Philipp Wilfert

Philipp Wilfert
Delft University of Technology | TU · Department of Biotechnology

PhD in Environmental Biotechnology

About

18
Publications
9,456
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,208
Citations
Additional affiliations
September 2013 - April 2018
Delft University of Technology
Position
  • PhD

Publications

Publications (18)
Article
Full-text available
Wastewater treatment technologies opened the door for recovery of extracellular polymeric substances (EPS), presenting novel opportunities for use across diverse industrial sectors. Earlier studies showed that a significant amount of phosphorus (P) is recovered within extracted EPS. P recovered within the extracted EPS is an intrinsic part of the r...
Article
Full-text available
Phosphorous not only needs to be removed to prevent eutrophication of wastewater effluent receiving surface water bodies, but it also has to be recovered as a scarce finite reserve. Phosphorus chemical precipitation as NH4MgPO4·6H2O, Ca3(PO4)2, or Fe3(PO4)2 ·8H2O is the most common method of phosphorus recovery from phosphorus-rich streams. These m...
Article
Full-text available
The study evaluated the combined phosphorus, nitrogen, methane, and extracellular polymeric substances (EPS) recovery from aerobic granular sludge (AGS) wastewater treatment plants. About 30% of sludge organics are recovered as EPS and 25-30% as methane (≈260 ml methane/g VS) by integrating alkaline anaerobic digestion (AD). It was shown that 20% o...
Article
Full-text available
Sulfide is frequently suggested as a tool to release and recover phosphate from iron phosphate rich waste streams, such as sewage sludge, although systematic studies on mechanisms and efficiencies are missing. Batch experiments were conducted with different synthetic iron phosphates (purchased Fe(III)P, Fe(III)P synthesized in the lab and vivianite...
Article
To prevent eutrophication of surface water, phosphate needs to be removed from sewage. Iron (Fe) dosing is commonly used to achieve this goal either as the main strategy or in support of biological removal. Vivianite (Fe(II) 3 (PO 4 ) 2 * 8H 2 O) plays a crucial role in capturing the phosphate, and if enough iron is present in the sludge after anae...
Article
Kinetics of iron reduction, formation of vivianite and the microbial community in activated sludge from two sewage treatment plants (STPs) with low (STP Leeuwarden, applying enhanced biological phosphate removal, EBPR) and high (STP Cologne, applying chemical phosphate removal, CPR) iron dosing were studied in anaerobic batch experiments. The iron...
Chapter
Iron is omnipresent in sewage treatment systems. It can unintentionally be present because of, e.g., groundwater seepage into sewers, or it is intentionally added for odor and corrosion control, phosphate removal, or prevention of hydrogen sulfide emissions. The strong affinity of iron for phosphate has advantages for efficient removal of phosphate...
Article
Biogenic iron oxides (BioFeO) formed by Leptothrix sp. and Gallionella sp. were compared with chemically formed iron oxides (ChFeO) for their suitability to remove and recover phosphate from solutions. The ChFeO used for comparison included a commercial iron based adsorbent (GEH) and chemically oxidized iron precipitates from groundwater. Despite c...
Article
Phosphate recovery from sewage sludge is essential in a circular economy. Currently, the main focus in centralized municipal wastewater treatment plants (MWTPs) lies on struvite recovery routes, land application of sludge or on technologies that rely on sludge incineration. These routes have several disadvantages. Our study shows that the mineral v...
Article
Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in sewage sludge can help to identify new routes for pho...
Article
Methane emissions from marine sediments are partly controlled by microbial anaerobic oxidation of methane (AOM). AOM provides a long-term sink for carbon through precipitation of methane-derived authigenic carbonates (MDAC). Estimates on the adaptation time of this benthic methane filter as well as on the establishment of related processes and comm...
Article
The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet wid...
Poster
Full-text available
The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a ”blowout” in the British sector of the North Sea (57°55.29’ N, 01°37.86’ E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural...
Article
The aquatic macrophyte Stratiotes aloides L. is regarded as a key species for valuable ditch ecosystems characterized by high biodiversity and is an important indicator for the ecological condition of these systems. Recently, a decline of the species in northwestern Germany has been observed. This study focuses on the influence of sediment pore wat...

Network

Cited By