Philipp G MaassSickKids | University of Toronto · Genetics & Genome Biology Program | Department of Molecular Genetics
Philipp G Maass
PhD
Scientist, SickKids Research Institute & Assistant Professor, University of Toronto
About
65
Publications
9,158
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,993
Citations
Introduction
Philipp G Maass works in the Genetics & Genome Biology Program of the SickKids Research Institute in Toronto (Canada). The Maass lab explores inter-chromosomal interactions, long non-coding RNAs, and molecular disease mechanisms of the non-coding genome.
Additional affiliations
September 2018 - present
April 2015 - August 2018
August 2009 - March 2015
Education
October 1999 - July 2004
Publications
Publications (65)
Imaging (fluorescence in situ hybridization [FISH]) and genome-wide chromosome conformation capture (Hi-C) are two major approaches to the study of higher-order genome organization in the nucleus. Intra-chromosomal and inter-chromosomal interactions (referred to as non-homologous chromosomal contacts [NHCCs]) have been observed by several FISH-base...
High blood pressure (BP) is the major risk factor for cardiovascular disease. Genome-wide association studies have identified genetic variants for BP, but functional insights into causality and related molecular mechanisms lag behind. We functionally characterize 4,608 genetic variants in linkage with 135 BP loci in vascular smooth muscle cells and...
Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathw...
Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin a...
Association studies describe genetic associations between noncoding variants and disease susceptibility; however, they do not provide functional insight into the underlying molecular mechanisms of these variants. We present a protocol to assay the regulatory potential of thousands of noncoding variants using massively parallel reporter assays. We d...
The nuclear envelope is a membrane separating nuclear from cytoplasmic processes. Existing models suggest that damaged DNA moves to the envelope at the edge of the nucleus for repair. Yet, most damaged human DNA does not reposition to the nuclear periphery during repair. Here we show that human cells relocate the nuclear envelope to non-peripheral...
Background:
Phosphodiesterase 3A (PDE3A) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothes...
MicroRNA (miRNA) alterations significantly impact the formation and progression of human cancers. miRNAs interact with messenger RNAs (mRNAs) to facilitate degradation or translational repression. Thus, identifying miRNA–mRNA regulatory modules in cohorts of primary tumor tissues are fundamental for understanding the biology of tumor heterogeneity...
The eukaryotic CDC45/MCM2-7/GINS (CMG) helicase unwinds the DNA double helix during DNA replication. The GINS subcomplex is required for helicase activity and is, therefore, essential for DNA replication and cell viability. Here, we report the identification of 7 individuals from 5 unrelated families presenting with a Meier-Gorlin syndrome-like (MG...
Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patient...
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains,...
Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers,...
BACKGROUND
Cardiomyopathy (CMP) is a genetic disease of the heart muscle that causes heart failure and sudden cardiac death in children. Our goal was to define the missing genetic etiology of childhood onset CMP by identifying the role of functionally active genomic variants in regulatory elements of CMP genes.
METHODS AND RESULTS
A total of 225 u...
In early development, the environment triggers mnemonic epigenomic programs resulting in memory and learning experiences to confer cognitive phenotypes into adulthood. To uncover how environmental stimulation impacts the epigenome and genome organization, we used the paradigm of environmental enrichment (EE) in young mice constantly receiving novel...
Although many long non-coding RNAs (lncRNAs) exhibit lineage-specific expression, the vast majority remain functionally uncharacterized in the context of development. Here, we report the first described human embryonic stem cell (hESC) lines to repress (CRISPRi) or activate (CRISPRa) transcription during differentiation into all three germ layers,...
In early development, the environment triggers mnemonic epigenomic programs resulting in memory and learning experiences to confer cognitive phenotypes into adulthood. To uncover how environmental stimulation impacts the epigenome and genome organization, we used the paradigm of environmental enrichment (EE) in young mice constantly receiving novel...
Cardiomyopathy (CMP) is a heritable genetic disorder. Protein-coding variants account for 20-30% of cases. The contribution of variants in non-coding DNA elements that regulate gene expression has not been explored. We performed whole-genome sequencing (WGS) of 228 unrelated CMP families. Besides pathogenic protein-coding variants in known CMP gene...
Background:
Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effect...
Background:
High blood pressure is the primary risk factor for cardiovascular death worldwide. Autosomal dominant hypertension with brachydactyly clinically resembles salt-resistant essential hypertension and causes death by stroke before 50 years of age. We recently implicated the gene encoding phosphodiesterase 3A (PDE3A); however, in vivo model...
Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants in close proximity to the target gene, trans effects are due to distal genetic variants that affect diffusible elements such as transcription factors. Previous studies have mostly assessed the impact of cis and tr...
Hypertension is the greatest driver of cardiovascular disease, the most common cause of death. Finding novel model mechanisms for blood-pressure (BP) regulation is an important goal. Autosomal-dominant hypertension with brachydactyly (HTNB) clinically resembles salt-resistant essential hypertension and causes death by stroke, commonly before age 50...
Transcription initiates at both coding and noncoding genomic elements, including mRNA and long noncoding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has a different expression profile with lncRNAs and eRNAs being the most tissue specific. How these complex differences in expression profiles and tissue specificities ar...
Transcription initiates at both coding and non-coding genomic elements, including mRNA and long non-coding RNA (lncRNA) core promoters and enhancer RNAs (eRNAs). However, each class has different expression profiles with lncRNAs and eRNAs being the most tissue-specific. How these complex differences in expression profiles and tissue-specificities a...
Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, b...
Chromosomes occupy distinct interphase territories in the three-dimensional nucleus. However, how these chromosome territories are arranged relative to one another is poorly understood. Here, we investigated the inter-chromosomal interactions between chromosomes 2q, 12, and 17 in human mesenchymal stem cells (MSCs) and MSC-derived cell types by DNA...
The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conf...
Expanded View Figures PDF
Imaging and chromatin capture techniques have shed important insights into our understanding of nuclear organization. A limitation of these techniques is the inability to resolve allele-specific spatiotemporal properties of genomic loci in living cells. Here, we describe an allele-specific CRISPR live-cell DNA imaging technique (SNP-CLING) to provi...
In the post-genomic era, thousands of putative noncoding regulatory regions have been identified, such as enhancers, promoters, long noncoding RNAs (lncRNAs), and a cadre of small peptides. These ever-growing catalogs require high-throughput assays to test their functionality at scale. Massively parallel reporter assays have greatly enhanced the un...
Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the u...
One of the biggest surprises since the sequencing of the human genome has been the discovery of thousands of long noncoding RNAs (lncRNAs) 1–6 . Although lncRNAs and mRNAs are similar in many ways, they differ with lncRNAs being more nuclear-enriched and in several cases exclusively nuclear 7,8 . Yet, the RNA-based sequences that determine nuclear...
CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177neg and CD177pos neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals. CD177pos, but not CD177neg neutrophils, produced CD177 protein and mRN...
Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The ph...
Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB)...
We identified Mendelian type E brachydactyly (BDE) with hypertension in six different families from Turkey, America, France, Canada and South Africa. The two phenotypes, hypertension and BDE, invariably coincide. The blood pressure in affected individuals increases with increasing age, the mean arterial blood pressure at 50 years exceeds 150 mm Hg,...
Zusammenfassung
Lange nichtkodierende RNAs (lncRNA) ergänzen die bisher bekannten Mechanismen und Möglichkeiten der Genregulation. lncRNAs beeinflussen auf transkriptioneller oder posttranskriptioneller Ebene – in Interaktion mit der Genomarchitektur – fundamentale biologische Prozesse, wie genomisches Imprinting, Histonmodifikationen, Genaktivieru...
Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-t...
Translocations are chromosomal rearrangements that are frequently associated with a variety of disease states and developmental disorders. We identified 2 families with brachydactyly type E (BDE) resulting from different translocations affecting chromosome 12p. Both translocations caused downregulation of the parathyroid hormone-like hormone (PTHLH...
Affected individuals with autosomal-dominant hypertension with brachydactyly syndrome develop severe progressive hypertension and, if left untreated, develop stroke by age <50 years. In 1996 we described hypertension and brachydactyly and presented data on adults. We recently revisited this family and performed further studies, focusing particularl...
Parathyroid hormone-like hormone (PTHLH) is an important chondrogenic regulator; however, the gene has not been directly linked to human disease. We studied a family with autosomal-dominant Brachydactyly Type E (BDE) and identified a t(8;12)(q13;p11.2) translocation with breakpoints (BPs) upstream of PTHLH on chromosome 12p11.2 and a disrupted KCNB...
In dieser Dissertation wurde eine isolierte Brachydaktylie vom Typ E (BDE) untersucht. Grundlage war eine Familie mit autosomal-dominanten Erbgang BDE. Der genetische Hintergrund ist eine balancierte Translokation t(8;12)(q13;p11.2). Der Bruchpunkt auf derivativem Chromosom der(8) liegt 86 kb strangaufwärts des chondrogenetisch essentiellen Kandida...
Transforming growth factor-beta (TGF-beta) is abundantly expressed in malignant gliomas and is crucial for the tumor micromilieu. TGF-beta not only enhances migration and invasion of glioma cells but also inhibits an effective anti-glioma immune response. TGF-beta mediates its biologic effects through interactions with TGF-beta receptors (TbetaR)-I...
Autosomal-dominant hypertension and brachydactyly (Online Mendelian Inheritance in Man 112410) is a prototype-translational research project. We used interphase fluorescent in situ hybridization and discovered complex rearrangements on chromosome 12p in 5 families but elucidated a common inverted region in the linkage interval. The inversion contai...
The effects of salt intake on renal regulation have been investigated for decades. To find new pathways and to demonstrate the utility of oligonucleotide expression arrays, we studied whole kidneys.
Eight Sprague-Dawley rats were divided into two groups. One group received a 6% salt (by weight) diet, while the other group received a 0.3%, otherwise...
The baroreflex, which is important for the minute-to-minute regulation of blood pressure and heart rate, is influenced by genetic variance. Ion channels are important to baroreflex afferent and efferent function. Mice missing the beta1 subunit of the Ca2+-sensitive potassium channel (BK) are hypertensive and have a reset baroreflex. We tested the h...