This article was downloaded by:

On: 6 January 2010

Access details: Access Details: Free Access
Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

v | International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

International

j?urn al o f Flatness and defect of non-linear systems: introductory theory and
Control | xamples

Michel Fliess # Jean Lévine °; Philippe Martin ¢; Pierre Rouchon ¢

2 Laboratoire des Signaux et Systémes, CNRS-Supélec, Plateau de Moulon, Gif-sur-Yvette Cedex,
France. ® Centre Automatique et Systémes, Ecole des Mines de Paris, Fontainebleau Cedex, France. ¢
Centre Automatique et Systees, Ecole des Mines de Paris, Fontainebleau Cedex, France. ¢ Centre
Automatique et Systémes, Ecole des Mines de Paris, Paris Cedex 06, France.

)

©
]
g
r

To cite this Article Fliess, Michel, Lévine, Jean, Martin, Philippe and Rouchon, Pierre(1995) 'Flatness and defect of non-
linear systems: introductory theory and examples', International Journal of Control, 61: 6, 1327 — 1361

To link to this Article: DOI: 10.1080/00207179508921959
URL: http://dx.doi.org/10.1080/00207179508921959

PLEASE SCROLL DOWN FOR ARTICLE

Full ternms and conditions of use: http://ww.informaworld.confterns-and-conditions-of-access. pdf

This article nay be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, |loan or sub-licensing, systematic supply or
distribution in any formto anyone is expressly forbidden.

The publisher does not give any warranty express or inplied or make any representation that the contents
will be conplete or accurate or up to date. The accuracy of any instructions, fornulae and drug doses
shoul d be independently verified with prinmary sources. The publisher shall not be liable for any |oss,
actions, clainms, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.



http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179508921959
http://www.informaworld.com/terms-and-conditions-of-access.pdf

14:13 6 January 2010

Downl oaded At :

INT. J. CONTROL, 1995, voL. 61, No. 6, 1327-1361

Flatness and defect of non-linear systems: introductory theory and
examples

MICHEL FLIESSt, JEAN LEVINE}, PHILIPPE MARTINS and
PIERRE ROUCHON]||

We introduce flat systems, which are equivalent to linear ones via a special
type of feedback called endogenous. Their physical properties are subsumed by
a linearizing output and they might be regarded as providing another non-
linear extension of Kalman’s controllability. The distance to flatness is
measured by a non-negative integer, the defect. We utilize differential algebra
where flatness and defect are best defined without distinguishing between
input, state, output and other variables. Many realistic classes of examples are
flat. We treat two popular ones: the crane and the car with n trailers, the
motion planning of which is obtained via elementary properties of plane
curves. The three non-flat examples, the simple, double and variable length
pendulums, are borrowed from non-linear physics. A high frequency control
strategy is proposed such that the averaged systems become flat.

1. Introduction

We present here five case-studies: the control of a crane, of the simple,
double and variable length pendulums and the motion planning of a car with
n-trailers. They are all treated within the framework of dynamic feedback
linearization which, contrary to static feedback linearization, has only been
investigated by few authors (Charlet es al. 1989, 1991, Shadwick 1990). Our
point of view will be probably best explained by the following calculations where
all vector fields and functions are real-analytic.

Consider

x=fx,u) (x eR", uekR™ (§3)
where f(0,0) =0 and

rank 22.(0, 0) = m
du

The dynamic feedback linearizability of (1) means, according to Charlet et al.
(1989), the existence of

(a) a regular dynamic compensator
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= a(x, z, v)
b(x,z,v) (zeR% ve R"')} (2)

where 4(0,0,0) =0, b(0,0,0)=0. The regularity assumption implies
the invertibility (see Li and Feng (1987) for a definition of this concept
via the structure algorithm. See Di Benedetto er al. (1989), Delaleau
and Fliess (1992) for a connection with the differential algebraic
approach) of system (2) with input v and output u; and

= o~
|

(b) a diffeomorphism
£=Ex,z) (§eR™) (3)

such that (1) and (2}, whose (n + g)-dimensional dynamics is given by

ﬂLNLLwﬂ

alx, z, v)

It

X

b4
becomes, according to (3), a constant linear controllable system
E=FE+ Gu.

Up to a static state feedback and a linear invertible change of coordinates,
this linear system may be written in Brunovsky canonical form (see, e.g.,
Kailath 1980),

ygul) =0

Y= oy,
where v, ..., v,, are the controllability indices and (y, ..., y%vl_‘), s Vs
cey yf,‘,""")) is another basis of the vector space spanned by the components of
E Set Y=(_y, ... y%v‘_l), s Vs oo YD) thus Y = TE where T is an

invertible (n + ¢) X (n + g) matrix. Otherwise stated, Y = T5(x, z). The inver-

tibility of Z yields
BN @

Thus from (2) u = b(Z"Y(T'Y), v). From v; = y,gv‘), i=1,..., m, u and x
can be expressed as real-analytic functions of the components of y = (yq, ...,
v») and of a finite number of their derivatives:

x= sy, y, ... y“”)} (5)
u=By, y, . ...y"

The dynamic feedback (2) is said to be endogenous if, and only if, the
converse holds, i.e., if, and only if, any component of y can be expressed as a
real-analytic function of x, 1 and a finite number of its derivatives:

Sy =@, u, b, .., u®) ©(6)
Note that, according to (4), this amounts to expressing z as a function of
(x,u, i, .., u"™) for some p. In other words, the dynamic extension does not

contain exogenous variables, which are independent of the original system
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variables and their derivatives. This justifies the word endogenous. Note that
quasi-static feedbacks, introduced in the context of dynamic input-output
decoupling (Delaleau and Fliess 1992), share the same property.

A dynamics (1) which is linearizable via such an endogenous feedback is said
to be (differentially) flat; y, which might be regarded as a fictitious ocutput, is
called a linearizing or flat output. The terminology flat is due to the fact that y
plays a somehow analogous role to the flat coordinates in the differential
geometric approach to the Frobenius theorem (see, e.g., Isidori 1989, Nijmeijer
and van der Schaft 1990). A considerable amount of realistic models are indeed
flat. We treat here two case-studies, namely the crane (D’Andréa-Novel and
Lévine 1990, Marttinen er al. 1990} and the car with » trailers (Murray and
Sastry 1993, Rouchon et al. 1993 a). Notice that the use of a linearizing output
was already known in the context of static state feedback (see Claude {1986) and
Isidori (1989, p. 156)).

One major property of differential flatness is that, due to formulae (5) and
(6), the state and input variables can be directly expressed, without integrating
any differential equation, in terms of the flat output and a finite number of its
derivatives. This general idea can be traced back to works by D. Hilbert
(Hilbert 1912) and E. Cartan (Cartan 1915) on under-determined systems of
differential equations, where the number of equations is strictly less than the
number of unknowns. Let us emphasize on the fact that this property may be
extremely useful when dealing with trajectories: from y trajectories, x and u
trajectories are immediately deduced. We shall detail in the sequel various
applications of this property from motion planning to stabilization of reference
trajectories. The originality of our approach partly relies on the fact that the
same formalism applies to study systems around equilibrium points as well as
around arbitrary trajectories.

As demonstrated by the crane, flatness is best defined by not distinguishing
between input, state, output and other variables. The equations moreover might
be implicit. This standpoint, which matches with Willems’s approach (Willems
1991), is here taken into account by utilizing differential algebra which has
already helped clarifying several questions in control theory (see, e.g., Fliess
1989, 1990 a, Diop 1991, 1992, Fliess and Glad 1993).

Flatness might be seen as another nonlinear extension of Kalman’s controll-
ability. Such an assertion is surprising when having in mind the vast literature on
this subject (see Isidori (1989), Nijmeijer and van der Schaft (1990) and the
references therein). Remember, however, Willems’ trajectory characterization
(Willems 1991) of linear controllability which can be interpreted as the freeness
of the module associated to a linear system (Fliess 1992). A linearizing output
now is the nonlinear analogue of a basis of this free module.

We know from Charlet e a/. (1989) that any single-input dynamics which is
linearizable by a dynamic feedback is also linearizable by a static feedback. This
implies the existence of non-flat systems which verify the strong accessibility
property (Sussmann and Jurdjevic 1972). We introduce a non-negative integer,
the defect, which measures the distance from flatness.

These new concepts and mathematical tools are providing the common
formalism and the underlying structure of five physically motivated case studies.
The first two, i.e., the control of a crane and the motion planning of a car with
n-trailers, which are quite concrete, resort from flat systems. The three others,



14:13 6 January 2010

Downl oaded At :

1330 M. Fliess et al.

i.e., the simple and double Kapitsa pendulums and the variable-length pendulum
exhibit a non-zero defect.

The characterization of the linearizing output in the crane is obvious when
utilizing a non-classic representation, i.e., a mixture of differential and non-
differential equations, where there are no distinctions between the system
variables. It permits a straightforward tracking of a reference trajectory via an
open-loop control. We not only take advantage of the equivalence to a linear
system but also of the decentralized structure created by assuming that the
engines are powerful with respect to the masses of the trolley and the load.

The motion planning of the car with n-trailer is perhaps the most popular
example of path planning of nonholonomic systems (Laumond 1991, Monaco
and Normand-Cyrot 1992, Martin and Rouchon 1993, Murray and Sastry 1993,
Rouchon et al. 1993 a, 1993 b, Tilbury et al. 1993). It is a flat system where the
linearizing output is the middle of the axle of the last trailer. Once the
linearizing output is determined, the path planning problem becomes particularly
easy: the reference trajectory as well as the corresponding open-loop control can
be expressed in terms of the linearizing output and a finite number of its
derivatives. Let us stress that no differential equations need to be integrated to
obtain the open-loop control. The relative motions of the various components of
the system are then obtained thanks to elementary geometric properties of plane
curves. The resulting calculations, which are presented in the two-trailer case,
are very fast and have been implemented on a standard personal microcomputer
under MATLAB.

The control of the three non-flat systems is based on high frequency control
and approximations by averaged and flat systems—for other approaches, see,
e.g. Meerkov (1980), Bentsman (1987), Baillieul (1993). We exploit here an idea
due to the Russian physicist Kapitsa (Landau and Lifshitz 1982, Bogaevski and
Povzner 1991) for stabilizing these three systems in the neighborhood of quite
arbitrary positions and trajectories, and in particular positions which are not
equilibrium points. This idea is closely related to a curiosity of classical
mechanics that a double inverted pendulum (Stephenson 1908), and even the N
linked pendulums which are inverted and balanced on top of one another
(Acheson 1993), can be stabilized in the same way. Closed-loop stabilization
around reference averaged trajectories becomes straightforward by utilizing the
endogenous feedback equivalence to linear controllable systems.

The paper is organized as follows. After some differential algebraic prelimi-
naries, we define equivalence by endogenous feedback, flatness and defect.
Their implications for uncontrolled dynamics and linear systems are examined.
We discuss the link between flatness and controllability. In order to verify that
some systems are not linearizable by dynamic feedback, we demonstrate a
necessary condition of flatness, which is of a geometric nature. The last two
sections are devoted respectively to the flat and non-flat examples.

First drafts of various parts of this article have been presented in Fliess ef al.
(1991, 1992 a, b, 1993 b, c).

2. The algebraic framework

We consider variables related by algebraic differential equations. We start
with a brief review of differential fields (see also Fliess 1990 a4, Fliess and Glad
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1993) and we refer to the books of Ritt (Ritt 1950) and Kolchin (Kolchin 1973)
and Seidenberg’s paper (Seidenberg 1952) for details. Basics on the customary
(non-differential) field theory may be found in the textbooks by Jacobson (1985)
and Winter {1974)—see also Fliess (1990 a) and Fliess and Glad (1993); they will
not be repeated here.

2.1. Basics on differential fields
An (ordinary) differential ring R is a commutative ring equipped with a
single derivation d/dt = - such that

VaeR, a=3% cg

dt

VYa, b € R, di(a+b)=d+5
i

—c-l-(ab) = ab + ab
ds

A constant ce€ R is an element such that ¢ =0. A ring of constants only
contains constant elements. An (ordinary) differential field is an (ordinary)
differential ring which is a field.

A differential field extension L/K is given by two differential fields, K and
L, such that K C L and such that the restriction to K of the derivation of L
coincides with the derivation of K.

An element £ € L is said to be differentially K-algebraic if, and only if, it
satisfies an algebraic differential equation over K, i.e., if there exists a
polynomial 7€ K[xg,x,...,x,], 7#0, such that w( &, ...,EM)=0. The
extension L/K is said to be differentially algebraic if, and only if, any element
of L is differentially K-algebraic.

An element § € L is said to be differentially K-transcendental if, and only if,
it is not differentially K-algebraic. The extension L/K is said to be differentially
transcendental if, and only if, there exists at least one element of L that is
differentially K-transcendental.

A set {§]i € I'} of elements in L is said to be differentially K -algebraically
independent if, and only if, the set of derivatives of any order, {£]ie I,
v=0,1,2,...}, is K-algebraically independent. Such an independent set which
is maximal with respect to inclusion is called a differential transcendence basis of
L/K. Two such bases have the same cardinality, i.e., the same number of
elements, which is called the differential transcendence degree of L/K: it is
denoted by difftrd’L/K. Notice that L/K is differentially algebraic if, and only
if, difftrd®L/K = 0.

Theorem 1: For a finitely generated differential extension L/K, the next two
properties are equivalent:

(i) L/K is differentially algebraic;

(ii) the (non-differential} transcendence degree of L/K is finite, i.e.; trd®L/
K < oo,

More details and some examples may be found in Fliess and Glad (1993).
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2.2. Systemst

Let k be a given differential ground field. A system is a finitely generated
differential extension %/k%. Such a definition corresponds to a finite number of
quantities. which are related by a finite number of algebraic differential equa-
tions over k§. We do not distinguish in this setting between input, state, output
and other types of variables. The differential order of the system %/k is the
differential transcendence degree of thie extension ®/k.

Example: Set k=R; @®/k is the differential field generated by the four
unknowns x|, x;, x3, x4 related by the two algebraic differential equations:

x'l + f3i’4 = 0, fz + (X] + f3X4)X4 =0 (7)

Clearly, difftrd®®/k = 2: it is equal to the number of unknowns minus the
number of equations. O

Denote by k& {u) the differential field generated by & and by a finite set
u=(uy,... u,) of differential k-indeterminates: u,, ..., u, are differentially
k-algebraically independent, i.e. difftrd®k {u)/k = m. A dynamics with (inde-
pendent) input u is a finitely generated differentially algebraic extension
B/k{u). Note that the number m of independent input channels is equal to the
differential order of the corresponding system ®/k. An output y = (y1,.. ., y,)
is a finite set of differential quantities in 9.

According to theorem 1, there exists a finite transcendence basis x =
(xy,. .., x,) of @/k{u). Consequently, any component of ¥ = (&,, ..., %,) and
of y is k{u)-algebraically dependent on x, which plays the role of a (general-
ized) state. This yields: .

Al(il, X, U, l:l, e ey M(n'!)) =0

A,,(.X-',” X, U, u, e u(“n)) =10

[ (8)
Bi(yt, x,u, 1, ..., uPy=0

Bp(y,n X, u,u, ..., u(ﬁﬂ)) =0 |

where the A;s and Bjs are polynomial over k. The integer n is the dimension of
the dynamics @/k(u). We refer to Fliess and Hasler (1990) and Fliess et al.
(1993 a) for a discussion of such generalized state-variable representations (8)
and their relevance to practice.

+ See also Fliess (1990 &), Fliess and Glad (1993).

tTwo systems @/k and Gk are, of course, identified if, and only if, there exists a
diffcrential k-isomorphism between them (a differential k-isomorphism commutes with d/d:
and preserves every element of k).

§ It is a standard fact in classic commutative algebra and algebraic geometry (cf. Hartshorne
1977) that one needs prime ideals for interpreting "concrete’ equations in the language of field
theory. In our differential setting, we of course need differential prime ideals—see Kolchin
(1973) and also Fliess and Glad (1993) for an elementary exposition. The verification of the
prime character of the differential ideals corresponding to all our examples is donc in
Appendix A.
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Example (continued): Set u; =x; and u, =X%,;. The extension @/R{u) is
differentially algebraic and yields the representation

A.f] = —uluz
Xy = —(xy + dxg)xy 9)
Xy = .

The dimension of the dynamics is 3 and (xy, x5, x;)} is a generalized state. It
would be 5 if we set u; = X3 and u, = X4, and the corresponding representation
becomes causal in the classical sense, O

Remark 1: Take the dynamics @/k(u) and a finitely generated algebraic
extension %/%. The two dynamics 9/k{u) and D/k{u), which are of course
equivalent, have the same dimension and can be given the same state variable
representation (11). In the sequel, a system @/k{u) will be defined up to a
finitely generated algebraic extension of %. |

2.3, Modules and linear systems (see also Fliess 1990 b)

Differential fields are too general for linear systems which are specified by
linear differential equations. They are thus replaced by the following appropriate
modules.

Let k be again a given differential ground field. Denote by k[d/d¢] the ring
of linear differential operators of the type

S an L

finite dr®

(aq € k)

This ring is commutative if, and only if, &k is a field of constants. Nevertheless,
in the general non-commutative case, k[d/d¢] is still a principal ideal ring and
the most important properties of left k[d/d¢]-modules mimic those of modules
over commutative principal ideal rings—see Cohn (1985).

Let M be a left k[d/df}-module. An element m € M is said to be torsion if,
and only if, there exists 7 € k[d/d¢], 7 # 0, such that 7-m = 0. The set of all
torsion elements of M is a submodule T, which is called the torsion submodule
of M. The module M is said to be torsion if, and only if, M = T. The following
result can be regarded as the linear counterpart of theorem 1.

Proposition 1:  For a finitely generated left k[d/dt]-module M, the next two
properties are equivalent:

(i) M is torsion;
(ii) the dimension of M as a k-vector space is finite.

A finitely generated module M is free if, and only if, its torsion submodule
T is trivial, i.e. T = {0} (this is not the usual definition of free modules, but a
characterization which holds for finitely generated modules over principal ideal
rings, where any torsion-free module is free—see Cohn (1985)). Any finitely
generated module M can be written M =T @ @ where T is the torsion
submodule of M and @ is a free module. The rank of M, denoted by rk M, is
the cardinality of any basis of @. Thus, M is torsion if, and only if, tk M = 0.
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A linear system is, by definition, a finitely generated left k[d/d¢]-module A.
We are thus dealing with a finite number of variables which are related by a
finite number of linear homogeneous differential equations. The differential
order of A is the rank of A.

A linear dynamics with input u = (uy, ..., u,,) is a linear system A which
contains u such that the quotient module A/[u] is torsion, where [«] denotes the
left k[d/d¢]-module spanned by the components of u. The input is assumed to
be independent, i.e., the module [u] is free. This implies that the differential
order of A is equal to m. A classical Kalman state variable representation is

always possible:
d X X1 Uy
—| i =A|: |+ B|: (10)
dr x, X, L

where the dimension n of the state x =(xq,...,x,), which is called the
dimension of the dynamics, is equal to the dimension of the torsion module
A/[u] as a k-vector space, and the matrices A and B, of appropriate sizes, have
their entries in k.

An output y =(y;, ..., ¥,) is a set of elements in A. It leads to the following

output map:
Y1 X1 dv Uy
tl=cli|=3 b |
Yp X finite dr” Uy,

The controllability of (10) can be expressed in a module-theoretical language
which is independent of any denomination of variables. Controllability is
equivalent to the freeness of the module A, This is just an algebraic counterpart
(Fliess 1992) of Willems’s trajectory characterization (Willems 1991). When the
system is uncontrollable, the torsion submodule corresponds to the Kalman
unceontrollability subspace.

Remark 2: The relationship with the general differential field setting is ob-
tained by producing a formal multiplication. The symmetric tensor product
(Jacobson 1985) of a linear system A, where A is viewed as a k-vector space, is
an integral differential ring. Its quotient field @, which is a differential field,
corresponds to the non-linear field theoretic description of linear systems. a

2.4. Differentials and rangent linear systems

Differential calculus, which plays such a role in analysis-and in differential
geometry, admits a nice analogue in commutative algebra (Hartshorne 1977,
Winter 1974), which has been extended to differential algebra by Johnson
(Johnson 1969).

To a finitely generated extension L/K, associate a mapping d;jx: L — Q) k.
called (Kéhler) differentialf and where £, is a finitely generated left

T For any a € L, dyjxa should be intuitively understood, like in analysis and differential
geometry, as a ‘small’ variation of a.
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L [d/dt]-module, such that

da d
= —(d. jxa
d[) dt( L/k@)

Va, bel dL/K(a + b) = dL/Ka + dL/Kb

Vae L dL/K(

dL/K(ab) = de/Ka + ad,_/Kb
Yee K dL/KC = 0.

Elements of K behave like constants with respect to dj k. Properties of the
extension L/K can be translated into the linear module-theoretic framework
of QL/K

(a) a set £€=(&,...,&5,) is a differential transcendence basis of L/K
if, and only if, dL/K§ GYITI TS dL/Kgm) is a maximal set of
L[d/d{]-linearly independent elements in Q2 /k, thus, differd®L/K =
k €21/

(b) the extension L/K is differentially algebraic if, and only if, the module
Qyx is torsion. A set x = (x1,...,x,) is a transcendence basis of L/K
if, and only if, dy/xkx =(dyxx1,.. ., drxx,) is a basis of Q,x as

L-vector space;
{(c) the extension L/K is algebraic if, and only if, £,k is trivial, i.e.,
QL/K = {0}.

The tangent (or variational) linear system associated to the system @/k is the
left @[d/dr]-module €5 To a dynamics B/k{u) is associated the tangent (or
variational) dynamics £ with the tangent (or variational) input d;u =
(dysxuy, ..., dpjxi,). The tangent (or variational) output associated to y =
(s -~ ypyisdyy =gy, - Ak ).

3. Equivalence, flatness and defect
3.1. Equivalence of systems and endogenous feedback

Two systems ®B/k and @/k are said to be equivalent or equivalent by
endogenous feedback if, and only if, any element of @ (resp. %) is algebraic
over & (resp. @)t. Two dynamics, @/k{u) and &/k(ii), are said to be
equivalent if, and only if, the corresponding systems, %/k and %/k, are so.

Proposition 2: Tweo equivalent systems (resp. dynamics) possess the same dif-
ferential order, i.e., the same number of independent input channels.

Proof: Denote by K the differential field generated by @ and %: K/® and
K /% are algebraic extensions. Therefore,

difftr d°@/k = difftr d°K /k = difftr d°3@/k 0O

Consider two equivalent dynamics, @/k{u) and @/k{i}. Let n (resp. 7) be

1 According to the second footnote to § 2.2, this definition of equivalence can also be read
as follows: two systems Eb/k and G/k are equivalent if, and only if, there exist two differential
extensions ©/® and D/ which are algebraic (in the usual sense), and a differential
k-automorphism @ between D/k and ©/k.
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the dimension of @/k{u) (resp. &/k(&i)). In general, n # . Write
A, x,u, i, oo, u™N) =0, i=1,...,n (1)

and

a3

Ax, %, 06, ,...,0 =0 i=1,...,

(12)

the generalized state variable representations of @/k(u) and @/g(ﬁ), respect-
ively. The algebraicity of any element of @ (repectively &) over & (respectively
%) yields the following relationships between (11) and (12):

ou, ¥, 08, %, ..., 0"N=0 i=1,...,m
¥ iU )y = =
aw(xmx,u,u,...,u-) 0 ao=1,...,n (13)
@i, x,u,a, ..., u™=0 i=1...,m
Fo(Far X,y tt, .., ufN=0 a=1,..., 5

where the g;s, 0.8, §;s and &,s are polynomials over k.

The two dynamic feedbacks corresponding to (13) are called endogenous as
they do not necessitate the introduction of any variable that is transcendental
over @ and & —see also Martin (1992). If we know ¥ (resp. x), we can calculate
u (respectively i) from i (respectively u) without integrating any differential
equation. The relationship with general dynamic feedbacks is given in Appen-
dix B.

Remark 3: The tangent linear systems (see § 2.4) of two equivalent systems are
strongly related and, in fact, are ‘almost identical’. Take two equivalent systems
9, /k and D,/k and denote by % the smallest algebraic extension of @; and %,.
It is straightforward to check that the three left @[d/d¢]-modules g,
D Qg, g,k and D Rg, 25,/ are isomorphic (see Hartshorne 1977, Jacobson
1985). a

3.2. Flatness and defect

As in the non-differential case, a differential extension L/K is said to be
purely differentially transcendental if, and only if, there exists a differential
transcendence basis £ = {&]i € I} of L/K such that L = K(&). A system @/k is
called purely differentially transcendental if, and only if, the extension &/k is so.

A system B/k is called (differentially) flat if, and only if, it is equivalent to a
purely differentially transcendental system L/k. A differential transcendence
basis y = (yy, ..., ym) of L/k such that L = k(y) is called a linearizing or flat
output of the system %/k.

Example (continued): Let us prove that y = (y,, y;) with
(x1 + Faxg)
2§
is a linearizing output for (7). Set ¢ = x; + ¥3x,. Differentiating y; =x, +
a?/2y§’, we have, using (7), 0> = =25 (y5)?/y5"). Thus x, = y; — (0?/2y%”)

is an algebraic function of (y;, ¥, y3', yg4)). Since x4 = —(x;/0) and x; = 0 —

¥a2x4, x4 and x, are algebraic functions of (y;, y;, ¥, ¥2, yf), y%‘”, y§5)).

yY=x-+ s Y2 = X3
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Remark there exist many other linearizing outputs such as ¥ = (¥, ¥;) =
(2y1y(23), ¥2), the inverse transformation being y = (91/2%3), ). O

Take an arbitrary system 9/k of differential order m. Among all the possible
choices of sets z =(zy,...,2,) of m differential k-indeterminates which are
algebraic over @, take one such that trd’®(z)/k(z) is minimum, say &. This
integer § is called the defect of the system %/k. The next result is obvious.

Proposition 3: A system %/k is flat if, and only if, iis defect is zero.

Example: The defect of the system generated by x; and x, satisfying X, =
x{ + (¥,)° is 1. Its general solution cannot be expressed without the integration
of, at least, one differential equation. O

3.3. Basic examples

3.3.1. Uncontrolled dynamical systems. An uncontrolled dynamical system is, in
our field-theoretic language {(Flicss 1990 @), a finitely generated differentially
algebraic extension @/k: difftrd’®/k =0 implies the non-existence of any
differential k-indeterminate algebraic over 9. Thus, the defect of @/k is equal
to trd®®/k, i.e., to the dimension of the dynamical system 9%/k, which
corresponds to the state variable representation A;(x;,x) =0, where x =
(x1,...,x,) is a transcendence basis of %/k. Flatness means that @/k is
algebraic in the (non-differential) sense: the dynamics %/k is then said to be
trivial.

3.3.2. Linear systems. The defect of A is, by definition, the defect of its
associated differential field extension @/k (see remark 2).

Theorem 2: The defect of a linear system is equal to the dimension of its torsion
submodule, i.e., to the dimension of its Kalman uncontrollable subspace. A linear
system is flat if, and only if, it is controllable.

Proof: Take the decomposition A =T @ @, of §2.3, where T is the torsion
submodule and @ a free module. A basis b = (by,. .., b,;) of @ plays the role
of a linearizing output when A is free: the system then is flat. When T # {0},
the differential field extension J/k generated by T is differentially algebraic and
its (non-differential) transcendence degree is equal to the dimension of T as
k-vector space. The conclusion follows at once. O

Remark 4: The above arguments can be made more concrete by considering a
linear dynamics over R. If it is controllable, we may write it, up to a static
feedback, in its Brunovsky canonical form:

Y = =1, m)

where the v;s are the controllability indices and y = (y;, . . ., y») 15 a linearizing
output. In the uncontrollable case, the defect d is the dimension of the

uncontrollable subspace:
51 gl
417 = M|
drig, £

where M is a d X d matrix over R. O
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3.4. A necessary condition for flatness
Consider the system @/k where @ = k(w) is generated by a finite set

w=(wy, ..., w,). The w;s are related by a finite set, Z(w, w, ..., w(?) =0, of

algebraic differential equations. Define the algebraic variety § corresponding to

Z(E% ..., EY) =0 in the (v + 1)g-dimensional affine space with coordinates
5”:(5{""3 é)’ j=0,1!"'!v

Theorem 3:  If the system D/k is flat, the affine algebraic variety S contains at
each regular point a straight line parallel 10 the E-axes.

Proof: The components of w, w, ..., w{""D are algebraically dependent on the
components of a linearizing output y = (yy, ..., y,) and a finite number of their
derivatives. Let u be the highest order of these derivatives. The components of
w(" depend linearly on the components of y®*!) which play the role of

independent parameters for the coordinates &7, . . ., E;. O

The above condition is not sufficient. Consider the system %/R generated by
(%, x5, x3) satisfying ¥, = (X,)* + {¥3)°. This system does not satisfy the neces-
sary condition: it is not flat. The same system % can be defined via the
quantities (x;, x5, x3, x,) related by ¥; = (x,)* + (¥3)° and x4, = %;. Those new
equations now satisfy our necessary criterion.

3.5. Flatness and controllability

Sussmann and Jurdjevic (1972} have introduced the concept of strong
accessibility for dynamics of the form % = f(x, u) in the differential geometric
setting. Sontag (1988) showed that strong accessibility implies the existence of
controls such that the linearized system around a trajectory passing through a
point a of the state-space is controllable. Sontag (1992) and Coron (1994)
demonstrated that, for any a, those controls are generic.

The above considerations with those of §§ 2.3 and 2.4 lead in our context to
the following definition of controllability, which is independent of any distinction
between variables: a system %/k is said to be controllable (or strongly
accessible) if, and only if, its tangent linear system is controllable, i.e., if, and
only if, the module g, is free.

Remark 3 shows that this definition is invariant under our equivalence via
endogenous feedback.

Proposition4: A flar system is controllable.

Proof: It suffices to prove it for a purely differentially transcendental extension
k(y)/k, where y =(y,..., ¥n). The module £;(,y,, which is spanned by
di(y)/kY1s - - 5 Ar(y)/kYm, 18 necessarily free. O

The converse is false as demonstrated by numerous examples of strongly
accessible single-input dynamics ¥ = f(x, u) which are not linearizable by static
feedback and therefore neither by dynamic ones (Charlet e al. 1989).

Flatness which is equivalent to the possibility of expressing any element of
the system as a function of the linearizing output and a finite number of its
derivatives, may be viewed as the non-linear extension of linear controllability,
if the latter is characterized by free modules. Whereas the strong accessibility
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property only is an ‘infinitesimal’ generalization of linear controllability, flatness
should be viewed as a more ‘global’ and, perhaps, as a more tractable one. This
will be enhanced in § 5 where controllable systems of non-zero defect are treated
using high-frequency control that enables them to be approximated by flat
systems for which the control design is straightforward.

4. Examples and control of flat systems

The verification of the prime character of the differential ideals correspond-
ing to all our examples is done in appendix A. This means that the equations
defining all our examples can be rigorously interpreted in the language of
differential field theory.

4.1. The 2-D crane

Consider the crane displayed in Fig. 1 which is a classical object of control .
study (see, e.g., D’Andréa-Novel and Lévine 1990, Marttinen et al. 1990). The
dynamics can be divided into two parts. The first part corresponds to the motor
drives and industrial controllers for trolley travels and rolling up and down the
rope. The second part is relative to the trolley load, the behaviour of which is
very similar to the pendulum case. We concentrate here on the pendulum
dynamics by assuming that

(a) the traversing and hoisting are control variables;

(b) the trolley load remains in a fixed vertical plane OXZ;

(¢} the rope dynamics are negligible.

A dynamic model of the load can be derived by Lagrangian formalism. It can
also be obtained, in a very simple way, by writing down all the differential

(Newton law) and algebraic (geometric constraints) equations describing the
pendulum behaviour:

mi = —Tsin@
mi=—-Tcos0 + mg
(14)
x= Rsin6 + D
z= Rcos8

Sttt £

Figure 1. The two dimensional crane.



14:13 6 January 2010

Downl oaded At :

1340 M. Fliess et al.

where

(i) (x, 2) (the coordinates of the load m), T (the tension of the rope) and 8
{the angle between the rope and the vertical axis OZ) are the unknown
variables;

(ii) D (the trolley position) and R (the rope length) are the input variables.

From (14), it is clear that sin 8, T, D and R are algebraic functions of (x, z)
and their derivatives:

sing = =L 7= ZHEZE (5 g - D) = £z
(x - D) + = R?
that is
D=x— Xz
P
R2=12+( N )2 (15)
22— 8

Thus, system (14) is flat with (x, z) as linearizing output.

Remark 5:  Assume that the modelling equations (14) are completed with the
following traversing and hoisting dynamics;
MD=%F - AD + Tsin@
., . 6
Th=¢-tR-1p (16)
o p
where the new variables ¥ and € are, respectively the external force applied to
the trolley and the hoisting torque. The other quantities (M, J, p, A, u) are
constant physical parameters. Then (14), (16) is also flat with the same
linearizing output (x, z). This explains without any additional computation why
the system considered in D’Andréa-Novel and Lévine (1990) is linearizable via
dynamic feedback. 0O

Let us now address the following question which is one of the basic control
problems for a crane: how can one carry a load m from the steady-state
R=R >0and D= D, at time ¢, to the steady-state R=R,>0and D= D,
at time t; > ,?

It is clear that any motion of the load induces oscillations that must be
canceled at the end of the load transport. We propose here a very simple answer
to this question when the crane can be described by (14). This answer just
consists in using (15).

Consider a smooth curve [t1, 3] 3 r — (a(2), y(r)) € R X |0, + o[ such that

(a) for i =1, 2, (a(), v(1)) = (D, Ry), and d"/dr" (e, ¥)(1;) =0 with r =1,
2,3, 4.

(b) for all 1 € [1y, t;], ¥{t) < g.

Then the solution of (14) starting at time ¢; from the steady-state D; and R,
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and with the control trajectory defined, for r € ¢y, £5], by

D(1) = alr) — —j((l‘)”_(’;

. 12 (17)
R = [ + (20T
y() — g

and, for ¢>1, by {D(), R(t))=(D2, R;), leads to a load trajectory
t— (x(2), z(£)) such that (x(1), z(t)) = (a(t), y(¢}) for te[ty, 4] and
(x(1), z(1)) = (D3, Ry) for t = ;. Notice that, since for all ¢ € [1y, 3], Z(r) < g,
the rope tension 7 = (mR(g — £)/z) always remains positive and the description
of the system by (14) remains reasonable.

The generalized state variable description of the system is the following
(Fliess ef al. 1991, 1993 a):

RO = ~2RO — DcosB — gsin

Since & and y are smooth, D and R are at least twice continuously differenti-
able. Thus, the classical existence and uniqueness theorem ensures that the
above ordinary differential equation admits a unique smooth solution that is
nothing but 6(¢) = arctan (a(t) — D(£))/y(1)).

The approximation of the crane dynamics by (14) implies that the motor
drives and industrial low-level controllers (trolley travels and rolling up and
down the rope) produce fast and stable dynamics (see remark 5). Thus, if these
dynamics are stable and fast enough, classical results of singular perturbation
theory of ordinary differential equation (see, e.g., Tikhonov et al. 1980}, imply
that the control (17) leads to a final configuration close to the steady-state
defined by D; and R,.

In the simulations displayed here below, we have verified that the addition of
reasonable fast and stable regulator dynamics modifies only slightly the final
position (R, D;). Classical proportional-integral controller for D and R are
added to (14). The typical regulator time constants are equal to one tenth of the
period of small oscillations (127V R/g = 0-3 s) (see Fliess et al. 1991).

For the simulations presented in Fig. 2, the transport of the load m may be
considered as a rather fast one: the horizontal motion of D is of 10 m in 3-55;
the vertical motion of R is up to 5m in 3:5s. Compared with the low-level
regulator time constants (0-1 and (-3 s), such motions are not negligible. This
explains the transient mismatch between the ideal and non-ideal cases. Never-
theless, the final control performances are not seriously altered: the residual
oscillations of the load after 7s admit less than 3 cm of horizontal amplitude.
Such small residual oscillations can be canceled via a simple PID regulator with
the vertical deviation 6 as input and the set-point of D as output.

The simulations illustrate the importance of the linearizing output (x, z).
When the regulations of R and D are suitably designed, it is possible to use the
control given in (17) for fast transports of the load m from one point to another.
The simplicity and the independence of (17) with respect to the system
parameters (except g) constitute its main practical interests.

Remark 6: Similar calculations can be performed when a second horizontal
direction OX,, orthogonal to OX, = OX, is considered. Denoting then by
(x1, x2, z) the cartesian coordinates of the load, R the rope length and (D, D;)
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Figure 2. Simulation of the control defined by (17) without (sclid lines) and with (dot lines)
ideal low-level controllers for D and R.

the trolley horizontal position, the system is described by
(Z — gy — D))= %1z
(2 — g)x2 — Dy) = X2z

(x1 = D1)* + (x, — D)* + 22 = R?

This system is clearly flat with the cartesian coordinates of the load, (x;, x5, z),
as flat output. 0

Remark 7: In D’Andréa-Novel et al. (1992 b), the control of a body of mass m
around a rotation axle A of constant direction is investigated. This system is flat
as a consequence of the following considerations. According to an old result due
to Huygens (see, e.g. Whittaker 1937, p. 131-132), the equations describing the
motion are equivalent to those of a pendulum of the same mass m and of length
| = J/md where d # 0 is the vertical distance between the mass center G and
the axle A, J is the inertial moment around A. Denoting by u and v,
respectively, the vertical and horizontal positions of A, the equations of motion
are the following (compare to (15)):
i _iv—g

u—x v-—z
(u~xP+@=-2P="0

where (x,z) are the horizontal and vertical coordinates of the Huygens
oscillation center. Clearly (x, z) is a linearizing output. O

Remark 8: The examples corresponding to the crane, Huygens’ oscillation
center (see remark 7) and the car with n-trailers below, illustrate the fact that
linearizing outputs most admit a clear physical interpretation. O
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4.2, The car with n-trailers

4.2.1. Modeling equations. Steering a car with n trailers is now the object of
active researches (Laumond 1991, Monaco and Normand-Cyrot 1992, Murray
and Sastry 1993, Rouchon et al. 1993 a, Tilbury et al. 1993). The flatness of a
basic model (more realistic models where trailer i is not directly hitched to the
center of the axle of trailer i — 1 are considered by Martin and Rouchon 1993
and Rouchon er al. 1993 b) of this system combined with the use of Frénet
formula lead to a complete and simple solution of the motion planning problem
without obstacles. Notice that most of non-holonomic mobile robots are flat
(D’Andréa-Novel ez al. 1992 a, Campion et al. 1992).

The hitch of trailer i is attached to the centre of the rear axle of trailer i — 1.
The wheels are aligned with the body of the trailer. The two control inputs are
the driving velocity (of the rear wheels of the car) and the steering velocity (of
the front wheels of the car). The constraints are based on allowing the wheels to
roll and spin without slipping. For the steering front wheels of the car, the
derivation is simplified by assuming them as a single wheel at the midpoint of
the axle. The resulting dynamics are described by the following equations (the
notations are those of Murray and Sastry (1993} and are summarized on Fig. 3):

Xq = Uy cos By
YO = Uy sin 60

¢ = up
= —tan
0 dO

. uy {71
0; = —1( COS(B]‘_I - 91)) sin (3,'_1 - 9,) fori = 1, R

j=1

i

where (xq, yo, @, 8, - - -, 0,) € RE x| — 7/2, +@/2[x (SH)"*1 is the state, (uy, up)
is the control and dy, d, .. ., d, are positive parameters (lengths). As displayed
in Fig. 3, we denote by P;, the medium point of the wheel axle of trailer i, for

i=1, ..., n. The medium point of the rear (resp. front) wheel axle of the car is
denoted by Py (resp. Q).

Y-S

Figure 3. The kinematic car with n trailers.
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4.2.2. Cartesian coordinates of P, as flar ouipur. Denote by (x;, y;) the cartesian
coordinates of P, i =0, 1, ..., n:

i
X; = Xpg — EdeOSHI'
j=1

i
¥i = Yo = > d;sin6,.
=1

A direct computation shows that tan §; = y;/%;. Since, for i=0, ..., n—1,
X;=Xp +dip1c080;4, and y; =y +d;;sin 6, the variables 6, x,_i,
Yuets Bu=1y, ... 01, x5, yo and 6y are functions of x, and y, and their

derivatives up to the order n+1. But u; = %y/cos 6y, tan¢ = dy8y/u; and
iy = ¢. Thus, the entire state and the control are functions of x, and y, and
their derivatives up to order n + 3.

This proves that the car with » trailers described by (18) is a flat system: the
linearizing output corresponds to the cartesian coordinates of the point P,, the
medium point of the wheel axle of the last trailer.

Flatness implies that for generic values of the state, the strong accessibility
rank associated to the control system (18) is maximum and equal to its
state-space dimension: the system is thus controllable.

The singularity which might occur when dividing by %; =0 in tan 8, = y;/x;,
can be avoided by the following developments.

4.2.3. Motion planning using flatness. In Rouchon et al. (1993 a, b), the follow-
ing result was sketched.

Proposition §:  Consider (18) and two different state-space configurations: p =
(%o yn,~<5, By, ..., B,) and p = (%o, Jo, ¢ B - - -, 8,). Assume that the angles
B =0, i=1,...,n,¢,6_,-0,i=1,..., n,and ¢ belong 10 |-a/2,7/2[.
Then, there exists a smooth open-loop control |0, T| 3 t = (u (1), us(t)) steering
the system from [ at time 0 to P at time T >0, such that the angles 6,_ — 8,

i=1,...,n,and ¢ (i=1, ..., n) always remain in |—7/2, n/2[ and such that
(ey(1), u(2)y =0 fort =0, T.
The conditions 6;,_, — 6, €]-n/2, #/2[ (i=1, ..., n) and ¢€]—7n/2,7/2|

are meant to avoid some undesirable geometric configurations: trailer i should
not be in front of trailer / — 1.

The detailed proof is given in Appendix C and relies basically on the fact
that the system is flat. It is constructive and gives explicitly (u,(1), us(¢)). The
involved computations are greatly simplified by a simple geometric interpreta-
tion of the rolling without slipping conditions and the use of the Frénet formula.
Here, we just recall this geometric construction and give the explicit formula for
parking a car with two trailers. The Frénet formula are recalled in the appendix.

Denote by €; the curve followed by P, i =0, ..., n. As displayed in Fig. 4,
the point P;_; belongs to the tangent to %§; at P, and at the fixed distance d;
from P;:

Py = P + di;

with 7; the unitary tangent vector to €;. Differentiating this relation with respect
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Figure 4. The geometric interpretation of the rolling without slipping conditions.

to s;, the arc length of ¢;, leads to

d

— P = 1 + dik;

dS,'
where v is the unitary vector orthogonal to t; and k; is the curvature of 4;.
Since (d/ds;) P;_; gives the tangent direction to €¢;_;, we have

tan{6;,_, — 6;) = dix;

4.2.4. Parking simulations of the 2-trailer system. We now restrict to the
particular case n = 2. We show how the previous analysis can be employed to
solve the parking problem. The simulations of Figs 5 and 6 have been written in
MATLAB. They can be obtained upon request from the fourth author via
electronic mail (rouchon@cas.ensmp.fr).

The car and its trailers are initially in A with angles 8, = 8, = 6, = n/6,
¢ = 0. The objective is to steer the system to C with final angles (6, 0y, 6,

Figure 5. Parking the car with two trailers from A to B via C.

Figure 6. The successive motions of the car with two trailers.
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¢) = 0. We consider the two smooth curves €45 and €5 of Fig. 5, defined by
their natural parameterizations [0, L,g] 3 s = P,p(s) and [0, Lcg] 3 s — Pcg(s),
respectively (P4g(0) = A, Pcg(0) = C, L,p is the length of 6,5 and Lcp the
length of %€cg). Their curvatures are denoted by k4z(s) and xcp(s). These
curves shall be followed by P;. The initial and final system configuration in
A and C impose k45(0) = (d/ds)k,5(0) = (d*/ds?)k45(0) =0 and xkcg(0) =
(d/ds)kcg(0) = (d*/ds®)k¢5(0) = 0. We impose additionally that AB and CB are
tangent at B and
2

d d d
Kapg(Lag) = EKAB(LAB) = FKAB(LAB) = kcg(Lcg) = EKCB(LCB)
s

d2
= —'EKCB(LCB) =0
ds

It is straightforward to find curves satisfying such conditions. For the simulation
of Fig. 6, we take polynomial curves of degree 9.

Proposition 5 implies that, if P, follows 6,45 and €5 as displayed on Fig. 5,
then the initial and final states will be as desired. Take a smooth function
[0,T] 2 t—s(t) € [0, Lyg] such that s(0) =0, s(T)= L,z and $(0) = $(T) = 0.
This leads to smooth control trajectories [0, T]>t— u;(t)=0 and [0, T] 5
t — uy(t) steering the system from A at time +=0 to B at time t=T.
Similarly, [T,2T]> t—>s(t)€[0, Lcg] such that s{T)= L¢cg, s(2T)=0 and
$(T)=3(2T)=0 leads to control trajectories [T,2T]|3t— v (t)=0 and
[T,2T] 2 t = uy(r) steering the system from B to C. This, gives the motions
displayed in Fig. 6 with forward motion from A to B, backward motion from B
to C and a stop in B.

Let us detail the calculation of the control trajectories for the motion from A
to B. Similar calculations can be done for the motion from B to C. The curve
€ 45 corresponds to the curve €; of Fig. 4 with i = 2. Assume that €45 is given
via the regular parameterization, y = f(x) ((x, y) are the cartesian coordinates

and f is a polynomial of degree 9). Denote by s; the arc length of curve 6,
i =0, 1, 2. Then ds, = V1 + (df/dx)*dx and the curvature of 4, is given by

o = d?f/dx?
P+ dffdn))

We have

B 1
Y+ d%xé)lﬁ(
and ds;, = (1 + d3x3)?2 ds,. Similarly,

_ 1 d, dx,
AP RENTD (Kl T a s, )
and dso = (1 + d3k})Y2ds,. Thus u, is given explicitly by

K

d2 dK2 )
Kz

+
1 + d2k? ds,

d
wy = — = (14 @) (L+ a3+ @/ )

where [0, T] 3 t — x(t) is any increasing smooth time function. (x{0), f(x(0)))
(resp. (x(T), f(x(T)))) are the coordinates of A (resp. B) and x(0) = x(7T) =0,
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Since tan (¢) = dykqy, we get
_ d(p _ do dKO
dt 1+ diidsy |

Here, we are not actually concerned with obstacles. The fact that the internal
configuration depends only on the curvature results from the general following
property: a plane curve is entirely defined (up to rotation and translation) by its
curvature. For the n-trailer case, the angles 8, —0,.,, ..., 8, — 6, and ¢
describing the relative configuration of the system are only functions of x, and
its first n-derivatives with respect to s,.

Consequently, limitations due to obstacles can be expressed up to a trans-
lation (defined by P,) and a rotation (defined by the tangent direction
(dP,/ds,)) via k, and its first n-derivatives with respect to s,. Such considera-
tions can be of some help in finding a curve avoiding collisions. More details on
obstacle avoidance can be found in Laumond et al. (1994) where a car without
trailer is considered.

The multi-steering trailer systems considered in Bushnell er af. (1993),
Tilbury et al. (1993) and Tilbury and Chelouah (1993) are also flat: the flat
output is then obtained by adding the angles of the trailers that are directly
steered to the cartesian coordinates of the last trailer. This generalization is
quite natural in view of the geometric construction of Fig. 4.

Uz

5. High-frequency control of non-flat systems

We address here a method for controlling non-flat systems via their approxi-
mations by averaged and flat ones. More precisely, we develop in three
examples an idea due to the Russian physicist Kapitsa (Landau and Lifshitz
1982, Sagdeev et al. 1988, Bogaevski and Povzner 1991). He considers the
motion of a particle in a highly oscillating field and proposes a method for
deriving the equations of the averaged motion and potential. He shows that the
inverted position of a single pendulum is ‘stabilized” when the suspension point
oscillates rapidly. Notice that some related calculations may be found in Baillieul
(1993). For the use of high-frequency control in different contexts see also
Stephenson (1908), Meerkov (1980), Bentsman (1987), Sussmann and Liu
(1991), Acheson (1993).

5.1. The Kapitsa pendulum

The notation is summarized in Fig. 7. We assume that the vertical velocity
Z = u of the suspension point is the control. The equations of motion are:

. .
&= p +75ma

2
j)=(£—u—cosa)sinaf—£pcosaf (19)
l ? !
i=u

where p is proportional to the generalized impulsion; g and [/ are physical
constants. This system is not flat since it admits only one control variable and is
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Figure 7. The Kapitsa pendulum: the suspension point oscillates rapidly on a vertical axis.

not linearizable via static feedback (Charlet er al. 1989). However it is strongly
accessible.
We state
u = u; + uscos(t/e)

where u; and u, are auxiliary control and 0 < £<« VI/g. It is then natural to
consider the following averaged control system:

. u,
E=ﬁ+TSln&
2 2
. u u u
ﬁ=(i—( 1) cos & — (uz) cos&)sin&——lﬁcos& (20)
! I 27 !
?=u|

It admits two control variables, u;, and u,, whereas the original system (19)
admits only one, u. Moreover (20) is flat with (@, Z) as linearizing output.
The endogenous dynamic feedback

$= 0
u=§ 1 (1)
21 212 /2
uy = —(g +v)) — —————n;
cos & cos vsin &
transforms (20) into
E = U]} (22)
ﬁ“ = vz
Set
T T2 T T2
11 £ 1 (23)
vy = -(— + —)(ﬁ + =sin 51) - —(& — a’P)
7 (%) / T

where the parameters 1), 7, > 0 and o*? €] —a/2, n/2[/{0}. Then, the closed-loop
averaged system (20), (21), (23) admits an hyperbolic equilibrium point charact-
erized by (z%, a’”) that is asymptotically stable.

Now consider (19) and the high-frequency control u = u; + u,sin(¢/e) with
0< £<<\/% and (u,, uy) given by (21) and (23) where @, p and 7 are replaced
by @, p and z. Then, the corresponding averaged system is nothing but (22)
with v, and v, given by (23). Since the averaged system admits a hyperbolic
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asymptotically stable equilibrium, the perturbed system admits an hyperbolic
asymptotically stable limit cycle around {«, p, z) = (7,0, %) (Guckenheimer
and Holmes 1983, th. 4.1.1, p. 168): such control maintains (z, @) near
(z*?, a’P). Moreover this control method is robust in the following sense: the
existence and the stability of the limit cycle is not destroyed by small static
errors in the parameters / and g and in the measurements of «, p, z and wu.

As illustrated by the simulations of Fig. 8, the generalization to trajectory
tracking for o and z is straightforward. These simulations give also a rough
estimate of the errors that can be tolerated. The system parameter values are
[ =0-10m and g = 9-81 ms™2. The design control parameters are £ = 0-025/27 s
and 7, =1, =0-10s. For the two upper graphics of Fig. 8, no error is
introduced: control is computed with [ = 0-10 m and g = 9-81 ms™2. For the two
lower graphics of Fig. 8, parameter errors are introduced: control is computed
with / = 0-11 m and g = 9-00 ms~2.

5.2. The variable-length pendulum

Let us consider the variable-length pendulum of (Bressan and Rampazzo
1993). The notations are summarized in Fig. 9. We assume as in Bressan and
Rampazzo (1993) that the velocity & = v is the control. The equations of motion
are:

¢=p
p =—cos u+quv’ (24)
u=v

where mass and gravity are normalized to 1.

This system is not flat since it admits only one control variable and is not
linearizable via static feedback (Charlet er a/. 1989). It is, however, strongly
accessible.

1.2 No parameter €ryor ho parameter eror

0.8

a (rd)

z{m)

0.6

e

0.4 . I s .
0 1 2 0 1 2

time (5) time (s)

Arameler error arameter error

0.8 0.5

a {td)

Z(m}

0.6

0.4

ume (s) time (s)

Figure 8. Robustness test of the high-frequency control for the inverted pendulum.
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gravity

Figure 9. Pendulum with variable-length.

As for the Kapitsa pendulum, we set
= p; + vycos{t/e)

where v; and v; are auxiliary controls, (0 < £<« 1. We consider the averaged
control system:

g=1p
p = —cosit + q(v))* + q(v2)*/2 (25)
17 = D

This system is obviously linearizable via static feedback with (g, &) as linearizing
output.
The static feedback

U= Wy
wy + COs il 12 26
. .
q
transforms (25) into
‘e wl} | @)
q = w;
Set
it — u’*
wp = —
T
1 1 1 1 (28)
Wz=—("—+—)17— (@-4g%)
T 5] 172

with 7, 1,>0, u? €] —n/2, 7/2[, g% > 0. The closed-loop averaged system
(25), (26), (28) admits an hyberbolic equilibrium point (u*, ¢*), which is
asymptotically stable, -

Similar to the Kapitsa pendulum, the control law is as follows: v =
vy + vysin(t/e), 0< ek 1; (vy, vy) is given by (26) and (28) where g, p and @
are replaced by g, p and u. This control strategy leads to a small and attractive
limit cycle. As illustrated by the simulations of Fig. 10, the size of these limit
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2 & =002 i} 15 £ =002
1.8F b 1
1.6 -
o a 05
141 1
1.2+ b 0
1 0.5 . —
0 6 0 2 4 6
time
2
LS|
o =
1 -
0.5 . —L
0 2 4 6
time time

Figure 10. High-frequency control for the variable-length pendulum.

cycle is an increasing function of £ and tends to 0 as ¢ tends to 0*. The design
control parameters are t; = (5, 1, = 0-4.

5.3. The inverted double pendulum

The double inverted pendulum of Fig. 11 moves in a vertical plane. Assume
that u (resp. v) the horizontal (resp. vertical) velocity of the suspension point

0

Figure 11. The inverted double pendulum: the horizontal velocity u and vertical velocity v of
the suspension point are the two control variables.
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(x, z) is a control variable. The equations of motion are (implicit form):

. . . L
o= 1& + Taycos(ay — @) + myxcosay — nizsina

pr = Idycos(a) — o) + [0 + naXcosay — nyisina

1= mgsinay, — aydXsinay — nydZcosa 29
D1 = mgsinap — nadnXsina, — nydnpicos o, (29)
X=u

i=v 1

where p, and p, are the generalized impulsions associated to the generalized
coordinates «; and a», respectively. The quantities g, I, I, [,, ny and n; are
constant physical parameters:

my 2 my 2 my,
H=—4+m (I, I, =—"2(), I=—"1l
n (3 2)(1) = 22 iy

(m'+ )l ey
no=—+ m|l;, n=—
1 2 218 2 2 2

where m, and m, (resp. !, and [,) are the masses (resp. lengths) of beams 1 and
2 which are assumed to be homogeneous.

Proposition 6:  Systerm (29) with the two control variables u and U', is not flat.
Proof: The proof is just an application of the necessary flatness condition of

theorem 3. Since u =% and v =%, (29) is flat if, and only if, the reduced
system,

pr= lay + Tdycos(a) — ap) + npxcos vy — nzsina

P2 = 10’1 COS(CYI - 0’2) + Izd’z + nyxcosay — ny2 sin &, (30)
P1= nigsing; — nidXsina; — njdZcos ay

P = nzgsin op — Ny0nx sin oy — Nl cos o;

is flat. Denote symbolically by F(& &) =0 the equations (30) where &=
{ay, &3, x, 2, Py, P7)- Consider (&, §) such that F(&, ) = 0. We are looking for a
vector @ = (a4, @ay, 8, Gz, p,, ap,) such that, for all e R, F(& £+ Aa)=0.
The second order conditions,
d2

da?

F(E, L+ Aa) =0
A=0

lead to
aq(acsina; + a;cosay) =0, ag(asina; + a,cosa;) = 0
Two first order conditions,

d

A =
m FE, T+ 4)=0

A=0
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are
. I I
—a,cos oy + a;sina; = —a,, + —cos(a; — aj)a,,
n o '
. I TP
—a,cos &y + a;sinw; = —cos (o) — az)a,, + —ag,
"y Ry

Simple computations show that, if ({/n,) # (I2/ny) and ({,/n;) # (I/n,) (these
conditions are always satisfied for homogeneous identical beams), then
(@a,» Agys A5, a;) = 0. The two remaining first order conditions imply that
(ap,s ap,) = 0. Thus @ = 0 and the inverted double pendulum is not flat. O

The same control method as the one explained in details for the Kapitsa
pendulum (19) can be also used for the double pendulum. The only difference
relies on the calculations that are here more tedious. We just sketch some
simulations (Fliess er al. 1993 b).

To approximate the non-flat system (29) by a flat one, we set
u=u +uycos(tfe) and v=uv, + vycos(1/e) where 0<e<<min(([,/ng)"7?,
(Iz/nzg)‘/z) and u,, u,, v;, vp are new control variables. This leads to a flat
averaged system with (o, a3, x, z) as the linearizing output. The endogenous
dynamic feedback that linearized the averaged system provides then
(tty, 13, 01, 7). For the simulations of Fig. 12, the angles a; and o, follow
approximately prescribed trajectories whereas, simultaneously, the suspension
point (x, z) is maintained approximately constant.

6. Conclusion

Qur five examples, as well as other ones in preparation in various domains of
engineering, indicate that flatness and defect ought to be considered as physical
and/or geometric properties. This explains why flat systems are so often

vertical deviation of beam 1 vertical deviation of beam 2
-0.1 T |

-0.15

-0.2

-0.25

-0.3

ay(rd)
dz(rd)

-0.35

-0.4

-0.45

5 10 0 5 10
time (s) time (s)

Figure 12. Simulation of the inverted double pendulum via high-frequency control.
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encountered in spite of the non-genericity of dynamic feedback linearizability in
some customary mathematical topologies (Tchori 1994, Rouchon 1994).

We hope to have convinced the reader that flatness and defect bring a new
theoretical and practical insight in control. We briefly list some important open
problems.

(a) Ritt’s work (Ritt 1950) shows the differential algebra provides powerful
algorithmic means (see Diop (1991, 1992} for a survey and connections with
control). Can flatness and defect be determined by this kind of procedures?

(b} Great progress have recently been made in non-linear time-varying
feedback stabilization (see, e.g., Coron 1992, 1994). Most of the examples which
were considered happen to be flat (see, e.g., Coron and D’Andréa-Novel 1992).
The utilization of this property is related to the understanding of the notion of
singularity (see, e.g., Martin (1993) for a first step in this direction and the
references therein).

(¢) The two averaged systems associated to high-frequency control are flat.
Can this result be generalized to a large class of devices?

(d) Differential algebra is not the only possible language for investigating
flatness and defect. The extension of the differential algebraic formalism to
smooth and analytic functions (Jakubezyk 1992) and the differential geometric
approach (Martin 1992, Fliess et al. 1993 d, 1993 e, Pomet 1993) should also be
cxamined in this context.

Appendix A: Prime differential ideals

We know from Diop (1992, lem. 5.2, p. 158) (see also Moog et al. 1989)
that, for x = (xy,...,x,) (n=0) and u = (u,, ..., u,) (m=0), the differential
ideal corresponding to

_ ailx, u, i, ..., u®)
bi(x, u, i, ..., u'fd)
where the g;5 and b;s are polynomials over k, is prime. It is then immediate that

the differential ideal corresponding to the tutorial example (7) is prime: set
x ={xy,x;) and u = (x3, x4). Let us now list our five case-studies.

H i=1,...,n

Kapitsa pendulum (19)
Let us replace a by o = tan(«/2). Then, using

. 1+ 0° | 1 - o? . 20
o= &, cosa = , sina =
1+ 0® 1+ a®
the equations (19) become explicit and rational
2
5= 1+ 0o ( + 2ou )
2 (1 + 0%)
= 8 _ w1 - 02)) 200 pu(l - o)
I P1+0%/1+c? (1 + 0%
u

I
Il
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The associated differential ideal is thus prime and leads to a finitely generated
differential field extension over R.

Variable-length pendulum (24)

Similar computations with o = tan {u/2) prove that the associated differential
ideal is prime.

Double pendulum (29)

Similar computations with ¢, = tan(a1/2) and o, = tan (a,/2) prove that the
associated differential ideal is prime.

Car with n-trailers (18)

Similar computations with ¢ =tan(@/2) and ¢; = tan(6,/2) prove that the
associated differential ideal is prime.

Crane (17)

Analogous calculations on the generalized state variable equation R =
—2R6 — Dcos8 — gsin @ given in Fliess er al. (1991, 1993 a) lead to a prime
differential ideal.

Another more direct way for obtaining the differential field corresponding to
the crane is the following. Take (17) and consider the differentiai field R{x, z)
generated by the two differential indeterminates x and z. The variable D
belongs to R{x, z) and the variable R belongs to an obvious algebraic extension
% of R{x, z), which defines the system.

Appendix B: Dynamic feedbacks versus endogenous feedbacks

A dynamic feedback between two systems @/k and @/k consists in a finitely
differential extension %€/k such that % C ¢ and % C €. Assume moreover that
the extension /% is differentially algebraic. According to theorem 1, the
(non-differential) transcendence degree of /% is finite, say v. Choose a

transcendence basis z = (z;, . . ., z,) of €/3. It yields like (8):
Af2s, 2)=0 a= 1,...,1/}
B(§, z)=0

where & is any element of % and the A,s and B are polynomials over %.

The above formulas are the counterpart in the field theoretic language of the
usual ones for defining general dynamic feedbacks (see, e.g., Isidori 1989,
Nijmeijer and van der Schaft 1990). The dynamic feedback is said to be regular
if, and only if, /% and €/% are both differentially algebraic. The following
generalization of proposition 2 is immediate: the systems %/k and $/k possess
the same differential order, i.e., the same number of independent input
channels.

The situation of endogenous feedbacks is recovered when /@ and /% are
both algebraic, i.e., v= 0.
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Appendix C: Proof of Proposition 5
The Frénet formula

Let us recall some terminology and relations relative to planar smooth curves
that are displayed on Fig. 13 (see, e.g., Dubrovin et al. 1984). A curve
parameterization R 3 s> P(s) € R? is called regular if, and only if, for all s,
(dP/ds) #0. A curve is called smooth if, and only if, it admits a regular
parameterization. A parameterization is called natural if, and only if, for all s,
[[(dP/ds)|| = t where ||- || denotes the Euclidian norm. For smooth curves with a
natural parameterization s5— P(s), its signed curvature x is defined by
(dt/ds) = kv, where 7= (dP/ds) is the unitary tangent vector and v is the
oriented normal vector ({r, V) is a direct orthonormal frame of the oriented
Euclidian plane R?). Notice that (dv/ds) = —k1. Every smooth curve admits a
natural parameterization: every regular parameterization ¢— P(t) leads to a
natural parameterization s — P(s) via the differential relation ds = [[(d P/dr)||d:.

Lemma Consider a trajectory of (18) such that the curve €, followed by P, is
smooth with the natural parameterization [0, L,]2s,— P(s,): 5, =0 (resp.
s, = L,) corresponds to the starting point (resp. end point); L, is the length of
@,. Assume also that for s, =0, 6;_,— 6, (i=1,...,n) and ¢ belong to |-n/2,
72[. Then,
(i) foralls, €0, L,), 8iy — 6; (i = 1,. .., n) and ¢ belong to |—n/2, w/2|.
(ii) the curves €; and € followed by P; and Q are smooth (i =0,1,.. ., n).
(iti) tan(0,_, — ) =d;x; (i=1,...,n) and tan ¢ = dyky, where k; and xy
are the curvatures of 8, and €y, respectively;

(iv) the curvature k; can be expressed as a smooth function of k, and of its
first n — i derivatives with respect to s,; moreaver the mapping (which is
independent of s,,)

KII
dk, .
n
ds
. n - Kp—|
1] K,
d"x, 0
n
ds,

is a global diffeomorphism from R"*! to R"*1,

Figure 13.  Frénet frame (7. v) and curvature x of a smooth planar curve.
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Proof of the lemma: As displayed in Fig. 4, the point P;_; belongs to the
tangent to 4; at P, and at the fixed distance d; from P, By assumption
1, = (dP,/ds,) admits the good orientation: P,_; = P, + d,1, (we do not have
P,_=P,~d,t,). Thus €,_, is given by the parameterization s,— P, + d,1,
which is regular since ||[(dP,-,/ds,)||= V 1+ d%k%. A natural parameterization
Sp-1— P,_ Is given by

ds,_, = (1 + dix3) ds, (C1)
The unitary tangent vector, 7,_4, is given by
1+ di’(i)lﬂrn—-l =1, + d,k,Vy

where v, is the oriented normal to €,. The angle 6, ; ~ 6, is the angle
between 1, and 7,.;. Thus tan{8,_, — 8,) = d,k,. Since x,, is always finite and
0,1 — 6, belongs |-n/2, #/2[ for 5, =0, 8,_, — 8, cannot escape from |—m/2,
m/2[ for any s, € [0, L,]. The oriented normal to 6,_,, v,_;, is given by

2 2
(1 + dnkn)lfzvn—l = —d,,K,,‘L'” + v

and the signed curvature k,_; of 6,_, is, after some calculations,

! ( P dK") (C2)
Kp-1 = K,
T+ AT 1+ B ds,

Since 6,_; — 6, remains in |—7/2, 7/2[, the unitary tangent vector t,_; has
the good direction, i.e., P,_, = P,_; + d,.17,_,. The analysis can be continued
for P,_s, ..., Py and Q. This proves (i), (ii) and (iii).

Assertion (iv) comes from the following formula derived from (C2) and
(ChH(i=1,...,n)

1 d; dk;
T R (Ki Y d—s,-) ©

where §;_; is the natural parameterization of 6;_; defined by
ds;_y = (1 + dixH) 2 ds; (C4)

Consequently, k; is an algebraic function of k, and its first n — i derivatives
with respect to s,. Moreover, the dependence with respect to (d" '«,/ds,”"} is
linear via the term

di+1 dita d, d" 'k,
(I + digki ) (L + dioaxt)? (L + daxd)? dsy™

The map of assertion (iv) has a triangular structure with a diagonal dependence
that is linear and always invertible: it is a global diffeomorphism. O

Proof of Proposition 5: Denote by (¥, ¥,,) and (%,,, ¥,,) the cartesian coordin-
ates of P, and P,, the initial and final positions of P,. There always exists a
smooth planar curve 6, with a natural parameterization s, — P,(s,) satisfying
the following constraints:

(a) P,(0)= P, and P,(L,)= P, for some L,>0

(b) the direction of tangent at P, (respectively P,) is given by the angle 8,
{respectively 6,);
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(c) the first n derivatives of the signed curvature k, at points P, and P,
have prescribed values.

According to (iii} and (iv) of the above lemma, the initial and final values of the
angles (i=1,...,n) 6;_; — 6; and ¢ define entirely the initial and final first »n
derivatives of «,. It suffices now to choose a smooth function [0, T]3¢—
so(t) €10, L,] such that 5,(0) =0, 5,(T) = L, and $,(0) = 5,(L,) = 0, to obtain
the desired control trajectory via the relations (the notations are those of the
above lemma):

fo= uy = ( 1+ d?x?)‘”)s'n
i=1
= ([0 + vy o

i=1

) do dK@
1+ d(Z)K(Z) dsg
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