Philip J WardVrije Universiteit Amsterdam | VU · The Institute for Environmental Studies (IVM)
Philip J Ward
PhD, Earth and Life Sciences
About
274
Publications
177,086
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
22,238
Citations
Introduction
Additional affiliations
August 2008 - present
Publications
Publications (274)
Critical infrastructure (CI) is exposed to natural hazards that may lead to the devastation of these infrastructures and burden society with the indirect consequences that stem from this. Fragility and vulnerability curves, which quantify the likelihood of a certain damage state and the level of damage of an element under varying hazard intensities...
Undertaking a natural hazard or risk assessment from a single hazard approach can be considered incomplete where the interactions between and impacts from multiple hazards and risks are not considered. However, the development of indicators in disaster risk management has only recently started to explicitly include multi-hazard and multi-risk appro...
At the 2024 General Assembly of the European Geophysical Union, a workshop was organized to introduce the EO4Multihazards project and its three main research questions. The workshop included a project overview, panel discussion, group activities, and a feedback session. It also showcased an interactive poster. These efforts enriched our discussions...
Understanding coastal flood protection is crucial for assessing risks from natural hazards and climate change. However, there is a significant lack of quantitative data on coastal flood protection and their standards. FLOPROS, currently the only global database of flood protection standards, relies on limited coastal observations and simplified ass...
Compound events occur when multiple drivers or hazards combine to create societal or environmental risks. Many high-impact weather and climate events, such as simultaneous heatwaves and droughts, are compound in nature, leading to more severe consequences than individual events. This review examines the growth of compound event research in the deca...
Current large-scale coastal flood risk assessments are typically based on scenarios considering a range of spatially uniform return periods (RP). These assessments do not account for the spatial variability of real flood events, and only estimate average annual losses. In this study, we address these limitations by developing a novel event-based pr...
Critical infrastructure (CI) are at risk of failure due to the increased frequency and magnitude of climate extremes related to climate change. It is thus essential to include them in a risk management framework to identify risk hotspots, develop risk management policies and support adaptation strategies to enhance their resilience. However, the la...
Power grids play a critical role in modern society, serving as the lifeline of a well-functioning economy. This article presents a first large-scale study on the risk estimation of tropical cyclone (TC)-induced winds and coastal floods, which can widely impact power grids in Southeast and East Asia. Our comprehensive risk model incorporates detaile...
Recent studies have been reporting more extreme, compounding impacts from multi-hazards than from single hazard events owing to complex interrelationships of hazard, exposure and vulnerability in a multi-hazard setting. However, our current understanding of multi-hazard impacts is primarily based on case studies of individual events. To complement...
Coastal flooding resulting from tropical cyclones can have large repercussions in many low-lying regions around the world. Accurate flood risk assessments are crucial for designing measures to reduce the societal impacts of coastal flooding. At continental to global scales, however, traditional flood risk assessments mostly use methods that do not...
Flooding during or after droughts poses significant challenges to disaster risk management. However, interactions between droughts and floods are often overlooked as studies typically analyse these events in isolation. Here we explore historical occurrences of compound and consecutive drought-flood events and drought effects on flood severity and t...
Tropical and extratropical cyclones, which can cause coastal flooding, are among the most devastating natural hazards. Understanding better coastal flood risk can help to reduce their potential impacts. Global flood models play a key role in this process. In recent years, global models and methods for flood hazard simulation have improved, but they...
The latest evidence suggests that multi-hazards and their interrelationships (e.g., triggering, compound, and consecutive hazards) are becoming more frequent across Europe, underlying a need for resilience building by moving from single-hazard-focused to multi-hazard risk assessment and management. Although significant advancements were made in our...
Coastal flood risk is a serious global challenge facing current and future generations. Several disaster risk reduction (DRR) measures have been posited as ways to reduce the deleterious impacts of coastal flooding. On a global scale, however, efforts to model the future effects of DRR measures (beyond structural) are limited. In this paper, we use...
This study synthesizes the current understanding of the hydrological, impact, and adaptation processes underlying drought‐to‐flood events (i.e., consecutive drought and flood events), and how they interact. Based on an analysis of literature and a global assessment of historic cases, we show how drought can affect flood risk and assess under which...
Critical infrastructure (CI) is exposed to natural hazards that may lead to the devastation of these infrastructures and burden society with the indirect consequences that stem from this. The vulnerability is a key determinant for understanding, assessing and reducing natural hazard-induced risks to these infrastructures. To date, however, essentia...
Hydrological extremes, such as droughts and floods, can trigger a complex web of compound and cascading impacts (CCI) due to interdependencies between coupled natural and social systems. However, current decision‐making processes typically only consider one impact and disaster event at a time, ignoring causal chains, feedback loops, and conditional...
Flooding events that occur on the Earth’s rivers annually cause large amounts of monetary and human impacts. These impacts are expected to increase through the end of the 21st century for various reasons. Decision makers must take action now and implement disaster risk reduction measures to avoid large increases to damages in the future. On the glo...
Multi-hazard events, characterized by the simultaneous, cascading, or cumulative occurrence of multiple natural hazards, pose a significant threat to human lives and assets. This is primarily due to the cumulative and cascading effects arising from the interplay of various natural hazards across space and time. However, their identification is chal...
Hydrological droughts pose a persistent threat for cities and are increasingly studied. However, this is rarely within a large-scale context, complicating comparisons between cities and potentially hampering the most efficient allocation of resources in terms of drought risk adaptation and mitigation. Here, we investigate global urban hydrological...
Megafloods that far exceed previously observed records often take citizens and experts by surprise, resulting in extremely severe damage and loss of life. Existing methods based on local and regional information rarely go beyond national borders and cannot predict these floods well because of limited data on megafloods, and because flood generation...
Heatwaves are weather hazards that can influence societal and natural systems. Recently, heatwaves have increased in frequency, duration, and intensity, and this trend is projected to continue as a consequence of climate change. The study of heatwaves is hampered by the lack of a common definition, which limits comparability between studies. This a...
In the coming decades, coastal flooding will become more frequent due to sea‐level rise and potential changes in storms. To produce global storm surge projections from 1950 to 2050, we force the Global Tide and Surge Model with a ∼25‐km resolution climate model ensemble from the Coupled Model Intercomparison Project Phase 6 High Resolution Model In...
This study presents a new method, the MYRIAD-Hazard Event Sets Algorithm (MYRIAD-HESA), that compiles historically-based multi-hazard event sets. MYRIAD-HESA is a fully open-access method that can create multi-hazard event sets from any hazard events that occur on varying time, space, and intensity scales. In the past, multi-hazards have predominat...
Hydrological extremes, such as droughts and floods, can trigger a complex web of compound and cascading impacts due to interdependencies between coupled natural and social systems. However, current decision-making processes typically only consider one impact and disaster event at a time, ignoring causal chains, feedback loops, and conditional depen...
Growth in satellite observations and modelling capabilities has transformed drought monitoring, offering near-real-time information. However, current monitoring efforts focus on hazards rather than impacts, and are further disconnected from drought-related compound or cascading hazards such as heatwaves, wildfires, floods and debris flows. In this...
Current coastal flood risk assessments fail to capture flood spatial dependence at large scales. In this paper, we develop the first global synthetic dataset of spatially-dependent extreme sea level events, by applying an existing conditional multivariate statistical model to 40-year global reanalysis sea levels. The resulting dataset contains 10,0...
In low-lying coastal areas floods occur from (combinations of) fluvial, pluvial, and coastal drivers. If these flood drivers are statistically dependent, their joint probability might be misrepresented if dependence is not accounted for. However, few studies have examined flood risk and risk reduction measures while accounting for so-called compoun...
Coastal flooding is driven by the combination of (high) tide and storm surge, the latter being caused by strong winds and low pressure in tropical and extratropical cyclones. The combination of storm surge and the astronomical tide is defined as the storm tide. To gain an understanding of the threat posed by coastal flooding and to identify areas t...
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions, and fe...
In our increasingly interconnected world, natural hazards and their impacts spread across geographical, administrative, and sectoral boundaries. Owing to the interrelationships between multi-hazards and socio-economic dimensions, the impacts of these types of events can surmount those of multiple single hazards. The complexities involved in tacklin...
This study The Geography of Future Water Challenges – Bending the trend shows that there is a great urgency to tackle global water and climate adaptation issues. This will require radical changes in the thinking about the value of water and in policy development worldwide, not only within the water sector itself, but also in adjacent sectors, such...
Consideration of compound drivers and impacts are often missing from applications within the Disaster Risk Reduction (DRR) cycle, leading to poorer understanding of risk and benefits of actions. The need to include compound considerations is known, but lack of guidance is prohibiting practitioners from including these considerations. This article m...
This study presents a new method, the MYRIAD – Hazard Event Sets Algorithm (MYRIAD-HESA), that generates historically-based multi-hazard event sets. MYRIAD-HESA is a fully open-access method that can create multi-hazard event sets from any hazard events that occur on varying time, space, and intensity scales. In the past, multi-hazards have predomi...
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions and fee...
Coastal flood risk is a serious global challenge facing current and future generations. Several disaster risk reduction (DRR) measures have been posited as ways to reduce the deleterious impacts of coastal flooding. On the global scale, however, efforts to model the effects of DRR measures (beyond structural) in the future are limited. In this pape...
The Last Interglacial (LIG; ca. 125 ka) is a period of interest for climate research as it is the most recent period of the Earth's history when the boreal climate was warmer than at present. Previous research, based on models and geological evidence, suggests that the LIG may have featured enhanced patterns of ocean storminess, but this remains ho...
Coastal flooding is driven by both high tides and/or storm surge, the latter being caused by strong winds and low pressure in tropical and extratropical. The combination of storm surge and the astronomical tide is defined as the storm tide. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially a...
In low-lying coastal areas floods occur from (combinations of) fluvial, pluvial, and coastal drivers. If these flood drivers are statistically dependent, their joint likelihood might be misrepresented if dependence is not accounted for. However, few studies have examined flood risk and risk reduction measures while accounting for so-called compound...
Disaster risks are the results of complex spatiotemporal interactions between risk components, impacts and societal response. The complexities of these interactions increase when multi-risk events occur in vulnerable contexts characterized by ethnic conflicts, unstable governments, and high levels of poverty, resulting in impacts that are larger th...
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing³. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we sh...
Floods have negative effects on the reliable operation of transportation systems. In China alone, floods cause an average of ∼1125 h of railway service disruptions per year. In this study, we present a simulation framework to analyse the system vulnerability and risk of the railway system to floods. First, we developed a novel methodology for gener...
There is considerable uncertainty surrounding future changes in tropical cyclone (TC) frequency and intensity, particularly at local scales. This uncertainty complicates risk assessments and implementation of risk mitigation strategies. We present a novel approach to overcome this problem, using the statistical model STORM to generate 10,000 years...
Whilst the last decades have seen a clear shift in emphasis from managing natural hazards to managing risk, the majority of natural-hazard risk research still focuses on single hazards. Internationally, there are calls for more attention for multi-hazards and multi-risks. Within the European Union (EU), the concepts of multi-hazard and multi-risk a...
Coastal river deltas are susceptible to flooding from pluvial, fluvial, and coastal flood drivers. Compound floods, which result from the co-occurrence of two or more of these drivers, typically exacerbate impacts compared to floods from a single driver. While several global flood models have been developed, these do not account for compound floodi...
The Last Interglacial (LIG; ca. 125 ka) is a period of interest for climate research as it is the most recent period of the Earth’s history when the boreal climate was warmer than at present. Previous research, based on models and geological evidence, suggests that the LIG may have featured enhanced patterns of ocean storminess, but this remains ho...
Critical infrastructure (CI) is fundamental for the functioning of a society and forms the backbone for socio-economic development. Natural and human-made threats, however, pose a major risk to CI. Therefore, geospatial data on the location of CI are fundamental for in-depth risk analyses, which are required to inform policy decisions aiming to red...
Due to rising sea levels and projected socio‐economic change, global coastal flood risk is expected to increase in the future. To reduce this increase in risk, one option is to reduce the probability or magnitude of the hazard through the implementation of structural, Nature‐based or hybrid adaptation measures. Nature‐based Solutions in coastal are...
Exposure to coastal flooding is increasing due to growing population and economic activity. These developments go hand-in-hand with a loss and deterioration of ecosystems. Ironically, these ecosystems can play a buffering role in reducing flood hazard. The ability of ecosystems to contribute to reducing coastal flooding has been emphasized in multi...
A new book presents recent advances in the modeling and remote sensing of droughts and floods of use to emergency response organizations and policy makers on a global scale.
Distributed hydrological models rely on hydrography data such as flow direction, river length, slope and width. For large-scale applications, many of these models still rely on a few flow direction datasets, which are often manually derived. We propose the Iterative Hydrography Upscaling (IHU) method to upscale high-resolution flow direction data t...
Without adaptation, sea-level rise (SLR) will put more people at risk of flooding. This requires a timely and adequate commitment to adaptation. In this paper, we show how adaptation needs to unfold over time to manage climate-induced SLR. We use a novel scenario-neutral approach, applied globally and subsequently combined with SLR and population s...
To improve coastal adaptation and management, it is critical to better understand and predict the characteristics of sea levels. Here, we explore the capabilities of artificial intelligence, from four deep learning methods to predict the surge component of sea-level variability based on local atmospheric conditions. We use an Artificial Neural Netw...
The importance of studying and modeling river floods as global‐scale processes is becoming more and more evident. River floods are a major component of weather‐related hazards worldwide, and ongoing climate and socioeconomic change can further exacerbate impacts of floods in the future. Reducing flood impacts is now a priority of the global politic...