
Pflugers Arch - Eur J Physiol (2003) 446:17–29
DOI 10.1007/s00424-002-0999-2

I N V I T E D R E V I E W

E. Lucas-Meunier · P. Fossier · G. Baux · M. Amar

Cholinergic modulation of the cortical neuronal network

Accepted: 4 December 2002 / Published online: 5 March 2003
� Springer-Verlag 2003

Abstract Acetylcholine (ACh) is an important neuro-
transmitter of the CNS that binds both nicotinic and
muscarinic receptors to exert its action. However, the
mechanisms underlying the effects of cholinergic recep-
tors have still not been completely elucidated. Central
cholinergic neurons, mainly located in basal forebrain,
send their projections to different structures including the
cortex. The cortical innervation is diffuse and roughly
topographic, which has prompted some authors to suspect
a modulating role of ACh on the activity of the cortical
network rather than a direct synaptic role. The cholinergic
system is implicated in functional, behavioural and
pathological states including cognitive function, nicotine
addiction, Alzheimer’s disease, Tourette’s syndrome,
epilepsies and schizophrenia. As these processes depend
on the activation of glutamatergic and GABAergic
systems, the cholinergic terminals must exert their effects
via the modulation of excitatory and/or inhibitory neuro-
transmission. However, the understanding of cholinergic
modulation is complex because it is the result of a mixture
of positive and negative modulation, implying that there
are various types, or even subtypes, of cholinergic
receptors. In this review, we summarize the current
knowledge on central cholinergic systems (projections
and receptors) and then aim to focus on the implications
for ACh in the modulation of cortical neuronal activity.

Keywords Acetylcholine · Cortical network · Excitation ·
Inhibition · Nicotinic and muscarinic receptors

Introduction

Acetylcholine (ACh) acts in many cognitive functions,
such as excitability [198], attention [24, 188], learning
[62, 131], memory [74, 167], the stress response [145],
wakefulness and sleep [81, 82], and cortical modulation
of sensory information [48, 130, 150, 157]. There is
evidence that these actions are exerted by controlling the
signal/noise ratio in sensory processing [173]. The study
of ACh in the mnemonic process shows that ACh plays a
role in the first stages of learning (in acquisition) and not
during the recall process [131]. Elsewhere, ACh is
implied in the spatial working memory [150]. The stress
response induces ACh release in the forebrain. This ACh
release is responsible for physiological and emotional
responses, in particular through its action on the hypo-
thalamic-pituitary system [145]. At the sensory level, in
the rat auditory cortex, cortical ACh can modify cortical
responses facilitating thalamo-cortical auditory synaptic
transmission [128]. Indeed, in this way, ACh facilitates
the detection and discrimination of tones [167]. In the rat
somatosensory cortex, ACh plays a part in the organiza-
tion and modification of receptive fields [85], in particular
by enlarging them [42]. In the visual cortex, ACh
facilitates the neuronal response to visual stimulation,
and seems to increase orientation selectivity in simple
cells, as well as orientation selectivity and direction
selectivity in complex cells (see for review [174]). In
associational areas, ACh mediates the conditioned re-
sponse of the cortical cells and thus contributes to the
enhanced processing of behaviourally significant stimuli
[152].

Degeneration of the cholinergic system of the basal
forebrain occurs in many diseases in addition to Alzhei-
mer’s disease, including Parkinson’s disease [9, 50],
Creutzfeldt-Jakob disease [8, 29], Down syndrome [201],
Korsakoff’s syndrome [9], amyotrophic lateral sclerosis-
parkinsonism-dementia complex [140], progressive supra-
nuclear palsy [165, 177], olivopontocerebellar atrophy
[92] and dementia pugilistica [180]. All these disorders are
characterized by various degrees of cognitive impairment.
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These observations suggest a selective effect of ACh
on the processing of sensory stimuli and therefore a
phasic effect of ACh restricted to a defined set of cortical
neurons and/or local circuits.

The cholinergic system in the brain

Cholinergic forebrain projections are classified into six
main central pathways (Ch1–Ch6) linked to the origin of
the nuclei where the cholinergic fibres arise [126].
Cholinergic nuclei from the septum (Ch1) and the vertical
limb of the diagonal band (Ch2) project only on the
hippocampus whereas pedunculopontinus nucleus (part of
Ch5) and laterodorsal tegmental nucleus (Ch6) from the
brainstem project on the thalamus. Cholinergic nuclei
from the lateral part of the horizontal limb of the diagonal
band (Ch3) project to the olfactory bulb. The pathway
innervating the cortex (Ch4) mainly originates from the
nucleus basalis magnocellular (NBM, named the nucleus
basalis of Meynert in the human species) [84, 126]
(Fig. 1). The cholinergic fibres of the NBM project to the
cortex with a topographic organization according to a
rostrocaudal, ventrodorsal and mediolateral gradient [15,
61, 110, 111, 124, 199]. In contrast to primates, the rat
nuclei included in these cholinergic pathways are not well
delimitated. In the rat (Fig. 1), Ch4 pathway groups
originate from several other nuclei, in addition to the
NBM, such as the substantia innominata [15, 98, 194],
diagonal band nucleus [76], nucleus ansa lenticularis [15]
and a part of the magnocellular preoptic nucleus [15]. In
1989, Butcher and Semba [27] accounted for confusions
in the nomenclature of nuclei of the basal forebrain.
Various authors used different terms for the same
structure as well as the same term to describe different
structures. Moreover, it seems very difficult to generalize
the traditional nomenclature from one species to another.
However, the NBM is generally associated with the Ch4
pathway. In addition, the labelling of choline acetyltrans-
ferase in the cortex suggested the presence of few
cholinergic bipolar intracortical interneurons [53, 103].
The majority of these interneurons (88%) are co-labelled
for GABA [13] and vasoactive intestinal polypeptide
(VIP) [34] and are mainly concentrated in layer II/III of
the cortex [147]. However, their existence in, their
implications for and their contribution to the cortical
neuronal network are open to discussion [26, 187].

Among the population of neurons of the NBM
projecting to the cortex, 30% to 35% are GABAergic
neurons [63], whose axons preferentially connect cortical
GABAergic interneurons [66] to disinhibit them [83]. The
remaining neurons release ACh in the cortex and this
release can be regulated at two levels: either by modu-
lating the activity of cholinergic neurons in the NBM or
by modulating cholinergic terminals at the cortical level.
In NBM, cholinergic neurons are under the control of
GABAergic interneurons [134] and glutamatergic neurons
[58]. At the cortical level, released GABA can diffuse
extrasynaptically in substantial amounts and activate

GABAA receptors on cholinergic terminals and then
inhibit ACh release [118]. Moreover, GABAergic inner-
vation can also activate the release of newly synthesized
ACh [16] or can suppress the inhibition of ACh release
through two successive GABAergic synapses (one
GABAergic neuron originating from the NBM and one
cortical GABAergic interneuron) [150].

Other neurotransmitters may interfere with the regu-
lation of cortical ACh release; such as, dopamine acting
through activation of cholinergic neurons in the NBM
[41]; serotonin, according to the subtype of activated
serotonin receptor modulating the activity of cholinergic
neurons in the NBM and the release of ACh by
cholinergic terminals in the cortex [78]; norepinephrine,
acting as a tonic inhibitor of ACh release in the cortex
[178]; and cholecystokinin stimulating ACh cortical
release [116]. Finally, the presence of autoreceptors on
cortical cholinergic fibres would also permit the possible
autoregulation of the cholinergic system [102].

In young rats, cholinergic denervation of the neocortex
by specific immunolesion reduced the size of the cortex
[160] and delayed the differentiation of pyramidal
neurons in the whole cortex [79]. These observations
suggest that cholinergic innervation of the cortex does not
have specific cortical target area. In fact, cholinergic
fibres can be found in all cortical areas and layers [125,
127], with the density of cholinergic fibres differing from
one area to another, and from one layer to another [113],
although the accurate topographic organization of cho-
linergic terminals is not clear. For instance, electrophys-
iological studies show than 92% of cells in the visual
cortex respond to application of exogenous ACh [173].

To summarize, these data do not support the selective
ACh activation of the cortical network by cholinergic
fibres but are in favour of a global modulating action of
ACh on cortical functions via effects independent of
cortical areas and layers [61, 123]. So, the specific effects
of ACh observed on cognitive functions do not seem to be
due to precise innervation and might be attributed to at
least the specific distribution of both nicotinic and
muscarinic cholinergic receptors.

Fig. 1 Rat cholinergic central pathways. Hatched area: diagonal
band (modified from ref [126])
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Central nicotinic receptors

Nicotinic receptors are part of the ionotropic receptor
family and they are found in both peripheral and central
nervous system (PNS and CNS respectively). In the CNS,
the various types of nicotinic receptors display a partic-
ular anatomic distribution, and have specific pharmaco-
logical and physiological profiles. While their structures
and functional properties have been extensively studied,
their subunit structures and their physiological roles are
not totally understood.

Structure

Nicotinic receptors were first isolated from fish electric
organs (torpedo, eel) and skeletal muscles of mammals.
Muscular nicotinic receptors (250 kDa) are made up of
five individual protein subunits, (2a, 1b, 1d, 1e or 1g
embryonic subunit). Each subunit contains four trans-
membrane domains (20 amino acids, M1–M4) and two
extracellular hydrophilic segments (N- and C-terminals).
The M2 domain of each subunit contributes to the pore
responsible for cation (Ca2+, Na+, K+) permeability [68].
The two subunits a, implied in the muscle nicotinic
receptor (named a1) can be identified by a pair of
cysteine residues in the N-terminus and play a role in the
agonist site [86], so two agonist molecules must bind in
order to activate the ligand-gated ion channel. The
subunits of neuronal nicotinic receptors, like their mus-
cular counterparts, have extracellular C- and N-terminal
domains and four hydrophobic transmembrane segments
(M1–M4). The amino acid sequences of the neuronal
nicotinic receptor subunits show, in the same species,
only 40% to 50% homology with muscular nicotinic
receptor sequences [166]. This difference between the
subunits is mainly due to the variability of the size and
sequence of the intracellular loop between M3 and M4
segments, which contains putative sites of phosphoryla-
tion [166]. Neuronal nicotinic receptors are assumed to
have a pentameric structure composed of two subunit
types. Nine a subunits (a2 to a10) and three b subunits (b2
to b4) have been identified [19, 36, 37, 43, 44, 51, 56, 57,
144, 168, 169, 172, 189]. Classic stoichiometry of the
neuronal receptor is most often 2a subunits for 3b
subunits, but functional homomers a7 [36], a8 [69] and a9
[56] have been observed. a10 is always associated with a9
mainly in cochlear cells [57]. b subunits will not, alone,
form functional receptors [20]. Receptors formed by three
different types of subunits, including most often a5
subunits, have been also described [93]. Finally, nicotinic
neuronal receptors present a variety of subtypes (see [112]
for nomenclature) due to several possible combinations
between subunits (up to 1728 possible receptor subtypes,
according to [175]). This diversity implies different
kinetics of desensitization, conductance states (5–45 pS)
and open times (0.1–8 ms) [166].

Localization

The expression of the subunits of nicotinic receptors has
been studied using mainly in situ hybridization approach-
es. These studies have shown that during the development
of the CNS, some subunits of nicotinic receptors (a3, b2,
a4, b4, a7) can be expressed at very early stages of
embryonic development (E11 in rats) before the forma-
tion of morphologically differentiated synapses [205]. In
the sensory primary cortex, a7 is present during develop-
ment but disappears at adult age [23]. In the adult rat
brain, the distribution of mRNA subunits is differential:
a2 mRNA is mainly detected in the interpeduncular
nucleus and in the deep layer of the cortex [191], and a9
mRNA is mainly express in the outer cochlear cells [57].
a8 mRNA (discovered in chick brain) is not present in
mammals. a5, a6 and b3 subunits have a restricted
distribution: a5 mRNA has been found in the hippocam-
pus, the substantia nigra pars compacta, the ventral
tegmental area, the interpeduncular nucleus and in layer
VIb of the cortex [190]; a6 and b3 mRNA are particularly
abundant in the somatosensory ganglia and seem associ-
ated with catecholaminergic neurons [101]. a3 mRNA is
mainly expressed in the thalamus, in the interpeduncular
nucleus and in layers IV and V of the cortex [191]. b4
mRNA is detected in the hippocampus, in the medial
habenula, in the interpeduncular nucleus, in the olfactory
area, in the cerebellum and in the locus coerulus [45]. In
the cortex, b4 mRNA is abundant in layer IV and can also
be detected in layers I–III [45]. a4 and b2 mRNA subunits
are expressed in the majority of cerebral structures and in
all layers of the cortex [191]. Elsewhere, the use of a-
bungarotoxin, a specific marker, shows that a7 subtype is
mainly present in the hippocampus and in the hypothal-
amus [166]. The results of immunohistochemistry and
radioligand binding experiments correlate well with the
localization of mRNA transcripts for a4, b2 and a7
subunits by in situ hybridization but show variations in
the expression of each subunit [47, 77, 105, 141].

So it seems that most nicotinic receptors contain either
a4 and b2 subunits or the a7 subunit (see for reviews [39,
166]).

Pharmacology

The diversity of nicotinic receptors implies a difference in
their selectivity for and sensitivity to nicotinic agonists
and antagonists [52] and a difference in the permeability
of their cationic channel [32].

Agonists

The relative agonist potencies obtained for nicotinic
receptors expressed in Xenopus oocytes are defined
elsewhere [108, 172] and are shown in Table 1:
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Antagonists

Curare, the alkaloid extracted from the plant Chondoden-
dron tuberculosum, is the traditional antagonist of nico-
tinic receptors of the PNS. It is not efficient against
central nicotinic receptors, contrary to its derivate, d-
tubocurarine. However, this latter antagonist is non-
selective, affecting both 5-HT3, glycine and GABAA
ionotropic receptors in addition to the nicotinic receptor
[161].

Dihydro-b-erythroidine (DHBE), an alkaloid isolated
from the seeds of Erythrina, binds in a competitive
manner the receptor with strong affinity for a3-, a4- and
b2-containing receptor [52]. a3b2 and a4b2 receptors can
be blocked at submicromolar concentrations (100 nM for
hippocampus neurons, [3]). However, DHbE is 10 to 50
times less active on the a7 and a3b4 receptors [33].

N-methyllycaconitine (MLA), a diterpene alkaloid
produced by seeds of Delphinium brownii, is a selectively
competitive antagonist of neuronal a7 receptors and is one
of the most powerful non-peptidic antagonists known
[52]. It can block this receptor at concentrations lower
than 1 nM [5], but blocks a6b2* receptors with a Ki of
30 nM and other nicotinic receptors at higher concentra-
tions [133].

a-Bungarotoxin and n-bungarotoxin are toxins extract-
ed from the venom of the snake Bungarus multicinctus. a-
Bungarotoxin blocks the agonist-binding site of the a7
(and a8 and a9) homopentameric receptor with an affinity
(Ki) of 1 nM [40, 109]. n-Bungarotoxin is selective for
a3b2 and a4b2 receptors at concentrations 10 nM and
1 �M, respectively [109].

Mecamylamine is a non-selective, non-competitive
channel blocker of nicotinic receptors [11]. At high
concentrations (>100 �M), it can act on N-methyl-d-
aspartate (NMDA) receptors [146].

However, the lack of very selective antagonists
prevents a precise characterization of the different
subtypes of nicotinic receptors.

Allosteric ligands

Non-competitive allosteric ligands can be activators or
inhibitors of nicotinic receptors (Fig. 2). When they are
activators such as serotonin [170], they increase the

opening time of the channel and the ionic conductance
[151]. Members of the organophosphorus class of
anticholinesterases are nicotinic receptor activators
[106] whereas other anticholinesterase compounds (gal-
antamine, physotigmine and tacrine) have been observed
to be inhibitors of nicotinic receptors of the rat striatum
[35], or as activators of nicotinic receptors in natural
murine and human neurons [115], nicotinic receptors
expressed in transfected fibroblasts cell line M10 [176],
or murine and human cell lines [115]. Inhibitory allosteric
ligands may act on two sites, one with high affinity and
the other with low affinity. These ligands block the
nicotinic receptors without affecting the binding of ACh
to its site [99]. Anaesthetics, ethanol and barbiturates are
allosteric ligand inhibitors [148]. Other binding sites on
the nicotinic receptor have been described: (1) the steroid
site causes desensitization of the receptor [14] when
activated by progesterone, corticosterone or dexametha-
sone; (2) the dihydropyridine site, activated by L-type
Ca2+ channel antagonists, blocks activation of the nico-
tinic receptor [107].

The nicotinic receptor, mainly permeable to Na+ and
Ca2+ ions, is allosterically modulated by Ca2+ ions. Ca2+

binding sites are located in the extracellular N-terminal
and when the site is occupied by Ca2+ ions, ACh-mediated
currents are potentiated in a voltage-insensitive manner
[138] and there is an increase in channel opening
probability [1, 6, 183]. In addition, there are two
intracellular Ca2+ binding sites [39, 59], which mediate
a voltage-dependent reduction in conductance [148].

Function

Nicotinic receptors are permeable to Na+, K+ and Ca2+

ions. However, the neuronal nicotinic receptor subtypes
are highly permeable to Ca2+ with a Ca2+/Na+ permeabil-

Fig. 2 Scheme of the central nicotinic receptor. (modified from
[32, 148]). (LA Local anesthetic, NCA non-competitive activator,
NCB non-competitive blocker, P phosphorylation site)

Table 1 The relative agonist potencies obtained for nicotinic
receptors expressed in Xenopus oocytes. (DMPP 1,1-Dimethyl-4-
phenylpiperazinium)

Subunits Affinity order

a2b2 Nicotine>ACh/DMPP>cytisine
a2b4 Cytisine>nicotine>ACh>DMPP
a3b2 ACh/DMPP>nicotine>cytisine
a3b4 Cytisine>nicotine/ACh/DMPP
a4b2 ACh/nicotine>DMPP>cytosine
a4b4 Cytisine>nicotine>ACh>DMPP
a7 Nicotine>cytisine>DMPP>ACh
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ity ratio higher than 1 (10 for a7 nicotinic receptors [137,
172]) whereas the ratio is only 0.1 to 0.3 for the muscular
nicotinic receptor [137, 184]. Thus, the neuronal nicotinic
receptor can cause a marked increase in the intracellular
Ca2+ concentration, enough to influence cellular Ca2+-
sensitive processes [137], for example the activation of
K+-dependent Ca2+ currents or the transcription of early
genes [166]. This important increase in the intracellular
Ca2+ concentration at hyperpolarized potentials is of
interest when voltage-dependent Ca2+ channels are not
activated. So neuronal nicotinic receptors may act in
synaptic plasticity, in addition to the activation of voltage-
dependent Ca2+ channels and NMDA receptors [121, 137,
185]. Finally, a neurotrophic role during early develop-
ment in the formation of synapses [162] and neurite
retraction [155] has also been attributed to a7 receptors
(see for reviews [22, 179]).

The neuronal nicotinic receptors are located in a
presynaptic position where they can modulate neurotrans-
mitter release (see for reviews [39, 122, 197]). Their
activation will cause the intracellular Ca2+ concentration
to vary, and it is known that the chemical release of
neurotransmitter depends mainly on these local Ca2+

variations at the site of release. Nicotinic receptors also
occur at the postsynaptic level in different structures [64,
65] and were recently found in the cortex of ferret [161],
rat [154, 200] and humans [4] where their activation
induces a fast cationic inward current. Extrasynaptic
nicotinic receptors, generally assigned as preterminal
receptors, may modulate neuronal functions [104] such as
the release of neurotransmitter or local excitability [39].
In fact, in interpeduncular nucleus GABAergic interneu-
rons, the activation of these receptors induces a spike
discharge leading to the enhancement of GABA release
[100].

Central muscarinic receptors

The clinical use of gallamine as an adjunct to anaesthetics
has revealed the presence of muscarinic receptors [159].
Then, using the affinity of a muscarinic antagonist,
pirenzepine, Hammer et al. [73] showed the existence of
various subtypes of muscarinic receptor and distinguished
two classes: “M1” receptors with a strong affinity for
pirenzepine and “M2” receptors with an intermediate and
a low affinity for pirenzepine.

Structure

The muscarinic receptors are metabotropic. Five cloned
genes, called m1 to m5, have been characterized [17, 95,
96] and generate five types of muscarinic receptor proteins
named M1 to M5. The receptor is a single glycoprotein
with seven transmembrane helices, an extracellular N-
terminus containing glycosylation sites, an intracellular C-
terminus and a large cytoplasmic domain between trans-
membrane segments 5 and 6 (see for review [80]). The site

of ACh binding has not been clearly identified [38, 195].
The intracellular G protein binding site implies the second
and the third cytoplasmic loops [72, 195]. Each subtype of
receptor is related to different G proteins, which can
modulate, either directly or by a second messenger, the
activation of ionic channels (Fig. 3).

The family of the M1-like receptors defined by
Hammer et al. [73] comprises the M1, M3 and M5
subtypes, and the family of the M2-like receptors
comprises the M2 and M4 subtypes. Generally, the M1-
like receptors stimulate, via a pertussis-toxin-insensitive
G-protein (Gq/11), the phosphoinositol pathway, which can
close K+ channels thus leading to cell depolarization. The
M2-like receptors inhibit adenylate cyclase via a pertus-
sis-toxin-sensitive G-protein (Gi) leading to the inhibition
of voltage-gated Ca2+ channels [31, 54]. However, these
specificities are not absolute, and the mechanisms of
muscarinic receptor-mediated signal transduction are
more complex because of cross-over between signalling
pathways [31, 60, 143].

Localization

Localization of muscarinic receptors was studied by
autoradiography of the CNS with [3H]propylbenzilyl-
choline. This technique revealed their presence in various
structures, such as olfactory anterior nucleus, olfactory
tubercle, hippocampus, hypothalamic supraoptic nucleus,
nucleus accumbens and cortex [163]. The dendritic area
of the hippocampus, of the striatum, of the nucleus
accumbens and of the cortex [88, 97, 117] and many
cranial nerves, sensory and motor nerves [192], were
labelled significantly.

In situ hybridization applied to the rat brain revealed
that m1 mRNA is mainly localized in the telencephalon
and particularly in the cortex, the striatum and the
hippocampus [21]. m2 mRNA, which is less abundant, is

Fig. 3 Metabolic pathways associated with the activation of
muscarinic receptors (modified from [143])
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especially found in subcortical nuclei [25] whereas m3
mRNA is also localized in the telencephalon and in some
thalamic nuclei. m4 mRNA is prevalent in the striatum, in
the cortex and in the hippocampus [21]. m5 mRNA is
present in the hippocampus, in the striatum, in the cortex,
in the ventral tegmental area [186] and in the substantia
nigra pars compacta where it co-locates with the dopa-
mine D2 receptor [193].

The use of monoclonal M35 antibodies allows the
localization of muscarinic receptors without differentiat-
ing between subtypes [181]. The brain areas most strongly
labelled are the olfactory tubercle, the striatum and the
interpeduncular nucleus. The cerebellum is also slightly
labelled. Muscarinic receptors were also found on glial
cells and blood vessels of the brain [181]. In the
neocortex, a clear laminar distribution was observed with
a strong labelling of layer V and sometimes of layers II/
III. However, each area could have a particular distribu-
tion, as in the parietal cortex where layers III and VIb are
strongly labelled [163, 181]. Muscarinic receptors have
also been found to co-localize with nicotinic receptors on
pyramidal neurons of the rat neocortex [182] but not often
on cortical interneurons [204].

The M35 antibody has the same affinity for all
subtypes of muscarinic receptor [28] and for a long time
specific antibodies against the various subtypes were
usable only for immunoprecipitation [196]. Consequently,
the precise localization of the various subtypes remains
poorly known. A preliminary study [102] shows that the
M1 subtype is present in all cortical layers whereas the
subtypes M2 and M4 are less abundant. Moreover, the
labelling of the M2 subtype is highly correlated with the
labelling of cholinergic neurons. Finally, the M5 subtype
seems to be preferentially localized in the superficial
layers of the cortex [158].

Pharmacology

Agonists

To date, muscarine (an alkaloid extracted from poisonous
mushroom Amanita muscaria) is the main pharmacolog-
ical tool used to activate specifically muscarinic receptors
and there is no agonist with a specific selectivity for one
particular subtype [31].

Antagonists

Atropine, a well known alkaloid extracted from the plant
Atropa belladonna, is a non-selective muscarinic antago-
nist. Moreover, this antagonist has, at high concentrations,
non-specific effects on other receptors. To differentiate
muscarinic receptor subtypes, only a few antagonists have
been introduced [55]. Pirenzepine is used at low concen-
trations as a specific antagonist of the M1 family [73].
Methoctramine and AFDX-116 [11–2({-[(diethy-
lamino)methyl]-1-piperidinyl}-acetyl)-5,11-dihydro-6H-

pyrido(2,3-b) (1,4)-benzodiazepine-one] [132], are more
selective for the M2 family [55] whereas 4-DAMP [4-
diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochlo-
ride] seems to be more specific for the M3 subtype [12].
MT-7, a toxin purified from the venom of Dendroaspis
angusticeps, inhibits, with high selectivity, the M1 subtype
[2, 142] and it is the most specific antagonist for any
subtype of muscarinic receptor [31]. The lack of selective
agonists and the paucity of highly selective antagonists are
major problems impeding the characterization of the
different subtypes of muscarinic receptors.

Functions

Several studies have localized muscarinic receptors at
peri-, extra-, pre- and postsynaptic levels on pyramidal
neurons and non-pyramidal neurons [31, 135, 136, 164].
Postsynaptic muscarinic receptors induce a depolarization
of neurons by inhibiting different K+ currents: (1) the
rectifying outward current Im (m for muscarinic), which is
voltage dependent and insensitive to Ca2+, and activated
at the resting potential [46, 94, 120], (2) Ca2+- and
voltage-dependent IAHP current (AHP for afterhyperpo-
larization) which is responsible for the slow post-hyper-
polarization [120], (3) the leak current (Ileak), independent
of the potential and Ca2+ [114], (4) the voltage-dependent
potassium current (Ik) [202]. However, postsynaptic
receptors can also act by inhibiting Ca2+ channels in the
hippocampus [67]. It is generally accepted that the
muscarinic receptors of M1/M3 subtype are located at
the postsynaptic level [102, 136, 153]. The localization of
the M2/M4 receptors is less well defined but was
traditionally recognized at the presynaptic level as an
autoreceptor implied in negative feedback [49, 102, 203]
or as a heteroreceptor regulating synaptic transmission by
acting on Ca2+ channels [171, 181].

For a long time, muscarinic M5 subtype receptors were
considered non-functional because little was known about
their localization, their binding properties and their
physiological functions. Reever et al. [158], using an
exclusion labelling technique, showed that the M5
subtype was distinct from the others, with a preferential
localization in the superficial layers of the cortex. These
preliminary results suggested that the M5 subtype has a
significant and independent role in modulating the
cortical network. However, specific ligands need to be
developed in order to explore the physiological function
of M5 receptors.

Cholinergic modulation of the synaptic response

To study the intimate mechanisms underlying the cogni-
tive functions implicating ACh, many authors have
worked on the modulatory role of ACh on the cortical
[129, 149] networks of mammals. The cortical network is
mainly composed of extracortical fibres and of pyramidal
and non-pyramidal interconnected neurons. In a given
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cortical neuron, the synaptic response is complex, result-
ing from an interaction between both excitatory inputs,
which are mainly glutamatergic, and inhibitory inputs,
mainly GABAergic. To understand the modulatory role of
ACh in the synaptic response, a pharmacological dissec-
tion has been done in order to study the excitatory and
inhibitory components of the response independently. The
release of glutamate seems to be essentially increased by
the activation of presynaptic nicotinic receptors in rat
prefrontal cortex [71, 185]. Muscarinic agonist applica-
tion also increases glutamate release. Agonists activate
postsynaptic muscarinic receptors, which induces a short
hyperpolarization followed by a slow depolarization of
cortical pyramidal neurons [30, 87, 119, 120]. The fast
hyperpolarization is due to the depolarization of GABA
interneurons making synapses with pyramidal neurons,
whereas slow depolarization is obtained mainly by
depression of the M current, which can be activated only
at the depolarized potentials and by the removal of IAHP
current responsible for the AHP [120].

The release of GABA has been also reported to be
increased by the activation of presynaptic nicotinic
receptors in hippocampus [156]. Recent studies have
demonstrated that nicotine could act on postsynaptic
nicotinic receptors to induce an excitatory current on
interneurons [4, 154, 161, 200]. Moreover, activation of
postsynaptic muscarinic receptors can induce a fast
excitation of GABA interneurons by changing their
membrane potential [120], leading to an increase of
GABA release [87].

However, application of muscarinic agonists can also
remove both excitatory and inhibitory transmission [7, 90,
139] by a presynaptic [90] or a postsynaptic mechanism.
In this latter case, the activation of these receptors may
induce a hyperpolarization of neurons [89] as first
reported to occur in the rat parabrachial nucleus [54].

All these results were obtained by application of
exogenous ACh or other agonists and do not allow
conclusions to be drawn about the effects of endogenous
ACh. Moreover, pharmacological dissection of the syn-
aptic response in these experiments did not reveal any
information about ACh’s modulatory effect on the
functional integrative signal (i.e. the interaction between
excitation and inhibition).

In the auditory cortex, Metherate and Ashe [129]
attempt to examine how spontaneously released ACh acts
on synaptic potentials, using an anticholinesterase com-
pound. They concluded that ACh depresses synaptic
potentials mediated by both glutamate and GABA. In
another study using the muscarinic antagonist atropine, an
endogenous muscarinic component was identified in the
evoked synaptic response [10]. However, numerous
questions still remain with respect to the endogenous
cholinergic modulation of the interaction between exci-
tation and inhibition.

In an attempt to contribute to a new approach to
answer these questions, we proposed an analysis based on
the continuous measurement of conductance variation in
response to synaptic activations [18]. Taking into account

that the reversal potential of excitatory signals is 0 mV
and of inhibitory signals is �80 mV, this variation of
conductance is linearly decomposed into its excitatory
(glutamatergic) and inhibitory (GABAergic) components
assuming that no voltage-dependent current was activated
in the recorded neuron. The decomposition is made with
an algorithm [two equations with two unknown values,
the excitatory (Gexc) and the inhibitory (Ginh) conduc-
tances] based on the values of the conductance DG(t) and
of the apparent reversal potential recorded in the soma at
any time of the response. This method allows us to
explain how synaptic inhibition interacts with synaptic
excitation during a synaptic response, independently of
the blockade of one of the components (excitation or
inhibition). Then, the modulatory effects of endogenous
cortical ACh, released by electrical stimulation of
cholinergic afferents, on this interaction can be studied.
Figure 4 illustrates the potential of this method. In order
to study the muscarinic modulation of the synaptic
integration by endogenous ACh, we perfused atropine
(10 �M) following stimulation of synaptic afferents,
including cholinergic ones. The synaptic response in-
duced by the electrical stimulation of layer I was recorded
in a pyramidal neuron of layer V by whole-cell patch-
clamp recording from cortical slices in control conditions
and after atropine application. Analysis of the recording
current shows that the total conductance of the response
remains unchanged. However, the decomposition method
revealed that the amplitude of inhibitory conductance
decreased whereas the amplitude of excitatory conduc-
tance increased. One consequence of these changes was a
large increase in the amplitude of the depolarization on
the voltage trace. So, we can hypothesize that endogenous
ACh has opposite effects on GABAergic interneurons
versus glutamatergic neurons, to decrease the excitability
of the recorded neuron, but this analysis does not permit
us to identify the precise level of the modulation of the
excitation and/or the inhibition in a polysynaptic network.
However, the opposite effects of ACh could be explained
by the activation of different subtypes of muscarinic
receptors on GABAergic and glutamatergic neurons. A
specific investigation of the involvement of nicotinic and
muscarinic receptors in the modulation of the cortical
network is underway, using selective pharmacological
tools (unpublished results).

To date, all data concerning cholinergic modulation in
the brain have revealed that it is the result of a mixture of
positive and negative modulations, implying that each
type of cholinergic receptor has a different location. What
is the physiological significance of these modulations?

Functional explanations of these cholinergic modula-
tions have been proposed by Kimura [89], who considers
the synaptic inputs activated and implied in the synaptic
response. Electrophysiological studies performed on the
pyriform cortex [149] and on slices of somatosensory
cortex [70], or studies carried out by optical measure-
ments in the visual cortex [91] show that ACh removes
the excitation and the inhibition induced by intracortical
innervation. In contrast, excitation due to the activation of
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extracortical afferents is either insensitive to ACh [75], or
even facilitated by ACh, in the case of the thalamic
afferents [70]. Inhibition of the intracortical innervation
seems to be specifically due to the activation of presyn-

aptic muscarinic receptors [70] whereas nicotinic recep-
tors activate the synaptic response in a different way,
according to the location of the synaptic entries. The
optical recordings show that the suppression of the
excitation induced by white matter stimulation is variably
significant, according to the target layer. Excitation
recorded in the superficial layers (II/III) and deep layers
(V, VI) is decreased by 40% to 50%, whereas it is
decreased by 20% to 30% in the intermediate layers [91].
So it could be supposed that ACh shifts the network from
a prevalently intracortical influence to a prevalently
extracortical influence.

Hypotheses about the global action of ACh on the
network have been made and numerous specific actions of
ACh on its receptors have been found. However, the link
between specific actions on receptors and the global
action of ACh is still lacking. The diversity of both
muscarinic and nicotinic receptors would certainly permit
a fine modulation of the synaptic response. Few studies
have been made to understand the role of the different
subtypes of receptors and many questions are unresolved.
If these various receptors subtypes have a differential
localization on specific neurons, their activation might
permit a precise modulation of neurons and a facilitation
of certain pathways. Using the above-described analysis,
we are attempting to identify the particular role and
neuronal localization of different subtypes of both
cholinergic receptors.
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