Philip J Ward

Philip J Ward
Vrije Universiteit Amsterdam | VU · The Institute for Environmental Studies (IVM)

PhD, Earth and Life Sciences

About

232
Publications
125,701
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,296
Citations
Citations since 2016
132 Research Items
13472 Citations
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
Additional affiliations
August 2008 - present
Vrije Universiteit Amsterdam
Position
  • Senior Researcher

Publications

Publications (232)
Preprint
Full-text available
Coastal flooding is driven by both high tides and/or storm surge, the latter being caused by strong winds and low pressure in tropical and extratropical. The combination of storm surge and the astronomical tide is defined as the storm tide. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially a...
Preprint
Full-text available
In low-lying coastal areas floods occur from (combinations of) fluvial, pluvial, and coastal drivers. If these flood drivers are statistically dependent, their joint likelihood might be misrepresented if dependence is not accounted for. However, few studies have examined flood risk and risk reduction measures while accounting for so-called compound...
Article
Full-text available
Disaster risks are the results of complex spatiotemporal interactions between risk components, impacts and societal response. The complexities of these interactions increase when multi-risk events occur in vulnerable contexts characterized by ethnic conflicts, unstable governments, and high levels of poverty, resulting in impacts that are larger th...
Article
Full-text available
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing³. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we sh...
Article
Full-text available
Floods have negative effects on the reliable operation of transportation systems. In China alone, floods cause an average of ∼1125 h of railway service disruptions per year. In this study, we present a simulation framework to analyse the system vulnerability and risk of the railway system to floods. First, we developed a novel methodology for gener...
Article
Full-text available
There is considerable uncertainty surrounding future changes in tropical cyclone (TC) frequency and intensity, particularly at local scales. This uncertainty complicates risk assessments and implementation of risk mitigation strategies. We present a novel approach to overcome this problem, using the statistical model STORM to generate 10,000 years...
Article
Full-text available
Whilst the last decades have seen a clear shift in emphasis from managing natural hazards to managing risk, the majority of natural-hazard risk research still focuses on single hazards. Internationally, there are calls for more attention for multi-hazards and multi-risks. Within the European Union (EU), the concepts of multi-hazard and multi-risk a...
Preprint
Full-text available
Coastal river deltas are susceptible to flooding from pluvial, fluvial, and coastal flood drivers. Compound floods, which result from the co-occurrence of two or more of these drivers, typically exacerbate impacts compared to floods from a single driver. While several global flood models have been developed, these do not account for compound floodi...
Preprint
Full-text available
The Last Interglacial (LIG; ca. 125 ka) is a period of interest for climate research as it is the most recent period of the Earth’s history when the boreal climate was warmer than at present. Previous research, based on models and geological evidence, suggests that the LIG may have featured enhanced patterns of ocean storminess, but this remains ho...
Article
Full-text available
Critical infrastructure (CI) is fundamental for the functioning of a society and forms the backbone for socio-economic development. Natural and human-made threats, however, pose a major risk to CI. Therefore, geospatial data on the location of CI are fundamental for in-depth risk analyses, which are required to inform policy decisions aiming to red...
Article
Due to rising sea levels and projected socio‐economic change, global coastal flood risk is expected to increase in the future. To reduce this increase in risk, one option is to reduce the probability or magnitude of the hazard through the implementation of structural, Nature‐based or hybrid adaptation measures. Nature‐based Solutions in coastal are...
Article
Full-text available
Exposure to coastal flooding is increasing due to growing population and economic activity. These developments go hand-in-hand with a loss and deterioration of ecosystems. Ironically, these ecosystems can play a buffering role in reducing flood hazard. The ability of ecosystems to contribute to reducing coastal flooding has been emphasized in multi...
Article
A new book presents recent advances in the modeling and remote sensing of droughts and floods of use to emergency response organizations and policy makers on a global scale.
Article
Full-text available
Distributed hydrological models rely on hydrography data such as flow direction, river length, slope and width. For large-scale applications, many of these models still rely on a few flow direction datasets, which are often manually derived. We propose the Iterative Hydrography Upscaling (IHU) method to upscale high-resolution flow direction data t...
Article
Full-text available
Without adaptation, sea-level rise (SLR) will put more people at risk of flooding. This requires a timely and adequate commitment to adaptation. In this paper, we show how adaptation needs to unfold over time to manage climate-induced SLR. We use a novel scenario-neutral approach, applied globally and subsequently combined with SLR and population s...
Article
Full-text available
To improve coastal adaptation and management, it is critical to better understand and predict the characteristics of sea levels. Here, we explore the capabilities of artificial intelligence, from four deep learning methods to predict the surge component of sea-level variability based on local atmospheric conditions. We use an Artificial Neural Netw...
Chapter
The importance of studying and modeling river floods as global‐scale processes is becoming more and more evident. River floods are a major component of weather‐related hazards worldwide, and ongoing climate and socioeconomic change can further exacerbate impacts of floods in the future. Reducing flood impacts is now a priority of the global politic...
Chapter
This book provides an overview of historical and current research activities, products, application, and evaluation of drought and flood monitoring and forecast. It also presents how relevant products are being used for risk analysis and disaster response. Overall, there have been successful models, products, systems, and case studies at both globa...
Preprint
Full-text available
The increased complexity of disaster risk due to climate change, expected population growth and the increasing interconnectedness of disaster impacts across communities and economic sectors, require Disaster Risk Reduction (DRR) measures that are better able to address these growing complexities. Especially Disaster Risk Management (DRM) practition...
Article
Full-text available
Traditionally, building-level disaster risk reduction (DRR) measures are aimed at a single natural hazard. However, in many countries the society faces the threat of multiple hazards. Building-level DRR measures that aim to decrease earthquake vulnerability can have opposing or conflicting effects on flood vulnerability, and vice versa. In a case s...
Article
Full-text available
Over the past decade global flood hazard models have been developed and continuously improved. There is now a significant demand for testing global hazard maps generated by these models in order to understand their applicability for international risk reduction strategies and for reinsurance portfolio risk assessments using catastrophe models. We e...
Article
Full-text available
Most research on hydrological risks focuses either on flood risk or drought risk, whilst floods and droughts are two extremes of the same hydrological cycle. To better design disaster risk reduction (DRR) measures and strategies, it is important to consider interactions between these closely linked phenomena. We show examples of: (a) how flood or d...
Preprint
Full-text available
Distributed hydrological models rely on hydrography data such as flow direction, river length, slope and width. For large-scale applications, many of these models still rely on a few flow-direction datasets, which are often manually derived. We propose the Iterative Hydrography Upscaling (IHU) method to upscale high-resolution flow direction data t...
Article
Full-text available
Current global riverine flood risk studies assume a constant mean sea level boundary. In reality high sea levels can propagate up a river, impede high river discharge, thus leading to elevated water levels. Riverine flood risk in deltas may therefore be underestimated. This paper presents the first global scale assessment of the joint influence of...
Article
Full-text available
We investigate hydrology during a past climate slightly warmer than the present: the last interglacial (LIG). With daily output of preindustrial and LIG simulations from eight new climate models we force hydrological model PCR‐GLOBWB and in turn hydrodynamic model CaMa‐Flood. Compared to preindustrial, annual mean LIG runoff, discharge, and 100‐yr...
Article
Full-text available
The Mediterranean (MED) Basin is a climate change hotspot that has seen drying and a pronounced increase in heatwaves over the last century. At the same time, it is experiencing increased heavy precipitation during wintertime cold spells. Understanding and quantifying the risks from compound events over the MED is paramount for present and future d...
Article
Full-text available
Extreme sea levels (ESLs) in Europe could rise by as much as one metre or more by the end of this century due to climate change. This poses significant challenges to safeguard coastal communities. Here we present a comprehensive analysis of economically efficient protection scenarios along Europe’s coastlines during the present century. We employ a...
Preprint
Full-text available
Abstract. The Mediterranean (MED) basin is a climate change hot-spot that has seen drying and a pronounced increase in heatwaves over the last century. At the same time, it is experiencing increasing heavy precipitation during wintertime cold spells. Understanding and quantifying the risks from compound events over the MED is paramount for present...
Article
Full-text available
Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an average of around USD 260–310 billion per year. The scientific and policy communities recognise the need to reduce these risks. As a result, the last decade has seen a rapid development of global models for assessing risk from natur...
Article
Full-text available
Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection measures a...
Article
Full-text available
In recent decades, a striking number of countries have suffered from consecutive disasters: events whose impacts overlap both spatially and temporally, while recovery is still under way. The risk of consecutive disasters will increase due to growing exposure, the interconnectedness of human society and the increased frequency and intensity of non‐t...
Article
Full-text available
Atmospheric oscillations are known to drive the large-scale variability of hydrometeorological extremes in Europe, which can trigger flood events and losses. However, to date there are no studies that have assessed the combined influence of different large-scale atmospheric oscillations on the probabilities of flood losses occurring. Therefore, in...
Article
Full-text available
The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently invest...
Preprint
Current global riverine flood risk studies assume a constant mean sea level boundary. In reality high sea levels can propagate up a river, impede high river discharge, thus leading to elevated water levels. Riverine flood risk in deltas may therefore be underestimated. This paper presents the first global scale assessment of the joint influence of...
Article
Full-text available
Flood risk is expected to increase in coastal cities, particularly in Asian megacities such as Shanghai. This paper presents an integrated modeling framework to simulate changes in the flood risk in Shanghai and provide a cost-benefit analysis of multiple adaptation strategies used to reduce risk. The results show that the potential flood risk will...
Preprint
Full-text available
Abstract. Floods are among the most frequent and damaging natural hazard events in the world. In 2016, economic losses from flooding amounted to $56 bn globally, of which $20 bn occurred in China (Munich Re, 2017). National or regional scale mapping of flood hazard is at present providing an inconsistent and incomplete picture of floods. Over the p...
Preprint
Full-text available
Abstract. Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an average of around $260–310 billion per year. The scientific and policy community recognise the need to reduce these risks. As a result, the last decade has seen a rapid development of global models for assessing risk from...
Preprint
Full-text available
Abstract. Coastal flood hazard and exposure are expected to increase over the course of the 21st century, leading to increased coastal flood risk. In order to limit the increase in future risk, or even reduce coastal flood risk, adaptation is necessary. Here, we present a framework to evaluate the future benefits and costs of structural protection...
Article
Full-text available
The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed...
Article
Full-text available
In this study, we developed an enhanced approach for large-scale flood damage and risk assessments that uses characteristics of buildings and the built environment as object-based information to represent exposure and vulnerability to flooding. Most current large-scale assessments use an aggregated land-use category to represent the exposure, treat...
Article
Full-text available
The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently invest...
Article
Full-text available
Extreme phases of the El Niño Southern Oscillation (ENSO) show relationships with economic damages due to disasters worldwide. Climate forecasts can predict ENSO months in advance, enabling stakeholders to take disaster risk reducing actions. An understanding of risks during ENSO extremes is key for adequate response. Here, we review the effects of...
Article
Full-text available
We assess the suitability of ECMWF Integrated Forecasting System (IFS) data for the global modeling of tropical cyclone (TC) storm surges. We extract meteorological forcing from the IFS at a 0.225° horizontal resolution for eight historical TCs and simulate the corresponding surges using the global tide and surge model. Maximum surge heights for Hu...
Article
Full-text available
A mega-flood in 1998 caused tremendous losses in China and triggered major policy adjustments in flood-risk management. This paper aims to retrospectively examine these policy adjustments and discuss how China should adapt to newly emerging flood challenges. We show that China suffers annually from floods despite large-scale investments and policy...
Article
Full-text available
In this study, we developed an enhanced approach for large-scale flood damage and risk assessments that uses characteristics of buildings and the built environment as object-based information to represent exposure and vulnerability to flooding. Most current large-scale assessments use an aggregated land-use category to represent the exposure, treat...
Article
Full-text available
The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation...