Philip Möller

Philip Möller
  • Dr. rer. nat.
  • PostDoc Position at Ruhr University Bochum

About

4
Publications
18,688
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
132
Citations
Current institution
Ruhr University Bochum
Current position
  • PostDoc Position
Additional affiliations
January 2015 - present
Ruhr University Bochum
Position
  • PostDoc Position

Publications

Publications (4)
Article
Full-text available
Riboregulation involving regulatory RNAs, RNA chaperones and ribonucleases is fundamental for the rapid adaptation of gene expression to changing environmental conditions. The gene coding for the RNase YbeY belongs to the minimal prokaryotic genome set and has a profound impact on physiology in a wide range of bacteria. Here, we show that the Agrob...
Article
Full-text available
As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-seq...
Article
Full-text available
Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidy...
Article
Full-text available
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR...

Network

Cited By