
Philippa ShepleyUniversity of Leeds · School of Physics and Astronomy
Philippa Shepley
About
25
Publications
3,692
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
441
Citations
Citations since 2017
Publications
Publications (25)
Ferromagnetic films with perpendicular magnetic anisotropy are of interest in spintronics and superconducting spintronics. Perpendicular magnetic anisotropy can be achieved in thin ferromagnetic multilayer structures, when the anisotropy is driven by carefully engineered interfaces. Devices with multiple interfaces are disadvantageous for our appli...
Artificial multiferroics consist of two types of ferroic materials, typically a ferroelectric and a ferromagnet, often coupled interfacially by magnetostriction induced by the lattice elongations in the ferroelectric. In BaTiO3, the magnitude of strain induced by these elongations is heavily temperature dependent, varying greatly between each of th...
We demonstrate nonreciprocal critical current in 65 nm thick polycrystalline and epitaxial Nb thin films patterned into tracks. The nonreciprocal behavior gives a supercurrent diode effect, where the current passed in one direction is a supercurrent and the other direction is a normal state (resistive) current. We attribute fabrication artifacts to...
Domain pattern transfer from ferroelectric to ferromagnetic materials is a critical step for the electric field control of magnetism and has the potential to provide new schemes for low-power data storage and computing devices. Here we investigate domain coupling in BaTiO3(111)/CoFeB heterostructures by direct imaging in a wide-field Kerr microscop...
We demonstrate nonreciprocal critical current in 65 nm thick polycrystalline and epitaxial Nb thin films patterned into tracks. The nonreciprocal behavior gives a supercurrent diode effect, where the current passed in one direction is a supercurrent
and the other direction is a normal state (resistive) current. We study the variation of the diode e...
Ferromagnetic films with perpendicular magnetic anisotropy are of interest in spintronics and superconducting spintronics. Perpendicular magnetic anisotropy can be achieved in thin ferromagnetic multilayer structures, when the anisotropy is driven by carefully engineered interfaces. Devices with multiple interfaces are disadvantageous for our appli...
We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co $$_{68}$$ 68 B $$_{32}$$ 32 /Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the juncti...
The piezoelectric devices widespread in society use noncentrosymmetric Pb-based oxides because of their outstanding functional properties. The highest figures of merit reported are for perovskites based on the parent Pb(Mg1/3Nb2/3)O3 (PMN), which is a relaxor: a centrosymmetric material with local symmetry breaking that enables functional propertie...
We report on the electrical transport properties of Nb based Josephson junctions with Pt/Co68B32/Pt ferromagnetic barriers. The barriers exhibit perpendicular magnetic anisotropy, which has the main advantage for potential applications over magnetisation in-plane systems of not affecting the Fraunhofer response of the junction. In addition, we repo...
It is demonstrated that the dielectric permittivity and piezoelectric coefficients in relaxor-PbTiO3 single crystals close to the morphotropic phase boundary (MPB) can be augmented by contributions from domain walls. Landau-Ginzburg-Devonshire models, incorporating both polarization and strain gradients through the domain walls, show that wall cont...
We demonstrate a Josephson junction with a weak link containing two ferromagnets with perpendicular magnetic anisotropy and independent switching fields in which the critical current can be set by the mutual orientation of the two layers. Such pseudospin-valve Josephson junctions are a candidate cryogenic memory in an all superconducting computatio...
We demonstrate a Josephson junction with a weak link containing two ferromagnets, with perpendicular magnetic anisotropy and independent switching fields in which the critical current can be set by the mutual orientation of the two layers. Such pseudospin-valve Josephson junctions are a candidate cryogenic memory in an all superconducting computati...
The mechanisms underlying the anomalously large, room temperature piezoelectric activity of relaxor-PbTiO3 type single crystals have previously been linked to low temperature relaxations in the piezoelectric and dielectric properties. We investigate the properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 between 10 and 300 K using dielectric per...
We study the energy and creep velocity of magnetic domain walls in perpendicularly magnetised Pt/Co/Ir thin films under strain. We find that the enhancement of domain wall creep velocity under strain from piezoelectric transducers is largest in films with the thinnest Co layers (0.56?nm), in which the strain causes the smallest relative change in p...
We have imaged N\'eel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 \mu m diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane f...
We study the effect of sputter-deposition conditions, namely, substrate temperature and chamber base pressure, upon the interface quality of epitaxial Pt/Co/Pt thin films with perpendicular magnetic anisotropy. Here we define interface quality to be the inverse of the sum in quadrature of roughness and intermixing. We find that samples with the top...
We study the effect of sputter-deposition conditions, namely substrate temperature and chamber base pressure, upon the interface quality of epitaxial Pt/Co/Pt thin films with perpendicular magnetic anisotropy. Here we define interface quality to be the inverse of the sum in quadrature of roughness and intermixing. We find that samples with the top...
The interfacial Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilize homochiral N\'eel-type domain walls in thin films with perpendicular magnetic anisotropy and as a result permit them to be propagated by a spin Hall torque. In this study, we demonstrate that in Ta/Co20Fe60B20/MgO the DMI may be influenced by annealing. We find that...
Patterned thin-films of magnetic nanoparticles (MNPs) can be used to make: surfaces for manipualting and sorting cells, sensors, 2D spin ices and high density data storage devices. Conventional manufacture of patterned magnetic thin films is not environmentally friendly because it uses high temperatures (hundreds of degrees Celcius) and high vacuum...
Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-t...
The perpendicular magnetic anisotropy K$_e$$_f$$_f$, magnetization reversal,
and field-driven domain wall velocity in the creep regime are modified in
Pt/Co(0.85-1.0 nm)/Pt thin films by strain applied via piezoelectric
transducers. K$_e$$_f$$_f$, measured by the extraordinary Hall effect, is
reduced by 10 kJ/m$^3$ by tensile strain out-of-plane {\...