| Rank | Idunique | Names                                      | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|--------------------------------------------|---------------------------------|------------------------------|----------------|--------------------------|-----------|----------------|----------|-------------|
| 1    | 100617   | Waihuahua swamp (Kaimaumau complex)        | 0.98                            | 0.94                         | 0.99           | 1                        | 0.85      | 0.99           | 1        | 0.78        |
| 2    | 100579   | Motutangi swamp (Kaimaumau complex)        | 0.47                            | 0.87                         | 1              | 0.98                     | 0.85      | 0.99           | 1        | 0.39        |
| 3    | 100616   | Lake Waikaramu Wetland (Kaimaumau complex) | 0.97                            | 0.86                         | 1              | 0.99                     | 0.85      | 0.99           | 1        | 0.72        |
| 4    | 102108   | Cape Reinga – Te Werahi stream             | 0.61                            | 0.61                         | 0.99           | 0.99                     | 1         | 0.99           | 1        | 0.60        |
| 5    | 100690   | Paranoa Swamp                              | 0.99                            | 0.96                         | 1              | 1                        | 1         | 0.99           | 1        | 0.95        |
| 6    | 100661   | Ponaki stream Wetland                      | 0.99                            | 1                            | 1              | 1                        | 1         | 0.99           | 1        | 0.97        |
| 7    | 100566   | Wairahi Swamp                              | 0.41                            | 0.74                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.40        |
| 8    | 100676   | Te Hapua Wetland                           | 0.94                            | 1                            | 1              | 0.98                     | 1         | 0.99           | 1        | 0.92        |
| 9    | 100503   | Lake Waiparera                             | 0.45                            | 0.55                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.44        |
| 10   | 100672   | Kapowairua Wetland                         | 0.85                            | 0.79                         | 0.92           | 0.99                     | 1         | 0.99           | 1        | 0.78        |
| 11   | 100643   |                                            | 0.97                            | 0.89                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.88        |
| 12   | 100666   |                                            | 0.75                            | 0.79                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.74        |
| 13   | 100626   | 0                                          | 0.32                            | 0.76                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.31        |
| 14   | 100434   | 0                                          | 0.31                            | 0.55                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.30        |
| 15   | 100656   | 0                                          | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.97        |
| 16   | 102020   | 0                                          | 0.50                            | 0.76                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.50        |
| 17   | 102116   | 0                                          | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.97        |
| 18   | 100678   | 0                                          | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.97        |
| 19   | 100560   | 0                                          | 0.61                            | 0.75                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.60        |
| 20   | 100677   | 0                                          | 0.98                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.97        |
| 21   | 102148   | 0                                          | 0.98                            | 1                            | 1              | 1                        | 1         | 0.99           | 1        | 0.96        |
| 22   | 100471   | 0                                          | 0.97                            | 0.94                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.93        |



| Rank | Idunique | Names                                     | Map sheet   | Easting                  | Northing      | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index  | HLef<br>t | Bog | Fen | Swamp | Marsh        | Pakihi/<br>gumland | Seepage |
|------|----------|-------------------------------------------|-------------|--------------------------|---------------|--------------|------------|--------------|--------------|-----------|-----|-----|-------|--------------|--------------------|---------|
| 1    | 100827   | Kaipara Head Wetland                      | p09         | 2604939                  | 6538824       | 1928.5       | 0.57       | 0.28         | 0.37         | 0.27      |     |     | 38%   | 11%          |                    |         |
|      |          |                                           |             |                          |               |              |            |              |              |           |     |     | (2%)  | (<1%)        |                    |         |
| 2    | 100837   | Ahipara gumfields Historic reserve I      | n05         | 2523008                  | 6666139       | 531.9        | 0.64       | 0.35         | 0.87         | 0.28      |     |     | 43%   | 11%          | 22%                |         |
|      |          |                                           |             |                          |               |              |            |              |              |           |     |     | (2%)  | (<1%)        | (1%)               |         |
| 3    | 100840   | Ahipara gumfields Historic reserve<br>II  | n05         | 2525821                  | 6660981       | 493.7        | 0.69       | 0.43         | 0.95         | 0.29      |     |     | 44%   | 11%          | 53%                |         |
|      | 000440   | a                                         |             | <b>A</b> (1 (0) <b>F</b> | ( = 0 = ( 0 ) |              | 0.50       | <u> </u>     | 0.0 <i>-</i> |           |     |     | (2%)  | (<1%)        | (2%)               |         |
| 4    | 200442   | South Head Wetland                        | q09         | 2616085                  | 6525604       | 200.0        | 0.72       | 0.45         | 0.95         | 0.28      |     |     | 48%   | 11%          | 53%                |         |
| -    | 100000   |                                           | 0.6         | 0                        | (() 51 ()     | 2(0.0        | 0.52       | 0.40         | 0.64         | 0.00      |     |     | (2%)  | (<1%)        | (2%)               |         |
| 5    | 100296   | Kaipeha Swamp                             | p06         | 2577399                  | 6635163       | 268.0        | 0.73       | 0.49         | 0.64         | 0.28      |     |     | 53%   | 11%          | 53%                |         |
|      | 100020   |                                           | <u>^</u>    |                          |               |              |            | 0.50         |              |           |     |     | (2%)  | (<1%)        | (2%)               |         |
| 6    | 100838   | Ahipara gumfields Historic reserve<br>III | n05         | 2523672                  | 6663807       | 214.2        | 0.75       | 0.52         | 0.96         | 0.29      |     |     | 54%   | 11%          | 65%                |         |
|      |          |                                           |             |                          |               |              |            |              |              |           |     |     | (2%)  | (<1%)        | (3%)               |         |
| 7    | 100839   | Ahipara gumfields Historic reserve<br>IV  | n05         | 2523522                  | 6662571       | 174.8        | 0.76       | 0.55         | 0.96         | 0.29      |     |     | 55%   | 11%          | 75%                |         |
| 0    | 100740   |                                           | 05          | 05((50)                  | ((52222       | 0.57.0       | 0.77       | 0.50         | 0.41         | 0.07      |     |     | (2%)  | (<1%)        | (3%)               |         |
| 8    | 100742   | Rangihua Wetland                          | 005         | 2566591                  | 6653333       | 257.8        | 0.77       | 0.59         | 0.41         | 0.27      |     |     | 60%   | 13%          |                    |         |
| 0    | 100022   | Dense (1) all and a stress of Westland    |             | 2501750                  | ((57)17       | 105 1        | 0.70       | 0.00         | 0.00         | 0.20      |     |     | (2%)  | (<1%)        | (3%) 83%           |         |
| 9    | 100923   | Porotekohamo stream Wetland               | p05         | 2581759                  | 6657217       | 105.1        | 0.78       | 0.60         | 0.89         | 0.29      |     |     | 60%   | 13%          |                    |         |
| 10   | 100216   | D 1 1 (0, 1 1 1 1                         | 0.6         | 2(17274                  | ((21014       | 220 7        | 0.70       | 0.64         | 0.04         | 0.00      |     |     | (2%)  | (<1%)        | (4%)               |         |
| 10   | 100316   | Rowlands/Otakairangi Wetland              | q06         | 2617274                  | 6621814       | 239.7        | 0.78       | 0.64         | 0.24         | 0.28      |     |     | 65%   | 13%          | 83%                |         |
| 1.1  | 100700   | 0                                         | 0.5         | 0500507                  | (((0240       | 00.7         | 0.70       | 0.65         | 0.00         | 0.00      |     |     | (3%)  | (<1%)        | (4%)               |         |
| 11   | 100709   | 0                                         | n05         | 2529587                  | 6660340       | 80.7         | 0.79       | 0.65         | 0.68         | 0.28      |     |     | 66%   | 13%          | 83%                |         |
| 10   | 200445   | 0                                         | 00          | 0(17004                  | (50(100       | 44.0         | 0.70       | 0.65         | 0.0(         | 0.00      |     |     | (3%)  | (<1%)<br>13% | (4%)               |         |
| 12   | 200445   | 0                                         | q09         | 2617204                  | 6526109       | 44.8         | 0.79       | 0.65         | 0.96         | 0.28      |     |     | 67%   | (<1%)        | 83%                |         |
| 13   | 100344   | 0                                         | ~0(         | 2621093                  | 6619719       | 155.5        | 0.79       | 0.68         | 0.24         | 0.27      |     |     | (3%)  | (<1%)        | (4%) 83%           |         |
| 13   | 100344   | 0                                         | q06         | 2021093                  | 0019/19       | 155.5        | 0.79       | 0.68         | 0.24         | 0.27      |     |     |       | (<1%)        |                    |         |
| 14   | 100432   | 0                                         | <i>n</i> 07 | 2604234                  | 6583736       | 131.8        | 0.80       | 0.69         | 0.24         | 0.28      |     |     | (3%)  | (<1%)        | (4%) 83%           |         |
| 14   | 100432   | 0                                         | p07         | 2004234                  | 0283/30       | 131.8        | 0.80       | 0.69         | 0.24         | 0.28      |     |     |       |              |                    |         |
| 1.5  | 100400   | 0                                         | .06         | 2557259                  | ((12740       | 77 (         | 0.00       | 0.71         | 0.24         | 0.20      |     |     | (3%)  | (<1%)        | (4%)               |         |
| 15   | 100408   | 0                                         | 006         | 2557358                  | 6612749       | 77.6         | 0.80       | 0.71         | 0.34         | 0.28      |     |     | 74%   | 15%          | 83%                |         |
| 1.(  | 100701   | 0                                         |             | 0570077                  | (500701       | (2.2         | 0.00       | 0.71         | 0.20         | 0.29      |     |     | (3%)  | (<1%)        | (4%) 83%           |         |
| 16   | 100791   | 0                                         | p07         | 2578377                  | 6592731       | 63.3         | 0.80       | 0.71         | 0.39         | 0.28      |     |     | 76%   | 15%          |                    |         |
| 17   | 100000   | 0                                         |             | 2500027                  | (551522       | 70.0         | 0.00       | 0.72         | 0.20         | 0.29      |     |     | (3%)  | (<1%)        | (4%)               |         |
| 17   | 100888   | 0                                         | p08         | 2598836                  | 6551532       | 79.9         | 0.80       | 0.73         | 0.30         | 0.28      |     |     | 77%   | 15%          | 83%                |         |
|      |          |                                           |             |                          |               |              |            |              |              |           |     |     | (3%)  | (<1%)        | (4%)               |         |

| Rank | Idunique | Names | Map sheet | Easting | Northing | Area | Cum. | Cum. | EI    | HLef | Bog  | Fen   | Swamp | Marsh | Pakihi/ | Seepage |
|------|----------|-------|-----------|---------|----------|------|------|------|-------|------|------|-------|-------|-------|---------|---------|
|      |          |       |           |         |          | (ha) | CE   | area | index | t    |      |       |       |       | gumland |         |
| 18   | 100775   | 0     | p09       | 2608141 | 6548001  | 39.4 | 0.80 | 0.73 | 0.77  | 0.26 | 23%  |       | 77%   | 15%   | 85%     |         |
|      |          |       |           |         |          |      |      |      |       |      | (1%) |       | (3%)  | (<1%) | (4%)    |         |
| 19   | 100825   | 0     | p09       | 2607011 | 6534896  | 21.4 | 0.80 | 0.73 | 0.97  | 0.28 | 23%  |       | 78%   | 15%   | 85%     |         |
|      |          |       |           |         |          |      |      |      |       |      | (1%) |       | (3%)  | (<1%) | (4%)    |         |
| 20   | 100804   | 0     | p07       | 2571941 | 6594040  | 56.2 | 0.81 | 0.74 | 0.31  | 0.28 | 23%  |       | 79%   | 15%   | 85%     |         |
|      |          |       |           |         |          |      |      |      |       |      | (1%) |       | (3%)  | (<1%) | (4%)    |         |
| 41   | 100776   | 0     | p09       | 2608811 | 6547475  | 19.7 | 0.82 | 0.84 | 0.33  | 0.26 | 73%  | 79%   | 88%   | 38%   | 88%     | 4%      |
|      |          |       |           |         |          |      |      |      |       |      | (2%) | (<1%) | (4%)  | (1%)  | (4%)    | (55%)   |


| Rank | Idunique | Names                                  | Non-naturalness in | Non-naturalness in | Imperviousness | Nitrate       | Pestiness | Woody | Drainage | EI    |
|------|----------|----------------------------------------|--------------------|--------------------|----------------|---------------|-----------|-------|----------|-------|
|      |          |                                        | subcatchment       | buffer             |                | leaching risk |           | weeds |          | index |
| 1    | 100827   | Kaipara Head Wetland                   | 0.38               | 0.82               | 1              | 0.98          | 1         | 0.99  | 1        | 0.37  |
| 2    | 100837   | Ahipara gumfields Historic reserve I   | 0.99               | 1                  | 0.88           | 1             | 1         | 0.99  | 1        | 0.87  |
| 3    | 100840   | Ahipara gumfields Historic reserve II  | 0.99               | 0.99               | 1              | 0.99          | 1         | 0.99  | 1        | 0.95  |
| 4    | 200442   | South Head Wetland                     | 0.97               | 1                  | 1              | 0.99          | 1         | 0.99  | 1        | 0.95  |
| 5    | 100296   | Kaipeha Swamp                          | 0.76               | 0.82               | 1              | 0.99          | 0.85      | 0.99  | 1        | 0.64  |
| 6    | 100838   | Ahipara gumfields Historic reserve III | 0.99               | 1                  | 1              | 0.99          | 1         | 0.99  | 1        | 0.96  |
| 7    | 100839   | Ahipara gumfields Historic reserve IV  | 0.99               | 1                  | 1              | 0.99          | 1         | 0.99  | 1        | 0.96  |
| 8    | 100742   | Rangihua Wetland                       | 0.54               | 0.90               | 0.95           | 0.98          | 0.78      | 0.99  | 1        | 0.41  |
| 9    | 100923   | Porotekohamo stream Wetland            | 0.98               | 0.90               | 1              | 0.99          | 1         | 0.99  | 1        | 0.89  |
| 10   | 100316   | Rowlands/Otakairangi Wetland           | 0.31               | 0.67               | 1              | 0.82          | 0.79      | 0.99  | 1        | 0.24  |
| 11   | 100709   | 0                                      | 0.73               | 0.69               | 0.83           | 0.97          | 1         | 0.99  | 1        | 0.68  |
| 12   | 200445   | 0                                      | 0.97               | 1                  | 1              | 0.99          | 1         | 0.99  | 1        | 0.96  |
| 13   | 100344   | 0                                      | 0.31               | 0.69               | 1              | 0.74          | 0.79      | 0.99  | 1        | 0.24  |
| 14   | 100432   | 0                                      | 0.31               | 0.69               | 1              | 0.96          | 0.79      | 0.99  | 1        | 0.24  |
| 15   | 100408   | 0                                      | 0.34               | 0.60               | 1              | 0.96          | 1         | 0.99  | 1        | 0.34  |
| 16   | 100791   | 0                                      | 0.47               | 0.99               | 1              | 0.99          | 0.85      | 0.99  | 1        | 0.39  |
| 17   | 100888   | 0                                      | 0.30               | 0.58               | 1              | 0.98          | 1         | 0.99  | 1        | 0.30  |
| 18   | 100775   | 0                                      | 0.78               | 1                  | 0.94           | 0.99          | 1         | 0.99  | 1        | 0.77  |
| 19   | 100825   | 0                                      | 0.99               | 1                  | 1              | 0.99          | 1         | 0.99  | 1        | 0.97  |
| 20   | 100804   | 0                                      | 0.31               | 0.78               | 0.94           | 0.89          | 1         | 0.99  | 1        | 0.31  |
| 41   | 100776   | 0                                      | 0.34               | 0.79               | 0.94           | 0.99          | 1         | 0.99  | 1        | 0.33  |

### 18. Northwest Nelson – Paparoa

# Northwest Nelson - Paparoa

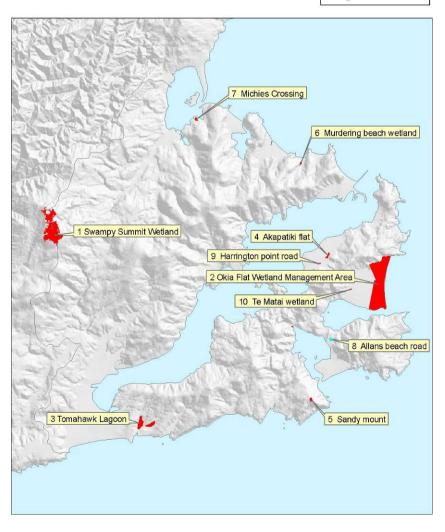


|               | Total   | Bog    | Fen   | Swamp   | Marsh   | Pakihi/<br>Gumland | Seepage |
|---------------|---------|--------|-------|---------|---------|--------------------|---------|
| Current (ha)  | 18073.9 | 73.2   | 425.9 | 1805.9  | 1219.1  | 14440              | 110     |
| Historic (ha) | (66461) | (1960) | (54)  | (11702) | (11336) | (41349)            | (61)    |



| Rank | Idunique | Names                              | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen    | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|--------|-------|-------|--------------------|---------|
| 1    | 1100501  | Denniston plateau                  | 129          | 2410683 | 5946396  | 1138.3       | 0.46       | 0.06         | 0.68        | 0.54  |       | 3%     |       |       | 8%                 |         |
|      |          | 1 I                                |              |         |          |              |            |              |             |       |       | (24%)  |       |       | (3%)               |         |
| 2    | 900252   | Gouland Downs                      | m26          | 2452975 | 6033050  | 1819.1       | 0.61       | 0.16         | 0.95        | 0.66  |       | 10%    | 1%    | 0.27% | 20%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (87%)  | (<1%) | (<1%) | (7%)               |         |
| 3    | 1100597  | MacKay Downs                       | k29          | 2401227 | 5939618  | 1714.5       | 0.69       | 0.26         | 0.96        | 0.66  |       | 20%    | 1%    | 0.27% | 32%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (<1%) | (<1%) | (11%)              |         |
| 4    | 1100464  | Okari River / Virgin flat          | k29          | 2385508 | 5931646  | 1081.5       | 0.72       | 0.32         | 0.68        | 0.63  |       | 20%    | 10%   | 0.5%  | 38%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (<1%) | (13%)              |         |
| 5    | 1100430  | Charleston forest / Tiropahi       | k30          | 2380620 | 5914680  | 678.3        | 0.75       | 0.35         | 0.96        | 0.64  |       | 20%    | 10%   | 5%    | 42%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (1%)  | (15%)              |         |
| 6    | 1100558  | Mokihinui River                    | 128          | 2438117 | 5977566  | 1138.2       | 0.76       | 0.42         | 0.53        | 0.62  |       | 20%    | 10%   | 17%   | 49%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (2%)  | (17%)              |         |
| 7    | 1100517  | Mangatini stream                   | 129          | 2424596 | 5946065  | 516.3        | 0.78       | 0.44         | 0.93        | 0.65  |       | 20%    | 11%   | 18%   | 52%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (2%)  | (18%)              |         |
| 8    | 1100587  | Gunner Downs                       | m27          | 2462233 | 5980542  | 494.3        | 0.79       | 0.47         | 0.92        | 0.66  |       | 23%    | 12%   | 18%   | 56%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (2%)  | (19%)              |         |
| 9    | 1100573  | Karamea River outlet               | 127          | 2438453 | 5994089  | 391.3        | 0.80       | 0.49         | 0.91        | 0.64  |       | 23%    | 12%   | 20%   | 58%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (100%) | (2%)  | (2%)  | (20%)              |         |
| 10   | 900501   | Mangarakau Wetland                 | m25          | 2466983 | 6062416  | 270.4        | 0.81       | 0.51         | 0.93        | 0.47  | 1%    | 23%    | 26%   | 20%   | 58%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (2%)  | (20%)              |         |
| 11   | 900016   | Aorere Peneplain Pakihi            | m25          | 2475367 | 6046802  | 336.0        | 0.82       | 0.53         | 0.95        | 0.63  | 1%    | 23%    | 26%   | 23%   | 60%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (3%)  | (21%)              |         |
| 12   | 1100491  | 0                                  | k29          | 2399204 | 5935003  | 358.2        | 0.82       | 0.55         | 0.70        | 0.52  | 1%    | 23%    | 27%   | 26%   | 62%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (3%)  | (22%)              |         |
| 13   | 1100518  | 0                                  | 129          | 2426862 | 5942142  | 265.3        | 0.83       | 0.56         | 0.96        | 0.53  | 1%    | 23%    | 27%   | 27%   | 64%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (3%)  | (22%)              |         |
| 14   | 1100432  | 0                                  | k30          | 2379422 | 5918325  | 381.4        | 0.83       | 0.58         | 0.59        | 0.59  | 1%    | 23%    | 27%   | 35%   | 66%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (4%)  | (23%)              |         |
| 15   | 1100595  | Added polygon from satellite image | 126          | 2449787 | 6036060  | 244.6        | 0.84       | 0.59         | 0.96        | 0.66  | 1%    | 24%    | 28%   | 35%   | 68%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (4%)  | (24%)              |         |
| 16   | 1100457  | 0                                  | k29          | 2388299 | 5928236  | 298.7        | 0.85       | 0.61         | 0.75        | 0.65  | 1%    | 24%    | 28%   | 35%   | 70%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (4%)  | (24%)              |         |
| 17   | 1100441  | 0                                  | k30          | 2386677 | 5919031  | 222.8        | 0.85       | 0.62         | 0.96        | 0.66  | 1%    | 24%    | 28%   | 36%   | 71%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (4%)  | (25%)              |         |

| Rank | Idunique | Names          | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen    | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|----------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|--------|-------|-------|--------------------|---------|
| 18   | 900488   | MacKay Downs 2 | 126          | 2446107 | 6038622  | 227.6        | 0.86       | 0.64         | 0.95        | 0.66  | 1%    | 24%    | 28%   | 36%   | 73%                |         |
|      |          |                |              |         |          |              |            |              |             |       | (<1%) | (100%) | (4%)  | (4%)  | (25%)              |         |
| 19   | 1100577  | 0              | 127          | 2436469 | 6002538  | 144.6        | 0.86       | 0.64         | 0.90        | 0.42  | 1%    | 24%    | 29%   | 46%   | 73%                |         |
|      |          |                |              |         |          |              |            |              |             |       | (<1%) | (100%) | (5%)  | (5%)  | (25%)              |         |
| 20   | 1100563  | Kongahu Swamp  | 127          | 2436685 | 5987801  | 363.7        | 0.86       | 0.66         | 0.35        | 0.45  | 67%   | 24%    | 45%   | 46%   | 73%                |         |
|      |          |                |              |         |          |              |            |              |             |       | (3%)  | (100%) | (7%)  | (5%)  | (25%)              |         |
| 55   | 900842   | 0              | m25          | 2469589 | 6057389  | 39.9         | 0.92       | 0.91         | 0.96        | 0.65  | 93%   | 63%    | 70%   | 67%   | 97%                | 4%      |
|      |          |                |              |         |          |              |            |              |             |       | (3%)  | (100%) | (11%) | (8%)  | (34%)              | (-)     |


| Rank | Idunique | Names                              | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|------------------------------------|---------------------------------|------------------------------|----------------|--------------------------|-----------|----------------|----------|----------|
| 1    | 1100501  | Denniston plateau                  | 0.69                            | 0.76                         | 0.92           | 0.90                     | 1         | 0.99           | 1        | 0.68     |
| 2    | 900252   | Gouland Downs                      | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.95     |
| 3    | 1100597  | MacKay Downs                       | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96     |
| 4    | 1100464  | Okari River / Virgin flat          | 0.77                            | 0.93                         | 0.93           | 0.99                     | 1         | 0.99           | 1        | 0.68     |
| 5    | 1100430  | Charleston forest / Tiropahi       | 0.99                            | 0.99                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96     |
| 6    | 1100558  | Mokihinui River                    | 0.99                            | 0.53                         | 1              | 0.82                     | 1         | 0.99           | 1        | 0.53     |
| 7    | 1100517  | Mangatini stream                   | 0.97                            | 1                            | 0.95           | 0.96                     | 1         | 0.99           | 1        | 0.93     |
| 8    | 1100587  | Gunner Downs                       | 0.99                            | 0.96                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.92     |
| 9    | 1100573  | Karamea River outlet               | 0.98                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.91     |
| 10   | 900501   | Mangarakau Wetland                 | 0.98                            | 0.99                         | 0.94           | 0.98                     | 1         | 0.99           | 1        | 0.93     |
| 11   | 900016   | Aorere Peneplain Pakihi            | 0.99                            | 1                            | 1              | 0.98                     | 1         | 0.99           | 1        | 0.95     |
| 12   | 1100491  | 0                                  | 0.99                            | 0.71                         | 1              | 0.92                     | 1         | 0.99           | 1        | 0.70     |
| 13   | 1100518  | 0                                  | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96     |
| 14   | 1100432  | 0                                  | 0.99                            | 0.60                         | 1              | 0.96                     | 1         | 0.99           | 1        | 0.59     |
| 15   | 1100595  | Added polygon from satellite image | 0.99                            | 1                            | 1              | 0.97                     | 1         | 0.99           | 1        | 0.96     |
| 16   | 1100457  | 0                                  | 0.99                            | 0.76                         | 0.99           | 0.97                     | 1         | 0.99           | 1        | 0.75     |
| 17   | 1100441  | 0                                  | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96     |
| 18   | 900488   | MacKay Downs 2                     | 0.99                            | 1                            | 1              | 0.97                     | 1         | 0.99           | 1        | 0.95     |
| 19   | 1100577  | 0                                  | 0.91                            | 1                            | 0.95           | 0.99                     | 1         | 0.99           | 1        | 0.90     |
| 20   | 1100563  | Kongahu Swamp                      | 0.83                            | 1                            | 0.97           | 0.99                     | 1         | 0.99           | 1        | 0.35     |
| 55   | 900842   | 0                                  | 0.99                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.96     |

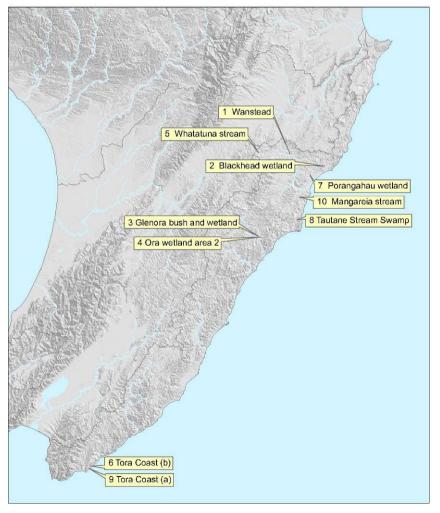
### 19. Otago Peninsula

# Otago peninsula



|               | Total | Fen | Swamp | Marsh | Seepage |
|---------------|-------|-----|-------|-------|---------|
| Current (ha)  | 322.1 | 2.7 | 283.5 | 32.1  | 3.7     |
| Historic (ha) | (930) | (0) | (925) | (0)   | (5)     |



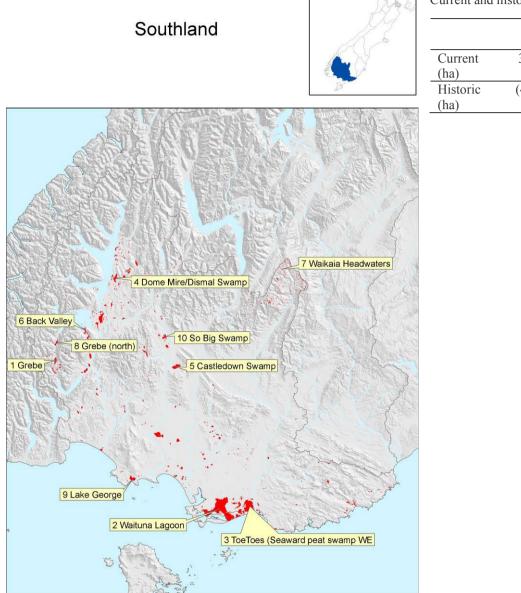

| Rank | Idunique | Names                        | Map   | Easting | Northing | Area  | Cum. | Cum. | EI    | HLeft | Fen  | Swamp | Marsh | Seepage |
|------|----------|------------------------------|-------|---------|----------|-------|------|------|-------|-------|------|-------|-------|---------|
|      |          |                              | sheet |         |          | (ha)  | CE   | area | index |       |      |       |       |         |
| 1    | 1300063  | Swampy Summit Wetland        | i44   | 2313992 | 5487123  | 121.8 | 0.70 | 0.31 | 0.78  | 0.62  |      | 34%   |       |         |
|      |          |                              |       |         |          |       |      |      |       |       |      | (13%) |       |         |
| 2    | 1300049  | Okia Flat Wetland Management | j44   | 2333171 | 5483859  | 236.1 | 0.80 | 0.90 | 0.29  | 0.63  |      | 98%   | 21%   |         |
|      |          | Area                         |       |         |          |       |      |      |       |       |      |       |       |         |
|      |          |                              |       |         |          |       |      |      |       |       |      | (38%) | (-)   |         |
| 3    | 1300069  | Tomahawk Lagoon              | i44   | 2319402 | 5475697  | 26.0  | 0.81 | 0.96 | 0.25  | 1     |      | 98%   | 100%  |         |
|      |          |                              |       |         |          |       |      |      |       |       |      | (38%) | (-)   |         |
| 4    | 1301975  | Akapatiki flat               | j44   | 2330170 | 5485513  | 3.8   | 0.81 | 0.97 | 0.30  | 0.62  |      | 99%   | 100%  |         |
|      |          |                              |       |         |          |       |      |      |       |       |      | (38%) | (-)   |         |
| 5    | 1301997  | Sandy mount                  | i44   | 2329197 | 5477094  | 3.1   | 0.81 | 0.98 | 0.76  | 0.88  |      | 99%   | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       |      | (38%) | (-)   | (61%)   |
| 6    | 1303000  | Murdering beach Wetland      | i44   | 2328583 | 5490946  | 1.8   | 0.81 | 0.98 | 0.30  | 0.64  |      | 99%   | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       |      | (39%) | (-)   | (61%)   |
| 7    | 1301940  | Michies Crossing             | i44   | 2322455 | 5493529  | 2.7   | 0.82 | 0.99 | 0.30  | 1     | 100% | 99%   | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       | (-)  | (39%) | (-)   | (61%)   |
| 8    | 1301996  | Allans beach road            | j44   | 2330341 | 5480625  | 1.1   | 0.82 | 0.99 | 0.30  | 0.62  | 100% | 100%  | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       | (-)  | (39%) | (-)   | (61%)   |
| 9    | 1301978  | Harrington point road        | i44   | 2329666 | 5485052  | 1.0   | 0.82 | 1    | 0.30  | 0.62  | 100% | 100%  | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       | (-)  | (39%) | (-)   | (61%)   |
| 10   | 1301981  | Te Matai Wetland             | j44   | 2331515 | 5483549  | 0.7   | 0.82 | 1    | 0.30  | 0.65  | 100% | 100%  | 100%  | 82%     |
|      |          |                              |       |         |          |       |      |      |       |       | (-)  | (39%) | (-)   | (61%)   |
| 11   | 1301993  | Herbaceous Freshwater        | i44   | 2328094 | 5481361  | 0.7   | 0.82 | 1    | 0.36  | 0.88  | 100% | 100%  | 100%  | 100%    |
|      |          | Vegetation                   |       |         |          |       |      |      |       |       | (-)  | (39%) | (-)   | (74%)   |

| Rank | Idunique | Names                             | Non-naturalness in subcatchment | Non-naturalness in buffer | Imperviousness | Nitrate<br>leaching | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-----------------------------------|---------------------------------|---------------------------|----------------|---------------------|-----------|----------------|----------|----------|
|      |          |                                   |                                 |                           |                | risk                |           |                |          |          |
| 1    | 1300063  | Swampy Summit Wetland             | 0.98                            | 0.92                      | 0.79           | 0.97                | 1         | 0.99           | 1        | 0.78     |
| 2    | 1300049  | Okia Flat Wetland Management Area | 0.31                            | 0.65                      | 0.99           | 0.98                | 1         | 0.95           | 1        | 0.29     |
| 3    | 1300069  | Tomahawk Lagoon                   | 0.31                            | 0.61                      | 0.82           | 0.97                | 0.82      | 0.99           | 1        | 0.25     |
| 4    | 1301975  | Akapatiki flat                    | 0.30                            | 0.33                      | 0.60           | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 5    | 1301997  | Sandy mount                       | 0.99                            | 0.77                      | 1              | 0.97                | 1         | 0.99           | 1        | 0.76     |
| 6    | 1303000  | Murdering beach Wetland           | 0.30                            | 0.30                      | 1              | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 7    | 1301940  | Michies Crossing                  | 0.69                            | 0.30                      | 1              | 0.99                | 1         | 0.99           | 1        | 0.30     |
| 8    | 1301996  | Allans beach road                 | 0.35                            | 0.30                      | 0.49           | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 9    | 1301978  | Harrington point road             | 0.31                            | 0.30                      | 0.70           | 0.98                | 1         | 0.99           | 1        | 0.30     |
| 10   | 1301981  | Te Matai Wetland                  | 0.87                            | 0.30                      | 0.67           | 0.97                | 1         | 0.99           | 1        | 0.30     |
| 11   | 1301993  | Herbaceous Freshwater Vegetation  | 0.40                            | 0.43                      | 0.37           | 0.98                | 1         | 0.99           | 1        | 0.36     |

# Palliser - Kidnappers

| and a |                    |     |     |  |
|-------|--------------------|-----|-----|--|
|       | A.                 | 14  |     |  |
|       | Contraction of the | al. | i'r |  |
|       |                    | 2f  | 56  |  |
| 15    | A.                 | 1   | 1   |  |
| 24    | 7 mg 61            |     |     |  |

|               | Total   | Fen   | Swamp   | Marsh   | Seepage |
|---------------|---------|-------|---------|---------|---------|
| Current (ha)  | 321.2   | 0     | 182.6   | 126.6   | 12.0    |
| Historic (ha) | (74009) | (306) | (59544) | (14156) | (4)     |



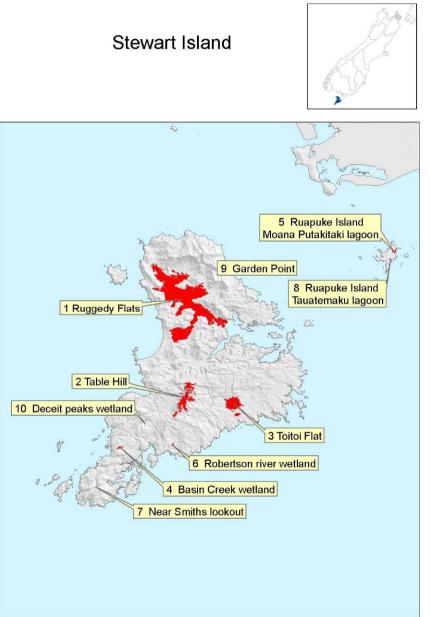

| Rank | Idunique | Names                    | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.CE | Cum.area | EI index | HLeft | Swamp        | Marsh        | Seepage    |
|------|----------|--------------------------|--------------|---------|----------|--------------|--------|----------|----------|-------|--------------|--------------|------------|
| 1    | 701066   | Wanstead                 | v23          | 2811875 | 6111018  | 27.4         | 0.38   | 0.08     | 0.25     | 0.10  | 15%          |              |            |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        |              |            |
| 2    | 702005   | Blackhead Wetland        | v23          | 2828029 | 6105959  | 27.1         | 0.46   | 0.17     | 0.29     | 0.12  | 24%          | 8%           |            |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        |            |
| 3    | 503030   | Glenora bush and Wetland | u24          | 2796537 | 6070790  | 18.5         | 0.50   | 0.22     | 0.25     | 0.10  | 33%          | 9%           |            |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        |            |
| 4    | 503031   | Ora Wetland area 2       | u24          | 2797386 | 6070317  | 10.9         | 0.52   | 0.26     | 0.31     | 0.10  | 39%          | 9%           |            |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        |            |
| 5    | 509666   | Whatatuna stream         | u23          | 2796722 | 6111451  | 9.3          | 0.56   | 0.29     | 0.97     | 0.27  | 39%          | 16%          | 11%        |
|      | 000010   | <b>T C (</b> 1)          | •            | 051(010 | 5050400  | 10.5         | 0.55   | 0.00     | 0.00     | 0.1.4 | (<1%)        | (<1%)        | (-)        |
| 6    | 800312   | Tora Coast (b)           | s28          | 2716013 | 5959480  | 12.5         | 0.57   | 0.32     | 0.30     | 0.14  | 41%          | 23%          | 11%        |
| 7    | 701017   | D 1 W (1 1               | 22           | 2021727 | (100741  | 0.2          | 0.50   | 0.25     | 0.20     | 0.10  | (<1%)        | (<1%)        | (-)<br>11% |
| 7    | 701017   | Porangahau Wetland       | v23          | 2821727 | 6100541  | 8.3          | 0.58   | 0.35     | 0.30     | 0.10  | 45%          | 23%          |            |
| 8    | 509097   | Tautane Stream Swamp     | v24          | 2815406 | 6078659  | 7.6          | 0.50   | 0.37     | 0.30     | 0.10  | (<1%)<br>49% | (<1%)<br>23% | (-)<br>11% |
| 8    | 509097   | rautane Stream Swamp     | V24          | 2813400 | 00/8039  | /.0          | 0.59   | 0.57     | 0.30     | 0.10  | 49%<br>(<1%) | 23%<br>(<1%) |            |
| 9    | 800311   | Tora Coast (a)           | s28          | 2714529 | 5958302  | 12.5         | 0.61   | 0.41     | 0.30     | 0.15  | 49%          | 32%          | (-)<br>11% |
| 7    | 800311   | Tota Coast (a)           | 520          | 2/14323 | 3738302  | 12.3         | 0.01   | 0.41     | 0.50     | 0.15  | (<1%)        | (<1%)        | (-)        |
| 10   | 701003   | Mangareia stream         | v24          | 2816250 | 6089785  | 7.6          | 0.61   | 0.43     | 0.30     | 0.10  | 54%          | 32%          | 11%        |
| 10   | 701005   | Wangareta stream         | V24          | 2010230 | 0089785  | 7.0          | 0.01   | 0.45     | 0.50     | 0.10  | (<1%)        | (<1%)        | (-)        |
| 11   | 701024   | 0                        | v23          | 2828010 | 6102127  | 9.3          | 0.62   | 0.46     | 0.30     | 0.15  | 54%          | 40%          | 11%        |
| 11   | 701024   | 0                        | ¥25          | 2020010 | 0102127  | 1.5          | 0.02   | 0.40     | 0.50     | 0.15  | (<1%)        | (<1%)        | (-)        |
| 12   | 701059   | 0                        | v23          | 2813237 | 6109077  | 5.8          | 0.63   | 0.48     | 0.30     | 0.10  | 57%          | 40%          | 11%        |
|      | ,,       | -                        |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 13   | 701179   | 0                        | v21          | 2849802 | 6165114  | 5.7          | 0.63   | 0.50     | 0.30     | 0.10  | 60%          | 40%          | 11%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 14   | 701002   | 0                        | v24          | 2816890 | 6088598  | 5.2          | 0.64   | 0.51     | 0.30     | 0.10  | 63%          | 40%          | 11%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 15   | 701156   | 0                        | v22          | 2848138 | 6156579  | 6.1          | 0.64   | 0.53     | 0.25     | 0.10  | 66%          | 40%          | 11%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 16   | 701051   | 0                        | v23          | 2830141 | 6107961  | 6.4          | 0.65   | 0.55     | 0.30     | 0.13  | 68%          | 42%          | 11%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 17   | 800293   | Owahanga Coast (Chimnes) | u25          | 2787477 | 6044148  | 4.9          | 0.65   | 0.57     | 0.30     | 0.10  | 70%          | 42%          | 11%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |
| 18   | 509086   | Oporae Wetland Complex   | u24          | 2782364 | 6086546  | 10.9         | 0.66   | 0.60     | 0.30     | 0.21  | 70%          | 50%          | 16%        |
|      |          |                          |              |         |          |              |        |          |          |       | (<1%)        | (<1%)        | (-)        |

| Rank | Idunique | Names  | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.CE | Cum.area | EI index | HLeft | Swamp        | Marsh        | Seepage    |
|------|----------|--------|--------------|---------|----------|--------------|--------|----------|----------|-------|--------------|--------------|------------|
| 19   | 800247   | HOOSON | s28          | 2717683 | 5974867  | 4.8          | 0.67   | 0.62     | 0.30     | 0.10  | 73%<br>(<1%) | 50%<br>(<1%) | 16%<br>(-) |
| 20   | 701133   | 0      | w22          | 2851560 | 6147626  | 4.7          | 0.67   | 0.63     | 0.36     | 0.14  | 73%<br>(<1%) | 53%<br>(<1%) | 16%<br>(-) |

| Rank | Idunique | Names                    | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|--------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|-------------|
| 1    | 701066   | Wanstead                 | 0.30                            | 0.46                         | 0.64           | 0.97                        | 1         | 0.82           | 1        | 0.25        |
| 2    | 702005   | Blackhead Wetland        | 0.30                            | 0.30                         | 1              | 0.98                        | 1         | 0.97           | 1        | 0.29        |
| 3    | 503030   | Glenora bush and Wetland | 0.30                            | 0.43                         | 1              | 0.97                        | 0.85      | 0.99           | 1        | 0.25        |
| 4    | 503031   | Ora Wetland area 2       | 0.31                            | 0.55                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.31        |
| 5    | 509666   | Whatatuna stream         | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.97        |
| 6    | 800312   | Tora Coast (b)           | 0.34                            | 0.30                         | 1              | 0.99                        | 1         | 0.99           | 1        | 0.30        |
| 7    | 701017   | Porangahau Wetland       | 0.30                            | 0.43                         | 1              | 0.99                        | 1         | 0.99           | 1        | 0.30        |
| 8    | 509097   | Tautane Stream Swamp     | 0.31                            | 0.37                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 9    | 800311   | Tora Coast (a)           | 0.34                            | 0.30                         | 1              | 0.99                        | 1         | 0.99           | 1        | 0.30        |
| 10   | 701003   | Mangareia stream         | 0.30                            | 0.30                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 11   | 701024   | 0                        | 0.30                            | 0.38                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.30        |
| 12   | 701059   | 0                        | 0.30                            | 0.62                         | 0.98           | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 13   | 701179   | 0                        | 0.30                            | 0.48                         | 1              | 0.95                        | 1         | 0.99           | 1        | 0.30        |
| 14   | 701002   | 0                        | 0.30                            | 0.30                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 15   | 701156   | 0                        | 0.30                            | 0.53                         | 0.94           | 0.97                        | 0.84      | 0.99           | 1        | 0.25        |
| 16   | 701051   | 0                        | 0.30                            | 0.30                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.30        |
| 17   | 800293   | Owahanga Coast (Chimnes) | 0.30                            | 0.30                         | 1              | 0.97                        | 1         | 0.99           | 1        | 0.30        |
| 18   | 509086   | Oporae Wetland Complex   | 0.30                            | 0.39                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.30        |
| 19   | 800247   | HOOSON                   | 0.30                            | 0.44                         | 1              | 0.98                        | 1         | 0.97           | 1        | 0.30        |
| 20   | 701133   | 0                        | 0.37                            | 0.45                         | 0.71           | 0.98                        | 1         | 0.98           | 1        | 0.36        |

#### 21. Southland



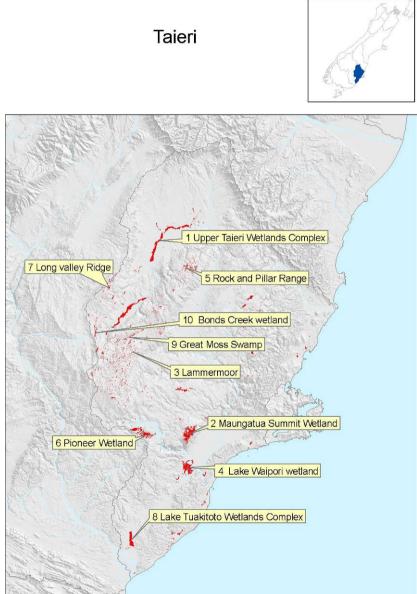

|                  | Total    | Bog     | Fen     | Swamp    | Marsh   | Pakihi/<br>Gumland | Seepage |
|------------------|----------|---------|---------|----------|---------|--------------------|---------|
| Current (ha)     | 32943.4  | 12868.6 | 8673.4  | 8887.4   | 1258.4  | 984                | 272     |
| Historic<br>(ha) | (415785) | (36209) | (86264) | (250924) | (36058) | (5927)             | (404)   |

| Rank | Idunique | Names                             | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|-----------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|--------------------|---------|
| 1    | 1400255  | Grebe                             | c44          | 2069291 | 5482840  | 311.6        | 0.30       | 0.01         | 0.95        | 0.27  |       | 0.1%  | 3%    |       |                    |         |
|      |          |                                   |              |         |          |              |            |              |             |       |       | (<1%) | (<1%) |       |                    |         |
| 2    | 1400237  | Waituna Lagoon                    | e47          | 2163947 | 5398336  | 8608.0       | 0.58       | 0.27         | 0.41        | 0.58  | 50%   | 10%   | 16%   | 6%    | 10%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (18%) | (1%)  | (1%)  | (<1%) | (2%)               |         |
| 3    | 1400239  | ToeToes (Seaward peat swamp<br>WE | f47          | 2179699 | 5400022  | 2717.1       | 0.65       | 0.36         | 0.72        | 0.61  | 68%   | 10%   | 19%   | 6%    | 25%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (1%)  | (1%)  | (<1%) | (4%)               |         |
| 4    | 1400010  | Dome Mire/Dismal Swamp            | d42          | 2103524 | 5530014  | 492.7        | 0.66       | 0.37         | 0.79        | 0.34  | 68%   | 14%   | 21%   | 6%    | 25%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (1%)  | (1%)  | (<1%) | (4%)               |         |
| 5    | 1400227  | Castledown Swamp                  | e44          | 2138540 | 5479380  | 831.9        | 0.67       | 0.40         | 0.46        | 0.40  | 68%   | 23%   | 22%   | 6%    | 25%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (2%)  | (1%)  | (<1%) | (4%)               |         |
| 6    | 1400048  | Back Valley                       | c44          | 2086991 | 5498229  | 523.0        | 0.68       | 0.41         | 0.95        | 0.41  | 68%   | 23%   | 23%   | 6%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (2%)  | (1%)  | (<1%) | (10%)              |         |
| 7    | 1400202  | Waikaia Headwaters                | f42          | 2199914 | 5537477  | 372.7        | 0.69       | 0.42         | 0.91        | 0.40  | 68%   | 28%   | 23%   | 6%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (3%)  | (1%)  | (<1%) | (10%)              |         |
| 8    | 1400298  | Grebe (north)                     | c44          | 2069881 | 5492913  | 243.4        | 0.69       | 0.43         | 0.95        | 0.26  | 68%   | 28%   | 26%   | 6%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (3%)  | (1%)  | (<1%) | (10%)              |         |
| 9    | 1400110  | Lake George                       | d46          | 2113224 | 5415756  | 574.3        | 0.70       | 0.45         | 0.39        | 0.26  | 68%   | 28%   | 33%   | 7%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (3%)  | (1%)  | (<1%) | (10%)              |         |
| 10   | 1400248  | So Big Swamp                      | e44          | 2131574 | 5496314  | 339.3        | 0.70       | 0.46         | 0.71        | 0.40  | 68%   | 32%   | 33%   | 7%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (24%) | (3%)  | (1%)  | (<1%) | (10%)              |         |
| 11   | 1400028  | Kepler Mire                       | d43          | 2095372 | 5506976  | 912.7        | 0.71       | 0.49         | 0.30        | 0.43  | 70%   | 33%   | 38%   | 7%    | 62%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (25%) | (3%)  | (1%)  | (<1%) | (10%)              |         |
| 12   | 1400335  | Waghorn Wetland NHF               | f47          | 2174231 | 5397056  | 483.4        | 0.71       | 0.50         | 0.37        | 0.29  | 70%   | 33%   | 43%   | 7%    | 67%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (25%) | (3%)  | (2%)  | (<1%) | (11%)              |         |
| 13   | 1400270  | Blue Lakes Wetlands               | f43          | 2191260 | 5516486  | 227.3        | 0.72       | 0.51         | 0.91        | 0.40  | 70%   | 36%   | 43%   | 7%    | 67%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (25%) | (3%)  | (2%)  | (<1%) | (11%)              |         |
| 14   | 1410673  | Herbaceous Freshwater Vegetat     | c44          | 2068290 | 5476948  | 175.0        | 0.72       | 0.51         | 0.94        | 0.28  | 70%   | 36%   | 45%   | 7%    | 68%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (25%) | (3%)  | (2%)  | (<1%) | (11%)              |         |
| 15   | 1400007  | Dunton Swamp                      | d42          | 2115576 | 5538422  | 240.6        | 0.73       | 0.52         | 0.84        | 0.39  | 70%   | 39%   | 45%   | 7%    | 68%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (25%) | (4%)  | (2%)  | (<1%) | (11%)              |         |
| 16   | 1400157  | Bayswater Swamp                   | d45          | 2128185 | 5440652  | 892.9        | 0.73       | 0.55         | 0.38        | 0.59  | 76%   | 39%   | 46%   | 7%    | 68%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (27%) | (4%)  | (2%)  | (<1%) | (11%)              |         |
| 17   | 1400374  | Obrien NHF Acquisition (north)    | c44          | 2089261 | 5485447  | 264.8        | 0.74       | 0.56         | 0.68        | 0.35  | 76%   | 41%   | 48%   | 7%    | 68%                |         |
|      |          |                                   |              |         |          |              |            |              |             |       | (27%) | (4%)  | (2%)  | (<1%) | (11%)              |         |

| Rank | Idunique | Names                          | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen  | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|--------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|------|-------|-------|--------------------|---------|
| 18   | 1400009  | Southern Snowdon Wetland       | d42          | 2108586 | 5530794  | 192.8        | 0.74       | 0.56         | 0.96        | 0.38  | 76%   | 43%  | 48%   | 7%    | 68%                |         |
|      |          |                                |              |         |          |              |            |              |             |       | (27%) | (4%) | (2%)  | (<1%) | (11%)              |         |
| 19   | 1400297  | Braxton Burn Bog               | e44          | 2132995 | 5490935  | 178.2        | 0.74       | 0.57         | 0.92        | 0.40  | 76%   | 45%  | 48%   | 7%    | 68%                |         |
|      |          |                                |              |         |          |              |            |              |             |       | (27%) | (4%) | (2%)  | (<1%) | (11%)              |         |
| 20   | 1400137  | Mistake Block Takitimu Mountai | d44          | 2120952 | 5487136  | 276.2        | 0.75       | 0.58         | 0.52        | 0.32  | 76%   | 46%  | 49%   | 14%   | 68%                |         |
|      |          |                                |              |         |          |              |            |              |             |       | (27%) | (4%) | (2%)  | (1%)  | (11%)              |         |
| 173  | 1410484  | Herbaceous Freshwater Vegetat  | f43          | 2185973 | 5516525  | 21.2         | 0.83       | 0.85         | 0.92        | 0.50  | 93%   | 85%  | 79%   | 65%   | 86%                | 2%      |
|      |          |                                |              |         |          |              |            |              |             |       | (33%) | (8%) | (3%)  | (2%)  | (14%)              | (1%)    |

| Rank | Idunique | Names                          | Non-naturalness<br>in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|--------------------------------|------------------------------------|------------------------------|----------------|--------------------------|-----------|----------------|----------|-------------|
| 1    | 1400255  | Grebe                          | 0.99                               | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.95        |
| 2    | 1400237  | Waituna Lagoon                 | 0.49                               | 0.87                         | 0.99           | 1                        | 0.84      | 0.99           | 1        | 0.41        |
| 3    | 1400239  | ToeToes (Seaward peat swamp WE | 0.96                               | 0.74                         | 1              | 1                        | 1         | 0.99           | 1        | 0.72        |
| 4    | 1400010  | Dome Mire/Dismal Swamp         | 0.80                               | 0.92                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.79        |
| 5    | 1400227  | Castledown Swamp               | 0.56                               | 0.94                         | 1              | 1                        | 0.84      | 0.99           | 1        | 0.46        |
| 6    | 1400048  | Back Valley                    | 0.99                               | 1                            | 1              | 1                        | 1         | 0.99           | 1        | 0.95        |
| 7    | 1400202  | Waikaia Headwaters             | 0.99                               | 1                            | 1              | 0.92                     | 1         | 0.99           | 1        | 0.91        |
| 8    | 1400298  | Grebe (north)                  | 0.99                               | 0.98                         | 0.97           | 0.96                     | 1         | 0.99           | 1        | 0.95        |
| 9    | 1400110  | Lake George                    | 0.82                               | 0.48                         | 0.94           | 0.97                     | 0.82      | 0.98           | 1        | 0.39        |
| 10   | 1400248  | So Big Swamp                   | 0.89                               | 0.86                         | 1              | 0.99                     | 0.84      | 0.99           | 1        | 0.71        |
| 11   | 1400028  | Kepler Mire                    | 0.37                               | 0.61                         | 1              | 1                        | 0.84      | 0.99           | 1        | 0.30        |
| 12   | 1400335  | Waghorn Wetland NHF            | 0.44                               | 0.73                         | 0.98           | 1                        | 0.84      | 0.99           | 1        | 0.37        |
| 13   | 1400270  | Blue Lakes Wetlands            | 0.99                               | 1                            | 1              | 0.95                     | 1         | 0.99           | 1        | 0.91        |
| 14   | 1410673  | Herbaceous Freshwater Vegetat  | 0.99                               | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.94        |
| 15   | 1400007  | Dunton Swamp                   | 0.98                               | 0.85                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.84        |
| 16   | 1400157  | Bayswater Swamp                | 0.38                               | 0.62                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.38        |
| 17   | 1400374  | Obrien NHF Acquisition (north) | 0.97                               | 0.69                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.68        |
| 18   | 1400009  | Southern Snowdon Wetland       | 0.99                               | 0.97                         | 1              | 1                        | 1         | 0.99           | 1        | 0.96        |
| 19   | 1400297  | Braxton Burn Bog               | 0.95                               | 0.94                         | 1              | 0.99                     | 1         | 0.99           | 1        | 0.92        |
| 20   | 1400137  | Mistake Block Takitimu Mountai | 0.96                               | 0.63                         | 1              | 0.98                     | 0.84      | 0.99           | 1        | 0.52        |
| 173  | 1410484  | Herbaceous Freshwater Vegetat  | 0.99                               | 1                            | 1              | 0.93                     | 1         | 0.99           | 1        | 0.92        |

## 22. Stewart Island



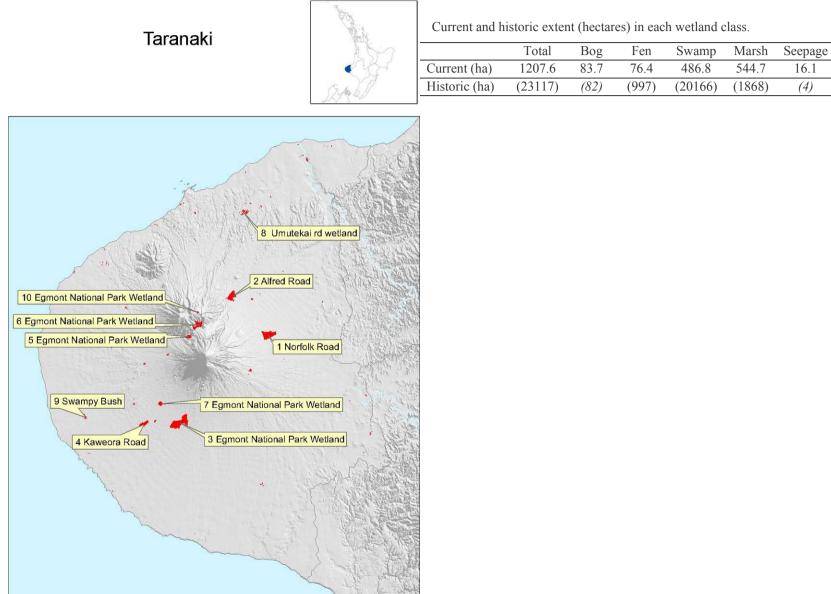

|  | Current and historic extent ( | hectares | ) in | each | wetland c | lass. |
|--|-------------------------------|----------|------|------|-----------|-------|
|--|-------------------------------|----------|------|------|-----------|-------|

|               | Total   | Bog    | Fen      | Swamp |
|---------------|---------|--------|----------|-------|
| Current (ha)  | 12552   | 7173   | 5238.9   | 140   |
| Historic (ha) | (12552) | (7173) | (5238.9) | (140) |

| Rank | Idunique | Names                              | Map sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog    | Fen    | Swamp  |
|------|----------|------------------------------------|-----------|---------|----------|--------------|------------|--------------|-------------|-------|--------|--------|--------|
| 1    | 1400174  | Ruggedy Flats                      | d48       | 2116592 | 5361486  | 10148.5      | 0.94       | 0.81         | 0.97        | 1     | 68%    | 100%   |        |
| 1    | 14001/4  | Ruggedy Fluis                      | u+0       | 2110372 | 5501400  | 10140.5      | 0.74       | 0.01         | 0.77        | 1     | (68%)  | (100%) |        |
| 2    | 1400261  | Table Hill                         | d49       | 2116948 | 5337529  | 1213.6       | 0.97       | 0.91         | 0.97        | 1     | 85%    | 100%   |        |
|      |          |                                    |           |         |          |              |            |              |             |       | (85%)  | (100%) |        |
| 3    | 1400196  | Toitoi Flat                        | d49       | 2128805 | 5335894  | 1026.8       | 0.99       | 0.99         | 0.97        | 1     | 100%   | 100%   |        |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) |        |
| 4    | 1411017  | Basin Creek                        | d49       | 2100601 | 5325206  | 46.0         | 0.99       | 0.99         | 0.97        | 1     | 100%   | 100%   | 33%    |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (33%)  |
| 5    | 1411004  | Ruapuke Island / Moana Putakitaki  | e48       | 2168793 | 5373992  | 49.0         | 0.99       | 0.99         | 0.72        | 1     | 100%   | 100%   | 68%    |
|      |          | lagoon                             |           |         |          |              |            |              |             |       | (100%) | (100%) | (68%)  |
| 6    | 1411016  | Robertson River Wetland            | d49       | 2113765 | 5325986  | 31.7         | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 90%    |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (90%)  |
| 7    | 1411019  | Near Smiths lookout                | d50       | 2094622 | 5315441  | 6.4          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 90%    |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 8    | 1411006  | Ruapuke Island / Tauatemaku lagoon | e48       | 2167755 | 5371971  | 13.4         | 0.99       | 1            | 0.43        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 9    | 1411007  | Garden point                       | d48       | 2127815 | 5369038  | 2.1          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
| 9    | 1411007  | Garden point                       | u40       | 212/013 | 3309038  | 2.1          | 0.99       | 1            | 0.97        | 1     | 10070  | 10070  | 10070  |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 10   | 1411013  | Deceit peaks Wetland               | d49       | 2106814 | 5331088  | 3.7          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 11   | 1411008  | Herbaceous Freshwater Vegetat      | d48       | 2119954 | 5360852  | 1.5          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 12   | 1411011  | Herbaceous Freshwater Vegetat      | d49       | 2102519 | 5331536  | 1.9          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 13   | 1411015  | Herbaceous Freshwater Vegetat      | d49       | 2117707 | 5330697  | 2.9          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 14   | 1411018  | Herbaceous Freshwater Vegetat      | d49       | 2099292 | 5320697  | 2.3          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |
| 15   | 1411021  | Herbaceous Freshwater Vegetat      | d50       | 2095622 | 5314361  | 2.3          | 0.99       | 1            | 0.97        | 1     | 100%   | 100%   | 100%   |
|      |          |                                    |           |         |          |              |            |              |             |       | (100%) | (100%) | (100%) |

| Rank | Idunique | Names                                    | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|------------------------------------------|---------------------------------|------------------------------|----------------|---------------------|-----------|----------------|----------|-------------|
|      |          |                                          |                                 |                              |                | risk                |           |                |          |             |
| 1    | 1400174  | Ruggedy Flats                            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 2    | 1400261  | Table Hill                               | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 3    | 1400196  | Toitoi Flat                              | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 4    | 1411017  | Basin Creek                              | 0.99                            | 1                            | 1              | 0.99                | 1         | 0.99           | 1        | 0.97        |
| 5    | 1411004  | Ruapuke Island / Moana Putakitaki lagoon | 0.75                            | 0.73                         | 1              | 0.99                | 1         | 0.99           | 1        | 0.72        |
| 6    | 1411016  | Robertson River Wetland                  | 0.99                            | 1                            | 1              | 0.99                | 1         | 0.99           | 1        | 0.97        |
| 7    | 1411019  | Near Smiths lookout                      | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 8    | 1411006  | Ruapuke Island / Tauatemaku lagoon       | 0.79                            | 0.44                         | 1              | 0.99                | 1         | 0.99           | 1        | 0.43        |
| 9    | 1411007  | Garden point                             | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 10   | 1411013  | Deceit peaks Wetland                     | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 11   | 1411008  | Herbaceous Freshwater Vegetat            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 12   | 1411011  | Herbaceous Freshwater Vegetat            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 13   | 1411015  | Herbaceous Freshwater Vegetat            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 14   | 1411018  | Herbaceous Freshwater Vegetat            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |
| 15   | 1411021  | Herbaceous Freshwater Vegetat            | 0.99                            | 1                            | 1              | 1                   | 1         | 0.99           | 1        | 0.97        |




|               | Total   | Bog    | Fen    | Swamp   | Marsh  | Seepage | Inland saline |
|---------------|---------|--------|--------|---------|--------|---------|---------------|
| Current (ha)  | 11038.6 | 209.2  | 4112.4 | 5784.5  | 473.8  | 238.5   | 220.2         |
| Historic (ha) | (36828) | (1020) | (6181) | (23818) | (4701) | (548)   | (559)         |

| Rank | Idunique | Names                                       | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Seepage | Inland<br>Saline |
|------|----------|---------------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|---------|------------------|
| 1    | 1300072  | Upper Taieri Wetlands Complex               | h42          | 2270526 | 5536776  | 2349.1       | 0.54       | 0.21         | 0.31        | 0.56  |       |       | 35%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       |       | (8%)  | (4%)  |         | (32%)            |
| 2    | 1300043  | Maungatua Summit Wetland<br>Management Area | h44          | 2285712 | 5477726  | 1179.9       | 0.65       | 0.32         | 0.91        | 0.78  |       | 21%   | 40%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (14%) | (10%) | (4%)  |         | (32%)            |
| 3    | 1300232  | Lammermoor                                  | h43          | 2260068 | 5501328  | 650.0        | 0.69       | 0.38         | 0.87        | 0.85  |       | 37%   | 40%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (25%) | (10%) | (4%)  |         | (32%)            |
| 4    | 1300076  | Lake Waipori Wetland                        | h45          | 2285053 | 5464919  | 967.7        | 0.70       | 0.47         | 0.29        | 0.57  |       | 37%   | 57%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (25%) | (14%) | (4%)  |         | (32%)            |
| 5    | 1300252  | Rock and Pillar Range                       | h42          | 2285917 | 5537838  | 357.6        | 0.72       | 0.50         | 0.95        | 0.85  |       | 45%   | 57%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (30%) | (14%) | (4%)  |         | (32%)            |
| 6    | 1300055  | Pioneer Wetland Management Area             | h44          | 2268637 | 5478035  | 815.1        | 0.73       | 0.58         | 0.27        | 0.67  |       | 53%   | 66%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (35%) | (16%) | (4%)  |         | (32%)            |
| 7    | 1300249  | Long valley Ridge                           | h42          | 2256443 | 5532540  | 203.2        | 0.74       | 0.59         | 0.93        | 0.85  |       | 58%   | 66%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (39%) | (16%) | (4%)  |         | (32%)            |
| 8    | 1300035  | Lake Tuakitoto Wetlands Complex             | h46          | 2264504 | 5438938  | 520.8        | 0.75       | 0.64         | 0.22        | 0.57  |       | 58%   | 75%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       |       | (39%) | (18%) | (4%)  |         | (32%)            |
| 9    | 1300027  | Great Moss Swamp                            | h43          | 2263946 | 5511681  | 122.3        | 0.75       | 0.65         | 0.93        | 0.61  | 43%   | 59%   | 75%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (9%)  | (39%) | (18%) | (4%)  |         | (32%)            |
| 10   | 1301693  | Bonds Creek Wetland                         | h43          | 2251403 | 5515083  | 129.9        | 0.76       | 0.66         | 0.88        | 0.85  | 43%   | 62%   | 75%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (9%)  | (41%) | (18%) | (4%)  |         | (32%)            |
| 11   | 1300057  | Red Bank Wetland Management Area            | i43          | 2308189 | 5527404  | 140.3        | 0.76       | 0.68         | 0.49        | 0.57  | 43%   | 62%   | 78%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (9%)  | (41%) | (19%) | (4%)  |         | (32%)            |
| 12   | 1301946  | Lammerlaw Range                             | h44          | 2257703 | 5491169  | 83.1         | 0.76       | 0.69         | 0.96        | 0.85  | 43%   | 64%   | 78%   | 37%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (9%)  | (43%) | (19%) | (4%)  |         | (32%)            |
| 13   | 1300117  | Clark's Junction Swamp                      | h44          | 2283194 | 5493646  | 215.6        | 0.77       | 0.70         | 0.31        | 0.75  | 43%   | 67%   | 79%   | 38%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (9%)  | (45%) | (19%) | (4%)  |         | (32%)            |
| 14   | 1300243  | Red swamp                                   | h43          | 2252044 | 5508130  | 69.6         | 0.77       | 0.71         | 0.95        | 0.65  | 63%   | 68%   | 79%   | 38%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (13%) | (45%) | (19%) | (4%)  |         | (32%)            |
| 15   | 1301768  | Herbaceous Freshwater Vegetation            | h43          | 2259392 | 5511290  | 59.2         | 0.77       | 0.72         | 0.92        | 0.85  | 63%   | 69%   | 79%   | 38%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (13%) | (46%) | (19%) | (4%)  |         | (32%)            |
| 16   | 1300047  | Nenthorn Ridge Wetland Management<br>Area   | i43          | 2305928 | 5524384  | 73.1         | 0.77       | 0.72         | 0.48        | 0.57  | 63%   | 69%   | 80%   | 38%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (13%) | (46%) | (19%) | (4%)  |         | (32%)            |
| 17   | 1301686  | Herbaceous Freshwater Vegetation            | h43          | 2276419 | 5516437  | 52.7         | 0.78       | 0.73         | 0.96        | 0.85  | 63%   | 71%   | 80%   | 38%   |         | 80%              |
|      |          |                                             |              |         |          |              |            |              |             |       | (13%) | (47%) | (19%) | (4%)  |         | (32%)            |

| Rank | Idunique | Names                            | Map   | Easting | Northing | Area  | Cum. | Cum. | EI    | HLeft | Bog   | Fen   | Swamp | Marsh | Seepage | Inland |
|------|----------|----------------------------------|-------|---------|----------|-------|------|------|-------|-------|-------|-------|-------|-------|---------|--------|
|      | _        |                                  | sheet |         | -        | (ha)  | CE   | area | index |       | -     |       | _     |       |         | Saline |
| 18   | 1301337  | Herbaceous Freshwater Vegetation | h42   | 2266073 | 5537317  | 22.7  | 0.78 | 0.73 | 0.36  | 0.56  | 63%   | 71%   | 81%   | 39%   |         | 83%    |
|      |          |                                  |       |         |          |       |      |      |       |       | (13%) | (47%) | (19%) | (4%)  |         | (33%)  |
| 19   | 1300068  | Tokomairiro River Swamp          | h45   | 2280770 | 5441376  | 125.5 | 0.78 | 0.74 | 0.24  | 0.57  | 63%   | 71%   | 83%   | 39%   |         | 83%    |
|      |          |                                  |       |         |          |       |      |      |       |       | (13%) | (47%) | (20%) | (4%)  |         | (33%)  |
| 20   | 1301738  | Herbaceous Freshwater Vegetation | h43   | 2265208 | 5513698  | 40.8  | 0.78 | 0.75 | 0.94  | 0.69  | 73%   | 71%   | 83%   | 39%   |         | 83%    |
|      |          |                                  |       |         |          |       |      |      |       |       | (15%) | (47%) | (20%) | (4%)  |         | (33%)  |
| 60   | 1301792  | Herbaceous Freshwater Vegetation | i43   | 2306326 | 5510019  | 21.5  | 0.81 | 0.85 | 0.79  | 0.80  | 88%   | 85%   | 90%   | 60%   | 4%      | 99%    |
|      |          |                                  |       |         |          |       |      |      |       |       | (18%) | (57%) | (22%) | (6%)  | (2%)    | (39%)  |

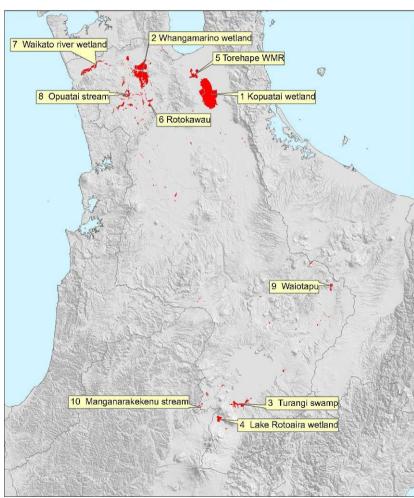
| Rank | Idunique | Names                                    | Non-naturalness in subcatchment | Non-naturalness in buffer | Imperviousness | Nitrate<br>leaching risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|------------------------------------------|---------------------------------|---------------------------|----------------|--------------------------|-----------|----------------|----------|-------------|
| 1    | 1300072  | Upper Taieri Wetlands Complex            | 0.38                            | 0.58                      | 0.98           | 0.97                     | 0.81      | 0.98           | 1        | 0.31        |
| 2    | 1300043  | Maungatua Summit Wetland Management Area | 0.98                            | 0.92                      | 1              | 0.99                     | 1         | 0.99           | 1        | 0.91        |
| 3    | 1300232  | Lammermoor                               | 0.98                            | 0.98                      | 0.99           | 0.88                     | 1         | 0.99           | 1        | 0.87        |
| 4    | 1300076  | Lake Waipori Wetland                     | 0.38                            | 0.69                      | 0.94           | 0.96                     | 0.78      | 0.97           | 1        | 0.29        |
| 5    | 1300252  | Rock and Pillar Range                    | 0.99                            | 1                         | 1              | 0.96                     | 1         | 0.99           | 1        | 0.95        |
| 6    | 1300055  | Pioneer Wetland Management Area          | 0.34                            | 0.55                      | 0.95           | 0.95                     | 0.80      | 0.99           | 1        | 0.27        |
| 7    | 1300249  | Long valley Ridge                        | 0.99                            | 1                         | 0.97           | 0.94                     | 1         | 0.99           | 1        | 0.93        |
| 8    | 1300035  | Lake Tuakitoto Wetlands Complex          | 0.31                            | 0.39                      | 0.93           | 0.96                     | 0.80      | 0.89           | 1        | 0.22        |
| 9    | 1300027  | Great Moss Swamp                         | 0.99                            | 1                         | 0.99           | 0.95                     | 1         | 0.99           | 1        | 0.93        |
| 10   | 1301693  | Bonds Creek Wetland                      | 0.99                            | 1                         | 1              | 0.91                     | 1         | 0.99           | 1        | 0.88        |
| 11   | 1300057  | Red Bank Wetland Management Area         | 0.50                            | 0.79                      | 0.94           | 0.98                     | 1         | 0.99           | 1        | 0.49        |
| 12   | 1301946  | Lammerlaw Range                          | 0.99                            | 1                         | 1              | 0.97                     | 1         | 0.99           | 1        | 0.96        |
| 13   | 1300117  | Clark's Junction Swamp                   | 0.31                            | 0.43                      | 1              | 0.98                     | 1         | 0.99           | 1        | 0.31        |
| 14   | 1300243  | Red swamp                                | 0.99                            | 1                         | 1              | 0.96                     | 1         | 0.99           | 1        | 0.95        |
| 15   | 1301768  | Herbaceous Freshwater Vegetation         | 0.99                            | 0.99                      | 0.95           | 0.93                     | 1         | 0.99           | 1        | 0.92        |
| 16   | 1300047  | Nenthorn Ridge Wetland Management Area   | 0.49                            | 0.59                      | 1              | 0.98                     | 1         | 0.99           | 1        | 0.48        |
| 17   | 1301686  | Herbaceous Freshwater Vegetation         | 0.99                            | 1                         | 1              | 0.97                     | 1         | 0.99           | 1        | 0.96        |
| 18   | 1301337  | Herbaceous Freshwater Vegetation         | 0.57                            | 0.36                      | 1              | 0.96                     | 1         | 0.99           | 1        | 0.36        |
| 19   | 1300068  | Tokomairiro River Swamp                  | 0.30                            | 0.65                      | 0.95           | 0.97                     | 0.80      | 0.99           | 1        | 0.24        |
| 20   | 1301738  | Herbaceous Freshwater Vegetation         | 0.99                            | 1                         | 1              | 0.96                     | 1         | 0.99           | 1        | 0.94        |
| 60   | 1301792  | Herbaceous Freshwater Vegetation         | 0.80                            | 0.87                      | 1              | 0.97                     | 1         | 0.99           | 1        | 0.79        |
|      |          |                                          |                                 |                           |                |                          |           |                |          |             |

# 24. Taranaki



| Rank | Idunique | Names                           | Map sheet | Easting | Northing | Area (ha) | Cum CE | Cum.area | Elindex | HLeft | Bog  | Fen  | Swamp | Marsh | Seepage |
|------|----------|---------------------------------|-----------|---------|----------|-----------|--------|----------|---------|-------|------|------|-------|-------|---------|
| 1    | 600927   | Norfolk Road                    | q20       | 2611768 | 6214953  | 199.2     | 0.60   | 0.17     | 0.75    | 0.23  |      |      | 41%   |       |         |
|      |          |                                 |           |         |          |           |        |          |         |       |      |      | (1%)  |       |         |
| 2    | 600918   | Alfred Road                     | p19       | 2605941 | 6221138  | 133.1     | 0.69   | 0.28     | 0.82    | 0.23  |      |      | 68%   |       |         |
|      |          |                                 |           |         |          |           |        |          |         |       |      |      | (2%)  |       |         |
| 3    | 600403   | Egmont National Park            | p20       | 2597666 | 6201022  | 317.4     | 0.78   | 0.54     | 0.52    | 0.61  |      |      | 68%   | 58%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       |      |      | (2%)  | (17%) |         |
| 4    | 600936   | Kaweora Road                    | p20       | 2591928 | 6200791  | 77.5      | 0.80   | 0.60     | 0.55    | 0.23  |      |      | 84%   | 58%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       |      |      | (2%)  | (17%) |         |
| 5    | 600410   | Egmont National Park            | p20       | 2599055 | 6214659  | 40.7      | 0.81   | 0.64     | 0.95    | 0.34  |      | 50%  | 85%   | 58%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       |      | (4%) | (2%)  | (17%) |         |
| 6    | 600400   | Egmont National Park            | p20       | 2600508 | 6216505  | 107.6     | 0.84   | 0.73     | 0.80    | 0.91  | 100% | 52%  | 85%   | 62%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       | (-)  | (4%) | (2%)  | (18%) |         |
| 7    | 600402   | Egmont National Park            | p20       | 2594687 | 6204024  | 42.3      | 0.85   | 0.76     | 0.73    | 0.61  | 100% | 52%  | 85%   | 70%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       | (-)  | (4%) | (2%)  | (20%) |         |
| 8    | 600914   | Herbaceous Freshwater           | p19       | 2607972 | 6234454  | 45.1      | 0.85   | 0.80     | 0.34    | 0.38  | 100% | 82%  | 88%   | 72%   |         |
|      |          | Vegetation                      |           |         |          |           |        |          |         |       | (-)  | (6%) | (2%)  | (21%) |         |
| 9    | 600935   | Swampy Bush                     | p20       | 2582605 | 6201909  | 18.3      | 0.86   | 0.82     | 0.31    | 0.23  | 100% | 82%  | 92%   | 72%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       | (-)  | (6%) | (2%)  | (21%) |         |
| 10   | 600401   | Egmont National Park            | p20       | 2600511 | 6218491  | 9.5       | 0.86   | 0.82     | 0.95    | 0.36  | 100% | 95%  | 92%   | 72%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (21%) |         |
| 11   | 600409   | Egmont National Park            | p20       | 2608850 | 6209248  | 13.6      | 0.86   | 0.84     | 0.97    | 0.61  | 100% | 95%  | 92%   | 75%   |         |
|      |          | Wetland                         |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (22%) |         |
| 12   | 600929   | Kahui Road                      | p20       | 2592038 | 6210341  | 7.0       | 0.86   | 0.84     | 0.52    | 0.23  | 100% | 95%  | 93%   | 75%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (22%) |         |
| 13   | 600404   | Egmont National Park<br>Wetland | p20       | 2595745 | 6211806  | 6.6       | 0.87   | 0.85     | 0.97    | 0.61  | 100% | 95%  | 93%   | 76%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (22%) |         |
| 14   | 600925   | Dudley Road                     | p19       | 2609150 | 6220679  | 8.3       | 0.87   | 0.85     | 0.24    | 0.23  | 100% | 95%  | 95%   | 76%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (22%) |         |
| 15   | 600898   | Landcorp Looney's Lake          | p20       | 2590348 | 6203947  | 5.9       | 0.87   | 0.86     | 0.31    | 0.23  | 100% | 95%  | 96%   | 76%   |         |
| 1.6  |          |                                 | • •       |         | (015500  |           | 0.07   | 0.07     |         | 0.00  | (-)  | (7%) | (2%)  | (22%) |         |
| 16   | 600890   | Herbaceous Freshwater           | p20       | 2590547 | 6217792  | 4.2       | 0.87   | 0.86     | 0.39    | 0.23  | 100% | 95%  | 97%   | 76%   |         |
| 17   | (00011   | Vegetation                      | 10        | 0(15051 | (242010  | 16.5      | 0.07   | 0.07     | 0.05    | 0.(1  | (-)  | (7%) | (2%)  | (22%) |         |
| 17   | 600211   | 0                               | q19       | 2617871 | 6242818  | 15.7      | 0.87   | 0.87     | 0.25    | 0.61  | 100% | 95%  | 97%   | 79%   |         |
| 10   | (00000   |                                 | •         |         | (100000  |           | 0.07   |          |         | 0.50  | (-)  | (7%) | (2%)  | (23%) |         |
| 18   | 600932   | Mudfish Sites                   | q20       | 2628010 | 6199333  | 9.0       | 0.87   | 0.88     | 0.33    | 0.53  | 100% | 95%  | 97%   | 80%   |         |
|      |          |                                 |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (23%) |         |

| Rank | Idunique | Names        | Map sheet | Easting | Northing | Area (ha) | Cum CE | Cum.area | Elindex | HLeft | Bog  | Fen  | Swamp | Marsh | Seepage |
|------|----------|--------------|-----------|---------|----------|-----------|--------|----------|---------|-------|------|------|-------|-------|---------|
| 19   | 600956   | Wiremu Road  | p20       | 2593749 | 6201252  | 7.7       | 0.87   | 0.89     | 0.33    | 0.59  | 100% | 95%  | 97%   | 82%   |         |
|      |          |              |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (24%) |         |
| 20   | 600911   | Lloyds Ponds | p19       | 2598002 | 6235803  | 6.8       | 0.87   | 0.89     | 0.30    | 0.61  | 100% | 95%  | 97%   | 83%   |         |
|      |          |              |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (24%) |         |
| 50   | 600405   | 0            | p20       | 2601362 | 6207204  | 1.3       | 0.88   | 0.97     | 0.96    | 1     | 100% | 100% | 100%  | 97%   | 8%      |
|      |          |              |           |         |          |           |        |          |         |       | (-)  | (7%) | (2%)  | (28%) | (-)     |

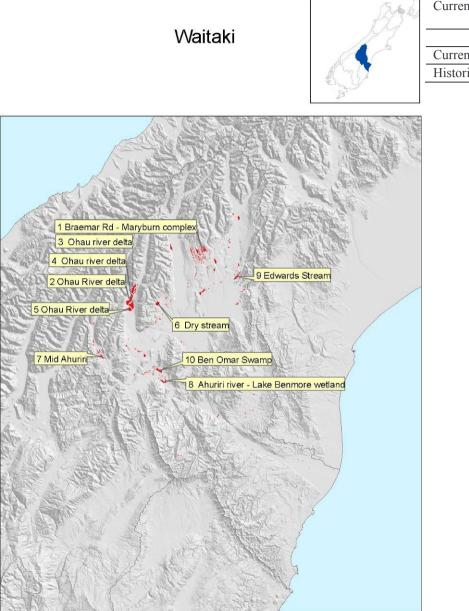

| Rank | Idunique | Names                            | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|----------------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|-------------|
| 1    | 600927   | Norfolk Road                     | 0.95                            | 0.76                         | 1              | 0.91                        | 1         | 0.99           | 1        | 0.75        |
| 2    | 600918   | Alfred Road                      | 0.98                            | 0.83                         | 0.99           | 0.98                        | 1         | 0.99           | 1        | 0.82        |
| 3    | 600403   | Egmont National Park Wetland     | 0.96                            | 0.53                         | 0.98           | 0.97                        | 1         | 0.99           | 1        | 0.52        |
| 4    | 600936   | Kaweora Road                     | 0.91                            | 0.56                         | 0.90           | 0.94                        | 1         | 0.99           | 1        | 0.55        |
| 5    | 600410   | Egmont National Park Wetland     | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.95        |
| 5    | 600400   | Egmont National Park Wetland     | 0.99                            | 1                            | 1              | 0.99                        | 0.83      | 0.99           | 1        | 0.80        |
| 7    | 600402   | Egmont National Park Wetland     | 0.98                            | 0.75                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.73        |
| 3    | 600914   | Herbaceous Freshwater Vegetation | 0.34                            | 0.38                         | 1              | 0.79                        | 1         | 0.99           | 1        | 0.34        |
| )    | 600935   | Swampy Bush                      | 0.32                            | 0.52                         | 1              | 0.94                        | 1         | 0.99           | 1        | 0.31        |
| 10   | 600401   | Egmont National Park Wetland     | 0.99                            | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.95        |
| 1    | 600409   | Egmont National Park Wetland     | 0.99                            | 1                            | 0.98           | 0.98                        | 1         | 0.99           | 1        | 0.97        |
| 12   | 600929   | Kahui Road                       | 0.98                            | 0.52                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.52        |
| 13   | 600404   | Egmont National Park Wetland     | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.97        |
| 14   | 600925   | Dudley Road                      | 0.32                            | 0.39                         | 0.99           | 0.30                        | 0.84      | 0.99           | 1        | 0.24        |
| 15   | 600898   | Landcorp Looney's Lake           | 0.32                            | 0.48                         | 1              | 0.95                        | 1         | 0.99           | 1        | 0.31        |
| 16   | 600890   | Herbaceous Freshwater Vegetation | 0.48                            | 0.47                         | 0.67           | 0.71                        | 0.83      | 0.99           | 1        | 0.39        |
| 17   | 600211   | 0                                | 0.38                            | 0.66                         | 0.46           | 0.85                        | 0.80      | 0.83           | 1        | 0.25        |
| 18   | 600932   | Mudfish Sites                    | 0.34                            | 0.46                         | 1              | 0.62                        | 1         | 0.99           | 1        | 0.33        |
| 19   | 600956   | Wiremu Road                      | 0.72                            | 0.40                         | 1              | 0.57                        | 0.84      | 0.99           | 1        | 0.33        |
| 20   | 600911   | Lloyds Ponds                     | 0.31                            | 0.42                         | 0.54           | 0.98                        | 1         | 0.99           | 1        | 0.30        |
| 50   | 600405   | 0                                | 0.99                            | 1                            | 0.98           | 0.98                        | 1         | 0.99           | 1        | 0.96        |

## 25. Waikato

# Waikato



|   |               | Total    | Bog     | Fen     | Swamp    | Marsh   | Pakihi/<br>Gumland | Seepage |
|---|---------------|----------|---------|---------|----------|---------|--------------------|---------|
|   | Current (ha)  | 27537.3  | 13066.9 | 45.7    | 12482.8  | 1890.7  | 45                 | 5.7     |
| - | Historic (ha) | (312011) | (69799) | (23123) | (179957) | (37811) | (1321)             | (0)     |




| Rank | Idunique | Names                    | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|--------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|--------------------|---------|
| 1    | 300043   | Kopouatai Wetland        | t13          | 2736501 | 6417295  | 10541.6      | 0.55       | 0.38         | 0.23        | 0.46  | 55%   |       | 27%   |       |                    |         |
|      |          | *                        |              |         |          |              |            |              |             |       | (10%) |       | (2%)  |       |                    |         |
| 2    | 300022   | Whangamarino             | s13          | 2699723 | 6428580  | 6137.7       | 0.61       | 0.61         | 0.23        | 0.44  | 81%   |       | 48%   | 1%    | 38%                |         |
|      |          | Wetland                  |              |         |          |              |            |              |             |       | (15%) |       | (3%)  | (<1%) | (1%)               |         |
| 3    | 300197   | Turangi swamp            | t19          | 2754064 | 6246272  | 1115.9       | 0.64       | 0.65         | 0.49        | 0.34  | 81%   |       | 56%   | 6%    | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (15%) |       | (4%)  | (<1%) | (1%)               |         |
| 4    | 300205   | Lake Rotoaira            | t19          | 2742357 | 6238181  | 553.7        | 0.64       | 0.67         | 0.52        | 0.30  | 81%   |       | 56%   | 35%   | 38%                |         |
|      |          | Wetland                  |              |         |          |              |            |              |             |       | (15%) |       | (4%)  | (2%)  | (1%)               |         |
| 5    | 300034   | Torehape WMR             | s13          | 2728180 | 6427958  | 882.8        | 0.65       | 0.70         | 0.30        | 0.51  | 88%   |       | 56%   | 35%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (16%) |       | (4%)  | (2%)  | (1%)               |         |
| 6    | 300056   | Rotokawau                | s13          | 2703917 | 6413120  | 499.3        | 0.66       | 0.72         | 0.24        | 0.36  | 88%   |       | 60%   | 35%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (4%)  | (2%)  | (1%)               |         |
| 7    | 300023   | Waikato River<br>Wetland | r12          | 2671774 | 6431916  | 837.0        | 0.66       | 0.75         | 0.14        | 0.34  | 88%   |       | 67%   | 35%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 8    | 300049   | Opuatai stream           | s13          | 2691660 | 6417210  | 661.0        | 0.67       | 0.77         | 0.23        | 0.47  | 92%   |       | 68%   | 36%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 9    | 300147   | Waiotapu                 | u16          | 2804394 | 6310756  | 335.5        | 0.67       | 0.78         | 0.25        | 0.34  | 92%   |       | 70%   | 37%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 10   | 509507   | Manganarakekenu          | t19          | 2731713 | 6244666  | 126.3        | 0.67       | 0.79         | 0.75        | 0.30  | 92%   |       | 70%   | 44%   | 38%                |         |
|      |          | stream                   |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 11   | 300065   | 0                        | r13          | 2688194 | 6410896  | 398.8        | 0.67       | 0.80         | 0.17        | 0.34  | 92%   |       | 74%   | 44%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 12   | 300199   | 0                        | t19          | 2749381 | 6245786  | 110.9        | 0.68       | 0.81         | 0.60        | 0.34  | 92%   |       | 74%   | 44%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 13   | 300055   | 0                        | s13          | 2698973 | 6415914  | 279.5        | 0.68       | 0.82         | 0.22        | 0.33  | 92%   |       | 76%   | 49%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 14   | 300042   | 0                        | r13          | 2689457 | 6424257  | 278.1        | 0.68       | 0.83         | 0.21        | 0.37  | 92%   |       | 78%   | 49%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 15   | 300195   | 0                        | t18          | 2735796 | 6251693  | 122.8        | 0.68       | 0.83         | 0.44        | 0.34  | 92%   |       | 79%   | 50%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (5%)  | (2%)  | (1%)               |         |
| 16   | 300029   | 0                        | r12          | 2678902 | 6434674  | 219.2        | 0.68       | 0.84         | 0.23        | 0.34  | 92%   |       | 80%   | 50%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) |       | (6%)  | (2%)  | (1%)               |         |
| 17   | 300198   | 0                        | t19          | 2732882 | 6246116  | 72.8         | 0.68       | 0.84         | 0.39        | 0.19  | 93%   | 86%   | 80%   | 52%   | 38%                |         |
|      |          |                          |              |         |          |              |            |              |             |       | (17%) | (<1%) | (6%)  | (3%)  | (1%)               |         |

| Rank | Idunique | Names | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|-------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|--------------------|---------|
| 18   | 300036   | 0     | t12          | 2730215 | 6430056  | 226.2        | 0.68       | 0.85         | 0.30        | 0.47  | 94%   | 86%   | 81%   | 52%   | 38%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (18%) | (<1%) | (6%)  | (3%)  | (1%)               |         |
| 19   | 300037   | 0     | r13          | 2667847 | 6429134  | 383.1        | 0.69       | 0.86         | 0.11        | 0.34  | 94%   | 86%   | 84%   | 52%   | 38%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (18%) | (<1%) | (6%)  | (3%)  | (1%)               |         |
| 20   | 300425   | 0     | r12          | 2672809 | 6432583  | 153.1        | 0.69       | 0.87         | 0.29        | 0.34  | 94%   | 86%   | 85%   | 52%   | 38%                |         |
|      |          |       |              |         |          |              |            |              |             |       | (18%) | (<1%) | (6%)  | (3%)  | (1%)               |         |
| 73   | 300132   | 0     | s16          | 2724343 | 6325137  | 16.8         | 0.71       | 0.97         | 0.37        | 0.31  | 99%   | 86%   | 96%   | 86%   | 100%               | 2%      |
|      |          |       |              |         |          |              |            |              |             |       | (19%) | (<1%) | (7%)  | (4%)  | (3%)               | (-)     |

| Rank | Idunique | Names                  | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate leaching | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|------------------------|---------------------------------|------------------------------|----------------|------------------|-----------|----------------|----------|-------------|
|      |          |                        |                                 |                              |                | risk             |           |                |          |             |
| 1    | 300043   | Kopouatai Wetland      | 0.31                            | 0.50                         | 1              | 1                | 0.79      | 0.97           | 1        | 0.23        |
| 2    | 300022   | Whangamarino Wetland   | 0.31                            | 0.47                         | 0.97           | 0.99             | 0.77      | 0.94           | 1        | 0.23        |
| 3    | 300197   | Turangi swamp          | 0.90                            | 0.64                         | 0.93           | 0.98             | 0.78      | 0.97           | 1        | 0.49        |
| 4    | 300205   | Lake Rotoaira Wetland  | 0.63                            | 0.74                         | 0.89           | 0.97             | 0.83      | 0.99           | 1        | 0.52        |
| 5    | 300034   | Torehape WMR           | 0.31                            | 0.60                         | 0.95           | 0.99             | 1         | 0.96           | 1        | 0.30        |
| 6    | 300056   | Rotokawau              | 0.31                            | 0.67                         | 0.99           | 0.99             | 0.79      | 0.98           | 1        | 0.24        |
| 7    | 300023   | Waikato River Wetland  | 0.31                            | 0.59                         | 0.97           | 0.93             | 0.77      | 0.57           | 1        | 0.14        |
| 8    | 300049   | Opuatai stream         | 0.31                            | 0.58                         | 0.97           | 0.98             | 0.77      | 0.98           | 1        | 0.23        |
| 9    | 300147   | Waiotapu               | 0.31                            | 0.78                         | 0.78           | 0.97             | 0.83      | 0.99           | 1        | 0.25        |
| 10   | 509507   | Manganarakekenu stream | 0.88                            | 0.76                         | 0.97           | 0.98             | 1         | 0.99           | 1        | 0.75        |
| 11   | 300065   | 0                      | 0.30                            | 0.43                         | 0.99           | 0.96             | 0.78      | 0.73           | 1        | 0.17        |
| 12   | 300199   | 0                      | 0.90                            | 0.79                         | 0.79           | 0.98             | 0.78      | 0.98           | 1        | 0.60        |
| 13   | 300055   | 0                      | 0.31                            | 0.67                         | 0.95           | 0.88             | 0.77      | 0.95           | 1        | 0.22        |
| 14   | 300042   | 0                      | 0.30                            | 0.37                         | 0.95           | 0.97             | 0.85      | 0.80           | 1        | 0.21        |
| 15   | 300195   | 0                      | 0.45                            | 0.57                         | 1              | 0.97             | 1         | 0.99           | 1        | 0.44        |
| 16   | 300029   | 0                      | 0.30                            | 0.58                         | 1              | 0.92             | 0.81      | 0.92           | 1        | 0.23        |
| 17   | 300198   | 0                      | 0.40                            | 0.51                         | 0.80           | 0.99             | 1         | 0.99           | 1        | 0.39        |
| 18   | 300036   | 0                      | 0.30                            | 0.30                         | 1              | 0.99             | 1         | 0.99           | 1        | 0.30        |
| 19   | 300037   | 0                      | 0.31                            | 0.87                         | 0.99           | 0.93             | 0.77      | 0.47           | 1        | 0.11        |
| 20   | 300425   | 0                      | 0.42                            | 0.65                         | 0.99           | 0.98             | 1         | 0.69           | 1        | 0.29        |
| 73   | 300132   | 0                      | 0.38                            | 0.77                         | 1              | 0.97             | 1         | 0.99           | 1        | 0.37        |

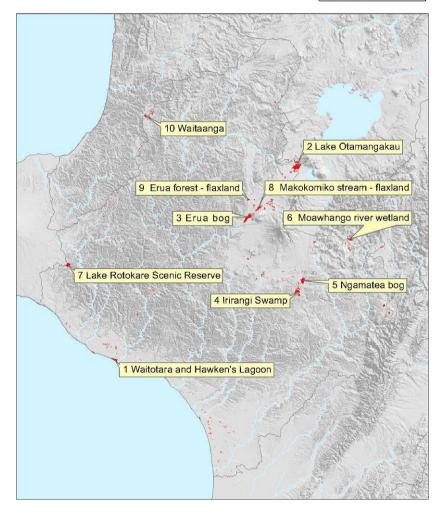




|               | Total   | Fen    | Swamp   | Marsh  | Seepage |
|---------------|---------|--------|---------|--------|---------|
| Current (ha)  | 8183.2  | 1223.8 | 4198.2  | 2696.7 | 64.6    |
| Historic (ha) | (23416) | (2406) | (15275) | (5441) | (293)   |

| Rank | Idunique | Names                        | Map<br>sheet | Easting | Northing | Area (ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|------------------------------|--------------|---------|----------|-----------|------------|--------------|-------------|-------|-------|-------|-------|---------|
| 1    | 1201309  | Braemar Road Tussock         | k34          | 2406679 | 5795464  | 1570.4    | 0.63       | 0.19         | 0.85        | 0.72  | 78%   | 10%   | 7%    |         |
|      |          |                              |              |         |          |           |            |              |             |       | (40%) | (3%)  | (3%)  |         |
| 2    | 1200681  | Ohau River delta             | h38          | 2256674 | 5672470  | 685.4     | 0.67       | 0.28         | 0.42        | 0.60  | 78%   | 27%   | 7%    |         |
|      |          |                              |              |         |          |           |            |              |             |       | (40%) | (7%)  | (3%)  |         |
| 3    | 1200693  | Ohau River delta             | h38          | 2272096 | 5669110  | 502.7     | 0.71       | 0.34         | 0.71        | 0.67  | 78%   | 33%   | 16%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (40%) | (9%)  | (8%)  |         |
| 4    | 1200680  | Ohau River delta             | h38          | 2256588 | 5672660  | 554.4     | 0.73       | 0.41         | 0.50        | 0.60  | 78%   | 46%   | 16%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (40%) | (13%) | (8%)  |         |
| 5    | 1200679  | Ohau River delta             | h38          | 2256207 | 5672936  | 283.3     | 0.74       | 0.44         | 0.63        | 0.60  | 78%   | 53%   | 16%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (40%) | (15%) | (8%)  |         |
| 6    | 1200706  | Dry stream                   | h38          | 2278608 | 5662620  | 291.3     | 0.76       | 0.48         | 0.69        | 0.75  | 95%   | 54%   | 18%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (48%) | (15%) | (9%)  |         |
| 7    | 1201763  | Mid Ahuriri                  | h40          | 2287348 | 5619607  | 326.8     | 0.77       | 0.52         | 0.44        | 0.74  | 97%   | 54%   | 29%   |         |
|      | 1001-12  | 41 ···                       |              |         |          |           | . = .      | 0.54         |             | 0.67  | (49%) | (15%) | (14%) |         |
| 8    | 1201765  | Ahuriri River – Lake Benmore | j40          | 2363583 | 5603860  | 341.8     | 0.78       | 0.56         | 0.33        | 0.65  | 97%   | 60%   | 33%   |         |
|      |          | Wetland                      |              |         |          |           |            |              |             |       | (49%) | (16%) | (16%) |         |
| 9    | 1201672  | Edwards Stream               | g38          | 2239529 | 5658813  | 226.6     | 0.79       | 0.59         | 0.49        | 0.76  | 97%   | 60%   | 41%   |         |
| 7    | 1201072  | Edwards Stream               | g50          | 2239329 | 5050015  | 220.0     | 0.79       | 0.59         | 0.49        | 0.70  | (49%) | (16%) | (20%) |         |
| 10   | 1201766  | Ben Omar Swamp               | j40          | 2361633 | 5601490  | 261.8     | 0.79       | 0.62         | 0.33        | 0.60  | 97%   | 66%   | 42%   |         |
| 10   | 1201700  | Den Ontar Swamp              | 140          | 2501055 | 5001470  | 201.0     | 0.79       | 0.02         | 0.55        | 0.00  | (49%) | (18%) | (20%) |         |
| 11   | 1201655  | Forks Wetland                | j38          | 2356141 | 5674365  | 158.6     | 0.80       | 0.64         | 0.56        | 0.76  | 97%   | 66%   | 48%   |         |
|      | 1201000  |                              | <u>j</u> 50  | 2550111 | 007 1000 | 100.0     | 0.00       | 0.01         | 0.00        | 0.70  | (49%) | (18%) | (23%) |         |
| 12   | 1201295  | Wolds Swamp                  | i37          | 2297666 | 5687799  | 217.1     | 0.80       | 0.67         | 0.29        | 0.61  | 97%   | 71%   | 48%   |         |
|      |          | I                            |              |         |          |           |            |              |             |       | (49%) | (19%) | (24%) |         |
| 13   | 1201540  | Godley River                 | m36          | 2487317 | 5725235  | 178.8     | 0.81       | 0.69         | 0.53        | 0.76  | 97%   | 71%   | 55%   |         |
|      |          | 5                            |              |         |          |           |            |              |             |       | (49%) | (19%) | (27%) |         |
| 14   | 1201792  | Plateau                      | m36          | 2462717 | 5722935  | 95.0      | 0.81       | 0.70         | 0.96        | 0.76  | 97%   | 71%   | 59%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (49%) | (19%) | (29%) |         |
| 15   | 1200725  | Double Bay                   | h38          | 2279249 | 5670187  | 96.4      | 0.82       | 0.70         | 0.89        | 0.77  | 97%   | 71%   | 62%   |         |
|      |          | -                            |              |         |          |           |            |              |             |       | (49%) | (19%) | (30%) |         |
| 16   | 1200778  | 0                            | k35          | 2380599 | 5762842  | 131.5     | 0.82       | 0.73         | 0.43        | 0.60  | 97%   | 74%   | 62%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (49%) | (20%) | (30%) |         |
| 17   | 1200694  | 0                            | h38          | 2273060 | 5667755  | 91.0      | 0.82       | 0.74         | 0.61        | 0.60  | 97%   | 76%   | 63%   |         |
|      |          |                              |              |         |          |           |            |              |             |       | (49%) | (21%) | (30%) |         |

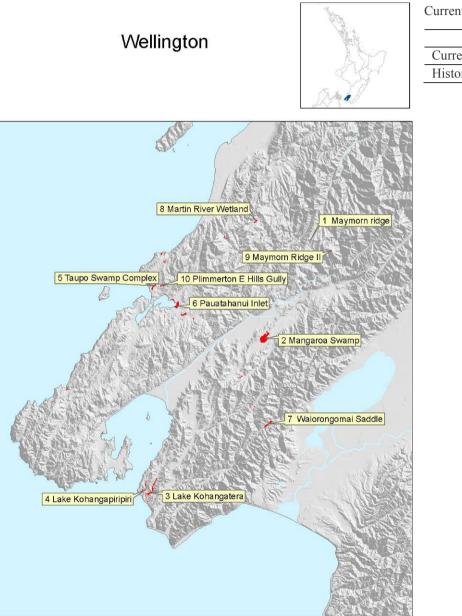
| Rank | Idunique | Names                 | Map   | Easting | Northing | Area (ha) | Cum. | Cum. | EI    | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-----------------------|-------|---------|----------|-----------|------|------|-------|-------|-------|-------|-------|---------|
|      |          |                       | sheet |         |          |           | CE   | area | index |       |       |       |       |         |
| 18   | 1201287  | Glenburn Swamp        | i38   | 2293469 | 5677060  | 128.0     | 0.83 | 0.76 | 0.35  | 0.60  | 97%   | 79%   | 63%   |         |
|      |          |                       |       |         |          |           |      |      |       |       | (49%) | (22%) | (31%) |         |
| 19   | 1201642  | Cass River            | i37   | 2313195 | 5688830  | 61.4      | 0.83 | 0.76 | 0.53  | 0.70  | 97%   | 79%   | 64%   |         |
|      |          |                       |       |         |          |           |      |      |       |       | (49%) | (22%) | (31%) |         |
| 20   | 1201740  | Ribbonwood St Wetland | h39   | 2265452 | 5642744  | 76.7      | 0.83 | 0.77 | 0.54  | 0.76  | 98%   | 79%   | 67%   |         |
|      |          |                       |       |         |          |           |      |      |       |       | (50%) | (22%) | (33%) |         |
| 60   | 1200730  | 0                     | h38   | 2279684 | 5679320  | 6.7       | 0.86 | 0.92 | 0.77  | 0.71  | 98%   | 96%   | 85%   | 2%      |
|      |          |                       |       |         |          |           |      |      |       |       | (50%) | (26%) | (41%) | (1%)    |


| Rank | Idunique | Names                        | Non-naturalness | Non-naturalness | Imperviousness | Nitrate       | Pestiness | Woody | Drainage | EI    |
|------|----------|------------------------------|-----------------|-----------------|----------------|---------------|-----------|-------|----------|-------|
|      |          |                              | in subcatchment | in buffer       |                | leaching risk |           | weeds |          | index |
| 1    | 1201309  | Braemar Road Tussock         | 0.89            | 0.86            | 1              | 0.99          | 1         | 0.99  | 1        | 0.85  |
| 2    | 1200681  | Ohau River delta             | 0.97            | 0.54            | 0.99           | 0.97          | 0.79      | 0.99  | 1        | 0.42  |
| 3    | 1200693  | Ohau River delta             | 0.97            | 0.72            | 1              | 0.97          | 1         | 0.99  | 1        | 0.71  |
| 4    | 1200680  | Ohau River delta             | 0.96            | 0.63            | 0.99           | 0.97          | 0.79      | 0.99  | 1        | 0.50  |
| 5    | 1200679  | Ohau River delta             | 0.96            | 0.80            | 1              | 0.97          | 0.79      | 0.99  | 1        | 0.63  |
| 6    | 1200706  | Dry stream                   | 0.91            | 0.70            | 1              | 1             | 1         | 0.99  | 1        | 0.69  |
| 7    | 1201763  | Mid Ahuriri                  | 0.94            | 0.54            | 0.98           | 0.99          | 0.83      | 0.99  | 1        | 0.44  |
| 8    | 1201765  | Ahuriri River – Lake Benmore | 0.50            | 0.65            | 0.97           | 0.97          | 0.79      | 0.84  | 1        | 0.33  |
|      |          | Wetland                      |                 |                 |                |               |           |       |          |       |
| 9    | 1201672  | Edwards Stream               | 0.72            | 0.59            | 1              | 0.97          | 0.83      | 0.98  | 1        | 0.49  |
| 10   | 1201766  | Ben Omar Swamp               | 0.34            | 0.34            | 1              | 0.97          | 1         | 0.97  | 1        | 0.33  |
| 11   | 1201655  | Forks Wetland                | 0.91            | 0.69            | 0.92           | 0.97          | 0.83      | 0.98  | 1        | 0.56  |
| 12   | 1201295  | Wolds Swamp                  | 0.61            | 0.35            | 1              | 0.98          | 0.84      | 0.98  | 1        | 0.29  |
| 13   | 1201540  | Godley River                 | 0.93            | 0.54            | 1              | 0.97          | 1         | 0.99  | 1        | 0.53  |
| 14   | 1201792  | Plateau                      | 0.99            | 1               | 1              | 0.97          | 1         | 0.99  | 1        | 0.96  |
| 15   | 1200725  | Double Bay                   | 0.96            | 0.90            | 0.99           | 0.98          | 1         | 0.99  | 1        | 0.89  |
| 16   | 1200778  | 0                            | 0.61            | 0.43            | 0.81           | 0.95          | 1         | 0.99  | 1        | 0.43  |
| 17   | 1200694  | 0                            | 0.71            | 0.61            | 0.96           | 0.97          | 1         | 0.99  | 1        | 0.61  |
| 18   | 1201287  | Glenburn Swamp               | 0.36            | 0.41            | 1              | 0.98          | 1         | 0.99  | 1        | 0.35  |
| 19   | 1201642  | Cass River                   | 0.96            | 0.65            | 1              | 0.99          | 0.83      | 0.97  | 1        | 0.53  |
| 20   | 1201740  | Ribbonwood St Wetland        | 0.55            | 0.88            | 1              | 0.99          | 1         | 0.99  | 1        | 0.54  |
| 60   | 1200730  | 0                            | 0.78            | 0.98            | 1              | 0.97          | 1         | 0.99  | 1        | 0.77  |
|      |          |                              |                 |                 |                |               |           |       |          |       |

## 27. Wanganui–Rangitikei

Wanganui - Rangitikei




|               | Total    | Bog   | Fen    | Swamp   | Marsh   | Seepage |
|---------------|----------|-------|--------|---------|---------|---------|
| Current (ha)  | 6849.1   | 0     | 1927.2 | 2337.3  | 2522.4  | 62.3    |
| Historic (ha) | (127233) | (442) | (4283) | (94548) | (27930) | (30)    |

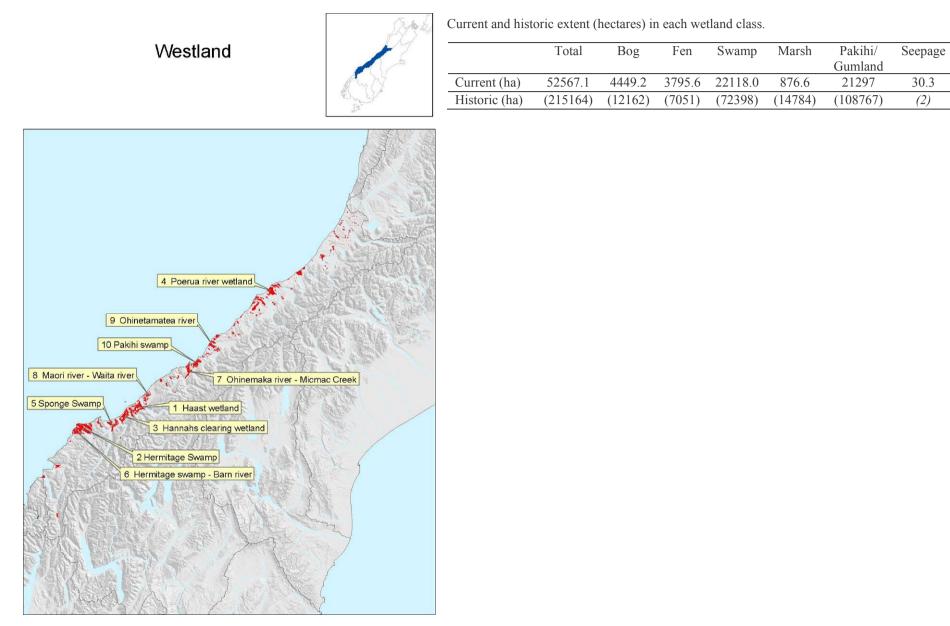


| Rank | Idunique | Names                         | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|---------|
| 1    | 600910   | Waitotara and Hawken's Lagoon | r22          | 2653314 | 6150146  | 213.0        | 0.33       | 0.03         | 0.37        | 0.23  |       | 9%    |       |         |
| 1    | 000910   | wattotara and Hawken's Lagoon | 122          | 2055514 | 0150140  | 215.0        | 0.55       | 0.05         | 0.57        | 0.25  |       | (<1%) |       |         |
| 2    | 501097   | Lake Otamangakau              | t19          | 2737894 | 6240195  | 993.9        | 0.49       | 0.17         | 0.32        | 0.32  |       | 25%   | 24%   |         |
| 2    | 501077   | Lake Otamangakau              | (1)          | 2151074 | 0240175  | )))).)       | 0.77       | 0.17         | 0.52        | 0.52  |       | (1%)  | (2%)  |         |
| 3    | 516141   | Erua bog                      | s20          | 2715407 | 6216143  | 541.2        | 0.57       | 0.25         | 0.68        | 0.38  |       | 25%   | 45%   |         |
| 5    | 510141   | Erua bog                      | 520          | 2/1340/ | 0210145  | 341.2        | 0.57       | 0.25         | 0.00        | 0.56  |       | (1%)  | (4%)  |         |
| 4    | 501124   | Irirangi Swamp                | t21          | 2738483 | 6181773  | 471.9        | 0.62       | 0.32         | 0.54        | 0.53  | 13%   | 31%   | 48%   |         |
| 7    | 501124   | initialigi Swamp              | 121          | 2750405 | 0101775  | Ψ/1.)        | 0.02       | 0.52         | 0.54        | 0.55  | (6%)  | (1%)  | (4%)  |         |
| 5    | 501126   | Ngamatea bog                  | t21          | 2740972 | 6186872  | 339.4        | 0.66       | 0.36         | 0.85        | 0.72  | 30%   | 31%   | 48%   |         |
| 5    | 501120   | riguinatea 005                | 121          | 2/40/72 | 0100072  | 557.4        | 0.00       | 0.50         | 0.05        | 0.72  | (14%) | (1%)  | (4%)  |         |
| 6    | 509572   | Moawhango River Wetland       | t20          | 2762940 | 6206424  | 283.4        | 0.69       | 0.40         | 0.95        | 0.73  | 44%   | 31%   | 48%   |         |
| 0    | 507572   | Wouwhango reiver wonana       | 120          | 2702910 | 0200121  | 205.1        | 0.07       | 0.10         | 0.75        | 0.75  | (21%) | (1%)  | (4%)  |         |
| 7    | 600900   | Lake Rotokare Scenic Reserve  | q20          | 2631602 | 6194117  | 241.6        | 0.70       | 0.44         | 0.39        | 0.32  | 44%   | 35%   | 54%   |         |
| ,    | 000700   |                               | 420          | 2031002 | 0191117  | 211.0        | 0.70       | 0.11         | 0.59        | 0.52  | (21%) | (1%)  | (5%)  |         |
| 8    | 509561   | Makokomiko stream – flaxland  | s19          | 2720552 | 6220726  | 363.6        | 0.72       | 0.49         | 0.57        | 0.70  | 61%   | 35%   | 54%   |         |
| 0    | 507501   | Makokomiko sucumi maxiana     | 517          | 2720352 | 0220720  | 505.0        | 0.72       | 0.17         | 0.07        | 0.70  | (29%) | (1%)  | (5%)  |         |
| 9    | 509539   | Erua forest – flaxland        | s19          | 2715582 | 6224476  | 70.1         | 0.72       | 0.50         | 0.96        | 0.27  | 61%   | 37%   | 55%   |         |
| -    | 000000   |                               | 517          | _,10001 | 0        | / 011        | 0.72       | 0.00         | 0.70        | 0.27  | (29%) | (1%)  | (5%)  |         |
| 10   | 509037   | Waitaanga                     | r18          | 2667686 | 6263547  | 114.3        | 0.73       | 0.52         | 0.48        | 0.24  | 61%   | 41%   | 55%   |         |
| 10   | 00000    | , and Ba                      | 110          | 2007000 | 0200017  | 11110        | 0.75       | 0.02         | 00          | 0.2 . | (29%) | (1%)  | (5%)  |         |
| 11   | 600938   | Rotokohu Scenic Reserve       | r21          | 2663704 | 6186600  | 54.3         | 0.73       | 0.52         | 0.93        | 0.23  | 61%   | 44%   | 55%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (29%) | (1%)  | (5%)  |         |
| 12   | 502999   | Taringomoutu bog              | s18          | 2728188 | 6270159  | 48.4         | 0.74       | 0.53         | 0.96        | 0.25  | 61%   | 45%   | 55%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (29%) | (1%)  | (5%)  |         |
| 13   | 509499   | Waitaanga                     | r18          | 2670972 | 6265060  | 85.5         | 0.74       | 0.54         | 0.49        | 0.24  | 61%   | 48%   | 56%   |         |
| -    |          |                               |              |         |          |              |            |              |             |       | (29%) | (1%)  | (5%)  |         |
| 14   | 509542   | Flaxland                      | s19          | 2726325 | 6222427  | 277.9        | 0.75       | 0.58         | 0.45        | 0.71  | 75%   | 49%   | 56%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (35%) | (1%)  | (5%)  |         |
| 15   | 600896   | Landcorp and Rayonier         | q19          | 2649022 | 6220445  | 115.0        | 0.76       | 0.60         | 0.30        | 0.25  | 75%   | 53%   | 57%   |         |
|      |          | 1 5                           | 1            |         |          |              |            |              |             |       | (35%) | (1%)  | (5%)  |         |
| 16   | 509111   | New site from satellite       | t18          | 2731318 | 6272862  | 31.5         | 0.76       | 0.60         | 0.96        | 0.23  | 75%   | 54%   | 57%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (35%) | (1%)  | (5%)  |         |
| 17   | 509099   | Te Paata Wetland              | s21          | 2722229 | 6189400  | 89.1         | 0.76       | 0.62         | 0.42        | 0.28  | 75%   | 56%   | 58%   |         |
|      |          |                               |              |         |          |              |            |              |             |       | (35%) | (1%)  | (5%)  |         |

| Rank | Idunique | Names                            | Map   | Easting | Northing | Area  | Cum. | Cum. | EI    | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|----------------------------------|-------|---------|----------|-------|------|------|-------|-------|-------|-------|-------|---------|
|      |          |                                  | sheet |         |          | (ha)  | CE   | area | index |       |       |       |       |         |
| 18   | 509577   | Herbaceous Freshwater Vegetation | u20   | 2777671 | 6202447  | 33.6  | 0.76 | 0.62 | 0.96  | 0.27  | 75%   | 58%   | 58%   |         |
|      |          |                                  |       |         |          |       |      |      |       |       | (35%) | (1%)  | (5%)  |         |
| 19   | 501107   | Moawhango River Head             | t20   | 2761532 | 6199629  | 103.0 | 0.77 | 0.64 | 0.94  | 0.73  | 80%   | 58%   | 58%   |         |
|      |          |                                  |       |         |          |       |      |      |       |       | (38%) | (1%)  | (5%)  |         |
| 20   | 500221   | Waitaanga Bush Swamp             | r18   | 2669503 | 6262748  | 67.2  | 0.77 | 0.65 | 0.44  | 0.26  | 80%   | 60%   | 58%   |         |
|      |          |                                  |       |         |          |       |      |      |       |       | (38%) | (2%)  | (5%)  |         |
| 127  | 517807   | Pa Hill Wetland                  | s21   | 2718981 | 6187004  | 13.4  | 0.83 | 0.91 | 0.31  | 0.48  | 97%   | 94%   | 86%   | 3%      |
|      |          |                                  |       |         |          |       |      |      |       |       | (46%) | (2%)  | (8%)  | (-)     |

| Rank | Idunique | Names                            | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|----------------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|-------------|
| 1    | 600910   | Waitotara and Hawken's Lagoon    | 0.80                            | 0.48                         | 1              | 0.98                        | 0.79      | 0.99           | 1        | 0.37        |
| 2    | 501097   | Lake Otamangakau                 | 0.41                            | 0.62                         | 0.93           | 0.97                        | 0.80      | 0.99           | 1        | 0.32        |
| 3    | 516141   | Erua bog                         | 0.94                            | 0.87                         | 0.89           | 0.98                        | 0.80      | 0.99           | 1        | 0.68        |
| 4    | 501124   | Irirangi Swamp                   | 0.65                            | 0.55                         | 0.97           | 0.98                        | 1         | 0.99           | 1        | 0.54        |
| 5    | 501126   | Ngamatea bog                     | 0.97                            | 0.86                         | 0.90           | 0.99                        | 1         | 0.99           | 1        | 0.85        |
| 6    | 509572   | Herbaceous Freshwater Vegetation | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.95        |
| 7    | 600900   | Lake Rotokare Scenic Reserve     | 0.96                            | 0.49                         | 0.94           | 0.98                        | 0.82      | 0.99           | 1        | 0.39        |
| 8    | 509561   | Makokomiko stream – flaxland     | 0.96                            | 0.69                         | 0.93           | 0.99                        | 0.83      | 0.99           | 1        | 0.57        |
| 9    | 509539   | Erua forest –Flaxland            | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96        |
| 10   | 509037   | Waitaanga                        | 0.48                            | 0.90                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.48        |
| 11   | 600938   | Rotokohu Scenic Reserve          | 0.98                            | 0.95                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.93        |
| 12   | 502999   | Taringomoutu bog                 | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96        |
| 13   | 509499   | Waitaanga                        | 0.50                            | 0.66                         | 0.91           | 0.97                        | 1         | 0.99           | 1        | 0.49        |
| 14   | 509542   | Flaxland                         | 0.77                            | 0.55                         | 0.95           | 0.98                        | 0.83      | 0.99           | 1        | 0.45        |
| 15   | 600896   | Landcorp and Rayonier            | 0.31                            | 0.40                         | 0.73           | 0.97                        | 1         | 0.96           | 1        | 0.30        |
| 16   | 509111   | New site from satellite          | 0.99                            | 1                            | 1              | 0.97                        | 1         | 0.99           | 1        | 0.96        |
| 17   | 509099   | Te Paata Wetland                 | 0.77                            | 0.50                         | 0.98           | 0.98                        | 0.84      | 0.99           | 1        | 0.42        |
| 18   | 509577   | Herbaceous Freshwater Vegetation | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96        |
| 19   | 501107   | Moawhango River Head             | 0.98                            | 0.98                         | 0.99           | 0.95                        | 1         | 0.99           | 1        | 0.94        |
| 20   | 500221   | Waitaanga Bush Swamp             | 0.45                            | 0.61                         | 0.92           | 0.96                        | 1         | 0.99           | 1        | 0.44        |
| 127  | 517807   | Pa Hill Wetland                  | 0.31                            | 0.43                         | 0.90           | 0.97                        | 1         | 0.99           | 1        | 0.31        |




|               | Total  | Fen    | Swamp  | Marsh | Seepage |
|---------------|--------|--------|--------|-------|---------|
| Current (ha)  | 472.6  | 11.5   | 397.3  | 49.7  | 14      |
| Historic (ha) | (5834) | (3340) | (2437) | (58)  | (0)     |

| Rank | Idunique | Names                       | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Fen                                           | Swamp        | Marsh        | Seepage   |
|------|----------|-----------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-----------------------------------------------|--------------|--------------|-----------|
| 1    | 801008   | Maymorn Ridge               | s26          | 2691335 | 6020004  | 4.5          | 0.29       | 0.01         | 0.97        | 0.12  | 41%                                           |              |              | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         |              |              | (-)       |
| 2    | 800155   | Mangaroa Swamp              | r27          | 2684200 | 6004817  | 131.6        | 0.60       | 0.28         | 0.43        | 0.48  | 41%                                           | 33%          |              | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (5%)         |              | (-)       |
| 3    | 800220   | Lake Kohangatera            | r27          | 2666787 | 5981464  | 66.8         | 0.69       | 0.41         | 0.69        | 0.48  | 41%                                           | 50%          |              | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | ( %)</td <td>(8%)</td> <td></td> <td>(-)</td> | (8%)         |              | (-)       |
| 4    | 800221   | Lake Kohangapiripiri        | r27          | 2665743 | 5981831  | 22.5         | 0.71       | 0.46         | 0.76        | 0.49  | 41%                                           | 55%          | 0.2%         | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (9%)         | (<1%)        | (-)       |
| 5    | 800129   | Taupo Swamp Complex         | r26          | 2667359 | 6013381  | 41.4         | 0.73       | 0.55         | 0.31        | 0.48  | 41%                                           | 66%          | 0.2%         | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (11%)        | (<1%)        | (-)       |
| 6    | 800138   | Pauatahanui Inlet Saltmarsh | r26          | 2670571 | 6010156  | 47.9         | 0.75       | 0.64         | 0.26        | 0.50  | 41%                                           | 77%          | 3%           | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (13%)        | (3%)         | (-)       |
| 7    | 800201   | Waiorongamai Saddle         | r27          | 2688668 | 5993287  | 27.7         | 0.77       | 0.70         | 0.87        | 0.93  | 41%                                           | 77%          | 44%          | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (13%)        | (50%)        | (-)       |
| 8    | 800097   | Martin River Wetland        | r26          | 2682850 | 6022751  | 8.6          | 0.78       | 0.72         | 0.95        | 0.48  | 41%                                           | 80%          | 44%          | 0.4%      |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (13%)        | (50%)        | (-)       |
| 9    | 800111   | Maymorn Ridge II            | s26          | 2694477 | 6018269  | 4.0          | 0.79       | 0.73         | 0.96        | 0.23  | 72%                                           | 80%          | 44%          | 4%        |
| 1.0  | 000105   |                             |              |         | (0100-0  | 110          | . = .      |              |             |       | (<1%)                                         | (13%)        | (50%)        | (-)       |
| 10   | 800125   | Plimmerton E Hills Gully    | r26          | 2668540 | 6012979  | 14.8         | 0.79       | 0.76         | 0.32        | 0.49  | 72%                                           | 83%          | 44%          | 6%        |
|      | 0000110  |                             |              |         | (000 110 | 10.1         |            | . = .        | 0.00        | 0.54  | (<1%)                                         | (14%)        | (50%)        | (-)       |
| 11   | 800143   | Judgeford gorge bush        | r27          | 2671814 | 6008412  | 18.4         | 0.80       | 0.79         | 0.26        | 0.56  | 72%                                           | 87%          | 49%          | 6%        |
| 10   | 000114   |                             | 2 (          | 2660250 | (015010  | ( )          | 0.00       | 0.01         | 0.50        | 0.55  | (<1%)                                         | (14%)        | (55%)        | (-)       |
| 12   | 800114   | Raroa Reserve Swamp         | r26          | 2668358 | 6017812  | 6.8          | 0.80       | 0.81         | 0.79        | 0.57  | 100%                                          | 87%          | 55%          | 6%        |
| 1.2  | 000105   |                             | 2 (          | 0.0000  | (000100  |              | 0.00       | 0.00         | 0.46        | 0.60  | (<1%)                                         | (14%)        | (62%)        | (6%)      |
| 13   | 800105   | Whakatikei Headwater Swamp  | r26          | 2678207 | 6020190  | 7.4          | 0.80       | 0.82         | 0.46        | 0.60  | 100%                                          | 88%          | 57%          | 6%        |
| 1.4  | 000117   |                             | 2(           | 2((0010 | (01(550  | 7.4          | 0.01       | 0.04         | 0.20        | 0.40  | (<1%)                                         | (14%)        | (65%)        | (-)       |
| 14   | 800117   | Muri Road Wetland           | r26          | 2668818 | 6016550  | 7.4          | 0.81       | 0.84         | 0.30        | 0.48  | 100%                                          | 90%          | 57%          | 6%        |
| 15   | 801011   | 0                           | r27          | 2669536 | 5984660  | 1.9          | 0.81       | 0.84         | 0.93        | 0.48  | (<1%)                                         | (15%)        | (65%)<br>57% | (-)<br>6% |
| 15   | 801011   | 0                           | r27          | 2009330 | 3984000  | 1.9          | 0.81       | 0.84         | 0.93        | 0.48  | 100%                                          | 91%          | 57%<br>(65%) |           |
| 16   | 800190   | Gracefield Scrub            | r27          | 2671495 | 5993866  | 1.7          | 0.81       | 0.84         | 0.97        | 0.48  | (<1%)<br>100%                                 | (15%)<br>91% | (65%)        | (-)<br>6% |
| 10   | 800190   | Gracemena Scrub             | r27          | 20/1493 | 3773800  | 1./          | 0.81       | 0.84         | 0.97        | 0.48  | 100%<br>(<1%)                                 | 91%<br>(15%) | 57%<br>(65%) |           |
| 17   | 200177   | Malson Dur Mth              | r27          | 2652006 | 5006066  | 5.7          | 0.81       | 0.86         | 0.26        | 0.40  | (                                             | < /          | < /          | (-)       |
| 1 /  | 800177   | Makara Rvr Mth              | r27          | 2653806 | 5996966  | 5.7          | 0.81       | 0.80         | 0.26        | 0.49  | 100%                                          | 93%          | 58%          | 6%        |
|      |          |                             |              |         |          |              |            |              |             |       | (<1%)                                         | (15%)        | (65%)        | (-)       |

| Rank | Idunique | Names             | Map   | Easting | Northing | Area | Cum. | Cum. | EI    | HLeft | Fen   | Swamp | Marsh | Seepage |
|------|----------|-------------------|-------|---------|----------|------|------|------|-------|-------|-------|-------|-------|---------|
|      |          |                   | sheet |         |          | (ha) | CE   | area | index |       |       |       |       |         |
| 18   | 800192   | Orongorongo swamp | r27   | 2682462 | 5993818  | 3.2  | 0.81 | 0.86 | 0.96  | 0.94  | 100%  | 93%   | 62%   | 6%      |
|      |          |                   |       |         |          |      |      |      |       |       | (<1%) | (15%) | (70%) | (-)     |
| 19   | 801004   | 0                 | r27   | 2680623 | 5998847  | 4.9  | 0.82 | 0.87 | 0.30  | 0.54  | 100%  | 94%   | 63%   | 6%      |
|      |          |                   |       |         |          |      |      |      |       |       | (<1%) | (15%) | (71%) | (-)     |
| 20   | 800113   | Wairaka gorge     | r26   | 2668809 | 6017798  | 4.1  | 0.82 | 0.88 | 0.31  | 0.48  | 100%  | 95%   | 63%   | 6%      |
|      |          |                   |       |         |          |      |      |      |       |       | (<1%) | (16%) | (71%) | (-)     |

| Rank | Idunique | Names                       | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching<br>risk | Pestiness | Woody<br>weeds | Drainage | EI index |
|------|----------|-----------------------------|---------------------------------|------------------------------|----------------|-----------------------------|-----------|----------------|----------|----------|
| 1    | 801008   | Maymorn Ridge               | 0.99                            | 1                            | 1              | 0.99                        | 1         | 0.99           | 1        | 0.97     |
| 2    | 800155   | Mangaroa Swamp              | 0.44                            | 0.44                         | 1              | 0.88                        | 1         | 0.99           | 1        | 0.43     |
| 3    | 800220   | Lake Kohangatera            | 0.95                            | 0.83                         | 0.99           | 0.98                        | 0.84      | 0.99           | 1        | 0.69     |
| 4    | 800221   | Lake Kohangapiripiri        | 0.86                            | 0.77                         | 0.95           | 0.98                        | 1         | 0.99           | 1        | 0.76     |
| 5    | 800129   | Taupo Swamp Complex         | 0.31                            | 0.74                         | 0.45           | 0.98                        | 1         | 0.98           | 1        | 0.31     |
| 6    | 800138   | Pauatahanui Inlet Saltmarsh | 0.32                            | 0.65                         | 0.55           | 0.97                        | 0.84      | 0.99           | 1        | 0.26     |
| 7    | 800201   | Waiorongomai Saddle         | 0.97                            | 0.89                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.87     |
| 8    | 800097   | Martin River Wetland        | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.95     |
| 9    | 800111   | Maymorn Ridge II            | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 10   | 800125   | Plimmerton E Hills Gully    | 0.32                            | 0.49                         | 1              | 0.96                        | 1         | 0.99           | 1        | 0.32     |
| 11   | 800143   | Judgeford gorge bush        | 0.32                            | 0.52                         | 0.62           | 0.97                        | 0.84      | 0.99           | 1        | 0.26     |
| 12   | 800114   | Raroa Reserve Swamp         | 0.96                            | 0.88                         | 0.84           | 0.99                        | 1         | 0.94           | 1        | 0.79     |
| 13   | 800105   | Whakatikei Headwater Swamp  | 0.55                            | 0.73                         | 1              | 0.98                        | 1         | 0.85           | 1        | 0.46     |
| 14   | 800117   | Muri Road Wetland           | 0.31                            | 0.36                         | 0.74           | 0.96                        | 1         | 0.99           | 1        | 0.30     |
| 15   | 801011   | 0                           | 0.99                            | 0.95                         | 1              | 0.98                        | 1         | 0.99           | 1        | 0.93     |
| 16   | 800190   | Gracefield Scrub            | 0.98                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.97     |
| 17   | 800177   | Makara Rvr Mth              | 0.32                            | 0.57                         | 0.57           | 0.97                        | 0.84      | 0.98           | 1        | 0.26     |
| 18   | 800192   | Orongorongo swamp           | 0.99                            | 1                            | 1              | 0.98                        | 1         | 0.99           | 1        | 0.96     |
| 19   | 801004   | 0                           | 0.30                            | 0.30                         | 0.99           | 0.94                        | 1         | 0.99           | 1        | 0.30     |
| 20   | 800113   | Wairaka gorge               | 0.32                            | 0.68                         | 0.35           | 0.98                        | 1         | 0.99           | 1        | 0.31     |

#### 29. Westland



| Rank | Idunique | Names                              | Map<br>sheet | Easting | Northing | Area<br>(ha) | Cum.<br>CE | Cum.<br>area | EI<br>index | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/<br>gumland | Seepage |
|------|----------|------------------------------------|--------------|---------|----------|--------------|------------|--------------|-------------|-------|-------|-------|-------|-------|--------------------|---------|
| 1    | 1100031  | Haast Wetland                      | f37          | 2190910 | 5699379  | 3569.4       | 0.48       | 0.07         | 0.80        | 0.54  |       |       | 4%    | 1%    | 13%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       |       | (1%)  | (<1%) | (3%)               |         |
| 2    | 1100602  | Hermitage Swamp                    | e38          | 2139936 | 5672602  | 5265.6       | 0.63       | 0.17         | 0.95        | 0.70  |       | 72%   | 15%   | 2%    | 13%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       |       | (38%) | (5%)  | (<1%) | (3%)               |         |
| 3    | 1100025  | Hannahs clearing Wetland           | f37          | 2179873 | 5691453  | 3501.0       | 0.68       | 0.23         | 0.95        | 0.59  | 33%   | 72%   | 17%   | 3%    | 21%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (12%) | (38%) | (5%)  | (<1%) | (4%)               |         |
| 4    | 1100108  | Poerua River Wetland               | i34          | 2305267 | 5785679  | 2795.1       | 0.72       | 0.29         | 0.96        | 0.53  | 34%   | 72%   | 18%   | 3%    | 33%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (12%) | (38%) | (6%)  | (<1%) | (6%)               |         |
| 5    | 1100022  | Sponge Swamp                       | f37          | 2174576 | 5680671  | 2906.3       | 0.75       | 0.34         | 0.80        | 0.55  | 34%   | 72%   | 22%   | 7%    | 42%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (12%) | (38%) | (7%)  | (<1%) | (8%)               |         |
| 6    | 1100603  | Hermitage swamp – Barn River       | 130          | 2438830 | 5902435  | 2557.5       | 0.77       | 0.39         | 0.95        | 0.64  | 34%   | 81%   | 32%   | 7%    | 42%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (12%) | (43%) | (10%) | (<1%) | (8%)               |         |
| 7    | 1100053  | Ohinemaka River – Micmac creek     | g36          | 2233564 | 5727108  | 2341.2       | 0.79       | 0.44         | 0.79        | 0.56  | 34%   | 81%   | 36%   | 8%    | 49%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (12%) | (43%) | (11%) | (<1%) | (10%)              |         |
| 8    | 1100036  | Maori River – Waita River          | g38          | 2218568 | 5671611  | 1990.3       | 0.81       | 0.47         | 0.79        | 0.60  | 36%   | 81%   | 43%   | 17%   | 50%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (13%) | (43%) | (13%) | (1%)  | (10%)              |         |
| 9    | 1100065  | Ohinetamatea River                 | h35          | 2251676 | 5745781  | 1835.4       | 0.82       | 0.51         | 0.80        | 0.56  | 36%   | 81%   | 47%   | 17%   | 54%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (13%) | (43%) | (14%) | (1%)  | (11%)              |         |
| 10   | 1100055  | Pakihi swamp – Lake Kini           | g36          | 2244071 | 5730225  | 2236.9       | 0.83       | 0.55         | 0.80        | 0.65  | 72%   | 81%   | 50%   | 17%   | 54%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (25%) | (43%) | (15%) | (1%)  | (11%)              |         |
| 11   | 1100028  | 0                                  | f37          | 2197466 | 5685929  | 1701.4       | 0.84       | 0.58         | 0.80        | 0.56  | 73%   | 81%   | 52%   | 17%   | 60%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (16%) | (1%)  | (12%)              |         |
| 12   | 1100099  | Added polygon from satellite image | h34          | 2287792 | 5784690  | 1425.3       | 0.85       | 0.61         | 0.79        | 0.53  | 73%   | 81%   | 53%   | 17%   | 66%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (16%) | (1%)  | (13%)              |         |
| 13   | 1100107  | 0                                  | i34          | 2299211 | 5787703  | 1869.3       | 0.86       | 0.65         | 0.69        | 0.61  | 73%   | 81%   | 60%   | 17%   | 67%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (19%) | (1%)  | (13%)              |         |
| 14   | 1100134  | 0                                  | i33          | 2328173 | 5809415  | 1286.7       | 0.87       | 0.67         | 0.72        | 0.58  | 73%   | 81%   | 63%   | 19%   | 69%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (20%) | (1%)  | (14%)              |         |
| 15   | 1100019  | 0                                  | f38          | 2175297 | 5667352  | 807.4        | 0.87       | 0.69         | 0.81        | 0.52  | 73%   | 81%   | 63%   | 19%   | 73%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (20%) | (1%)  | (14%)              |         |
| 16   | 1100068  | 0                                  | h35          | 2261261 | 5752447  | 617.2        | 0.88       | 0.70         | 0.95        | 0.53  | 73%   | 81%   | 64%   | 19%   | 75%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (20%) | (1%)  | (15%)              |         |
| 17   | 1400214  | Waiuna lagoon                      | d39          | 2123640 | 5644092  | 741.8        | 0.88       | 0.71         | 0.81        | 0.59  | 74%   | 81%   | 66%   | 19%   | 76%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (20%) | (1%)  | (15%)              |         |
| 18   | 1100115  | 0                                  | i34          | 2308555 | 5782645  | 808.6        | 0.89       | 0.73         | 0.76        | 0.62  | 74%   | 81%   | 70%   | 19%   | 76%                |         |
|      |          |                                    |              |         |          |              |            |              |             |       | (26%) | (43%) | (21%) | (1%)  | (15%)              |         |

| Rank | Idunique | Names                              | Map   | Easting | Northing | Area  | Cum. | Cum. | EI    | HLeft | Bog   | Fen   | Swamp | Marsh | Pakihi/ | Seepage |
|------|----------|------------------------------------|-------|---------|----------|-------|------|------|-------|-------|-------|-------|-------|-------|---------|---------|
|      |          |                                    | sheet |         |          | (ha)  | CE   | area | index |       |       |       |       |       | gumland |         |
| 19   | 1100018  | Added polygon from satellite image | e38   | 2157985 | 5679026  | 448.7 | 0.89 | 0.74 | 0.96  | 0.76  | 74%   | 93%   | 70%   | 22%   | 76%     |         |
|      |          |                                    |       |         |          |       |      |      |       |       | (26%) | (49%) | (21%) | (1%)  | (15%)   |         |
| 20   | 1400300  | Martins Bay                        | d39   | 2112055 | 5635490  | 405.8 | 0.89 | 0.74 | 0.79  | 0.57  | 74%   | 93%   | 71%   | 22%   | 77%     |         |
|      |          |                                    |       |         |          |       |      |      |       |       | (26%) | (49%) | (22%) | (1%)  | (15%)   |         |
| 120  | 1100037  | 0                                  | g37   | 2222802 | 5684223  | 20.5  | 0.95 | 0.98 | 0.78  | 0.81  | 99%   | 96%   | 99%   | 87%   | 99%     | 9%      |
|      |          |                                    |       |         |          |       |      |      |       |       | (35%) | (51%) | (30%) | (5%)  | (19%)   | (-)     |

| Rank | Idunique | Names                              | Non-naturalness in subcatchment | Non-naturalness<br>in buffer | Imperviousness | Nitrate<br>leaching risk | Pestiness | Woody<br>weeds | Drainage | EI<br>index |
|------|----------|------------------------------------|---------------------------------|------------------------------|----------------|--------------------------|-----------|----------------|----------|-------------|
| 1    | 1100031  | Haast Wetland                      | 0.99                            | 0.99                         | 0.99           | 0.99                     | 0.84      | 0.99           | 1        | 0.80        |
| 2    | 1100602  | Hermitage Swamp                    | 0.98                            | 1                            | 1              | 0.99                     | 1         | 0.99           | 1        | 0.95        |
| 3    | 1100025  | Hannahs clearing Wetland           | 0.98                            | 0.97                         | 1              | 0.98                     | 1         | 0.99           | 1        | 0.95        |
| 4    | 1100108  | Poerua River Wetland               | 0.99                            | 1                            | 0.99           | 1                        | 1         | 0.99           | 1        | 0.96        |
| 5    | 1100022  | Sponge Swamp                       | 0.99                            | 0.96                         | 0.97           | 0.98                     | 0.84      | 0.99           | 1        | 0.80        |
| 6    | 1100603  | Hermitage swamp – Barn River       | 0.98                            | 1                            | 1              | 0.98                     | 1         | 0.99           | 1        | 0.95        |
| 7    | 1100053  | Ohinemaka River – Micmac creek     | 0.98                            | 1                            | 0.96           | 1                        | 0.83      | 0.99           | 1        | 0.79        |
| 8    | 1100036  | Maori River – Waita River          | 0.99                            | 1                            | 0.99           | 0.96                     | 0.84      | 0.99           | 1        | 0.79        |
| 9    | 1100065  | Ohinetamatea River                 | 0.97                            | 1                            | 0.99           | 0.99                     | 0.84      | 0.99           | 1        | 0.80        |
| 10   | 1100055  | Pakihi swamp – Lake Kini           | 0.97                            | 1                            | 0.97           | 0.99                     | 0.84      | 0.99           | 1        | 0.80        |
| 11   | 1100028  | 0                                  | 0.99                            | 1                            | 0.96           | 0.99                     | 0.84      | 0.99           | 1        | 0.80        |
| 12   | 1100099  | Added polygon from satellite image | 0.98                            | 1                            | 1              | 1                        | 0.83      | 0.99           | 1        | 0.79        |
| 13   | 1100107  | 0                                  | 0.95                            | 0.83                         | 1              | 0.98                     | 0.84      | 0.99           | 1        | 0.69        |
| 14   | 1100134  | 0                                  | 0.97                            | 0.74                         | 0.96           | 0.99                     | 1         | 0.98           | 1        | 0.72        |
| 15   | 1100019  | 0                                  | 0.99                            | 1                            | 1              | 0.99                     | 0.84      | 0.99           | 1        | 0.81        |
| 16   | 1100068  | 0                                  | 0.99                            | 1                            | 0.96           | 1                        | 1         | 0.99           | 1        | 0.95        |
| 17   | 1400214  | Waiuna lagoon                      | 0.99                            | 1                            | 1              | 1                        | 0.84      | 0.99           | 1        | 0.81        |
| 18   | 1100115  | 0                                  | 0.96                            | 0.98                         | 0.93           | 0.94                     | 0.84      | 0.99           | 1        | 0.76        |
| 19   | 1100018  | Added polygon from satellite image | 0.99                            | 1                            | 1              | 1                        | 1         | 0.99           | 1        | 0.96        |
| 20   | 1400300  | Martins Bay                        | 0.99                            | 1                            | 1              | 0.99                     | 0.83      | 0.99           | 1        | 0.79        |
| 120  | 1100037  | 0                                  | 0.99                            | 1                            | 0.79           | 0.93                     | 1         | 0.99           | 1        | 0.78        |