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Megaraptoridae comprises a clade of enigmatic Gondwanan theropods with characteristic hypertrophied claws
on the first and secondmanual digits. The majority of megaraptorids are known from South America, although a
single genus (Australovenator) plus additional indeterminate material is also known from Australia. This clade
has a controversial placement among theropods, and recently has been interpreted alternatively as a
carcharodontosaurian or a tyrannosauroid lineage. We describe new fragmentary but associated postcranial re-
mains from the opal fields of Lightning Ridge (middle-Albian, Griman Creek Formation) in north-central New
SouthWales. The new unnamed taxon exhibits a number of unusual features that suggest the presence of a hith-
erto unrecognised Australian megaraptorid. From an Australian perspective, the Lightning Ridge taxon predates
Australovenator by ca. 10 Ma and is minimally coeval with megaraptoran material reported from the Eumeralla
Formation of Victoria (but potentially 6.1–9.5 Ma younger). It is also notable as the largest predatory dinosaur
yet identified fromAustralia and is only the second theropod known frommore than a single element. A Bayesian
phylogenetic approach integrating morphological, stratigraphic and palaeogeographic information tested both
the carcharodontosaurian and tyrannosauroid placements for Megaraptora. Regardless of the preferred place-
ment amongTetanurae, rigorous palaeobiogeographic analyses support anAsian origin ofMegaraptora in the lat-
est Jurassic (about 150–135Ma), an Early Cretaceous (about 130–121Ma) divergence of the Gondwanan lineage
leading to Megaraptoridae, and an Australian root for megaraptorid radiation. These results indicate that
Australia's Cretaceous dinosaur fauna did not comprise simply of immigrant taxa but was a source for complex
two-way interchange between Australia–Antarctica–South America leading to the evolution of at least one
group of apex predatory dinosaurs in Gondwana.

© 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

Historically, Australia has been viewed as an evolutionary cul-de-sac
with regard to its enigmatic dinosaur fauna (Molnar, 1992a, 1997). Two
hypotheses currently dominate, which suggest that Australia's dino-
saurs were either an aberrant and relict fauna with North American
and Asian affinities (e.g. Rich and Rich, 1989; Rich and Vickers-Rich,
1994; Rich, 1996; Rich and Vickers-Rich, 2003; Rich et al., 2014), or al-
ternatively show close affiliationswith faunas fromwestern Gondwana,
namely South America and Africa (e.g. Smith et al., 2008; Agnolin et al.,
ing Ridge, New South Wales,
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2010; Novas et al., 2013; Poropat et al., 2015). These polarised inter-
pretations stem from a lack of consensus regarding taxonomic iden-
tifications, which in turn are a result of the highly fragmentary
preservation of many Australian dinosaur specimens (see Agnolin
et al., 2010; Poropat et al., 2015). Nevertheless, a Gondwanan affiliation
for Australia's dinosaur fauna appears most tenable and is bolstered by
similar interpretations of contemporaneous vertebrate groups includ-
ing crocodyliforms, turtles, and mammals (Luo et al., 2002; Salisbury
et al., 2006; Poropat et al., 2015; Sterli et al., 2015). Regardless, there
is no convincing evidence to suggest that any major dinosaur lineage
originated in Australia. In a marked departure from most other
Australian Cretaceous vertebrates, the crocodyliform Isisfordia duncani
from the latest Lower Cretaceous of Queensland (Salisbury et al.,
2006; Tucker et al., 2013) suggests that at least one major clade—the
modern crocodyliforms, Eusuchia—originated in Australia.

Of relevance to the current interpretation of Gondwanan dinosaur
dispersal is the fossil record of Australian theropods, which almost ex-
clusively comprises isolated elements. Such an inherently limited
V. All rights reserved.
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record has frustrated attempts to properly compare taxa and limited
their use in palaeobiogeographic analyses (see Agnolin et al., 2010;
Poropat et al., 2015 for recent revisions of Australian dinosaurs). The
only named theropod represented by more than a single element is
the megaraptorid Australovenator wintonensis from the lowermost
Upper Cretaceous of central-western Queensland (Hocknull et al.,
2009; White et al., 2012; Tucker et al., 2013; White et al., 2013a). In ad-
dition to Australovenator, Megaraptoridae (sensu Novas et al., 2013)
consists of three Argentinean genera Aerosteon, Megaraptor, and
Orkoraptor, which are generally characterised by their elongate, gracile
metatarsus and hypertrophied claws on the first manual digit. The
closely related Asian form, Fukuiraptor was recovered as the sister
taxon to Megaraptoridae (Novas et al., 2013) making Megaraptoridae
purely Gondwanan in distribution (Porfiri et al., 2014).

Despite their distinctive morphology, megaraptoran affinities are un-
clear having been posited as closely related to Carcharodontosauridae
within Allosauroidea (Benson et al., 2010a; Carrano et al., 2012; Zanno
and Makovicky, 2013) or as deeply nested within Coelurosauria possibly
within Tyrannosauroidea (Novas et al., 2013; Porfiri et al., 2014). Here,
we report on associated fragmentary remains of a new megaraptorid
from the Lower CretaceousGriman Creek Formation exposed at Lightning
Ridge (New South Wales, Australia). The partial remains do not allow an
unequivocal classification of the taxon and therefore we refrain from
assigning a formal name to it. However, it represents only the second the-
ropod specimen from Australia that comprises more than a single ele-
ment and, more importantly, provides the basis for revised discussions
on the dispersal history of Megaraptora and Australia's role in faunal in-
terchange within Gondwana.

2. Locality and geology

LRF 100–106 was excavated from an underground mine at the
‘Carter's Rush’ opal field, 35 km southwest of the town of Lightning
Ridge, north-central New South Wales (Fig. 1). Although the precise
stratigraphic provenance of LRF 100–106 is unknown due to themining
process during which the specimen was discovered and excavated (see
Comments in the Systematic palaeontology section below), opals and
opalised fossils are routinely sourced from the top of the Finch Claystone
near its contact with the overlying Wallangulla Sandstone (both
pertaining to the Griman Creek Formation, Rolling Downs Group,
Surat Basin; Green et al., 1997). Sediments of the Griman Creek Forma-
tion consist of primarily non-marine, thinly bedded and interlaminated
fine- tomedium-grained sandstone andmudstone. Both freshwater and
Fig. 1. Locality map (A) showing themajor sedimentary basins and locations ofmegaraptoran d
2.Winton, Queensland (upper Winton Formation, Cenomanian–Turonian); 3. Otway Basin, Vic
Basin. The Griman Creek Formation has yielded a diverse vertebrate fauna including the remai
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brackish molluscs occur in the lower part of the formation whereas
coals seams and freshwater bivalves are found in the upper deposits,
therefore, beds are interpreted as representing a variety of coastal fluvi-
al to estuarine and lagoonal deposits that accumulated on the southern
margin of the Eromanga Sea (Dettman et al., 1992; Haig and Lynch,
1993; Green et al., 1997). In particular, deposition is considered to
have been initially regressive beach or nearshore marine, followed by
paralic to deltaic and finally fluvial floodplain conditions in the upper
sequences of the formation (Green et al., 1997). The Griman Creek
Formation preserves a poorly known but diverse vertebrate fauna that
includes titanosauriform sauropods (Molnar and Salisbury, 2005;
Molnar, 2011), megaraptoran theropods (von Huene, 1932; Molnar,
1980a; Agnolin et al., 2010; White et al., 2013b), basal ornithopods
(von Huene, 1932; Molnar and Galton, 1986), iguanodontian-grade or-
nithopods (Molnar, 1992b), crocodilians (Etheridge, 1917; Molnar,
1980b; Molnar and Willis, 2001), birds (.Molnar, 1999), plesiosaurs
(Kear, 2006), dipnoans (Kemp, 1993, 1997a,b), chelid andmeiolaniform
turtles (Smith, 2010; Smith and Kear, 2013), monotremes (Archer et al.,
1985; Rich et al., 1989; Flannery et al., 1995), aswell as possible indeter-
minate synapsids (Clemens et al., 2003) and undescribed teleost and
chondrichthyan remains (Dettman et al., 1992; PRB, ES pers. obs.).

Direct chronostratigraphic constraints for the Griman Creek Forma-
tion are limited to two fission-track analyses on core samples from the
eastern margin of the Surat Basin. The first indicates a ~107 myr age,
the second suggests that sedimentation ended at ca. 99 myr (Raza
et al., 2009) and was followed by a denudation phase responsible for
a major unconformity in the area (Korsch and Totterdell, 2009;
Totterdell et al., 2009). Similarly, palynofloras of reference unit APK5
are associated with the Griman Creek Formation deposits (Coptospora
paradoxa spore-pollen zone; Burger, 1980; Dettman et al., 1992; Price,
1997 and references therein), supporting amiddle Albian age for this in-
terval. Furthermore, basin-scale correlations between the Surat Basin
and the Eromanga Basin deposits to the northwest indicate that the
Griman Creek Formation is coeval to the Toolebuc and Allaru forma-
tions, both referred to the mid- and upper Albian, respectively (Haig
and Lynch, 1993; Gray et al., 2002; Cook, 2012). These units are overlaid
by the upper Albian Mackunda Formation and the upper Albian–lower
Turonian Winton Formation (see Cook, 2012; Tucker et al., 2013 for a
detailed revision of biostratigraphic data). Relevant to this study, detri-
tal zircon ages for the Winton Formation (a pivotal unit preserving a
rich and diverse vertebrate fauna which crops out widely across
central-western Queensland, north of the study area) record a deposi-
tional history during the interval ~103–92 Ma (Tucker et al., 2013).
iscoveries in Australia. 1. Lightning Ridge, NSW (Griman Creek Formation,middle Albian);
toria (Eumeralla Formation, late Aptian–early Albian). (B) Chronostratigraphy of the Surat
ns of the new theropod.
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More specifically, rocks containing Australia's only named megaraptorid,
Australovenator, lie at or close to the Cenomanian–Turonian boundary
(94.5–92.5Ma; Tucker et al., 2013). Thus, Australovenator (and associated
vertebrate fauna including dinosaurs, crocodyliforms, aquatic squa-
mates, turtles, lungfish and teleost fishes), is roughly 12 million years
younger than the deposits (and its constituent fauna) around Lightning
Ridge.

3. Systematic palaeontology

Dinosauria Owen 1842
Saurischia Seeley 1887
Theropoda Marsh 1881
Tetanurae Gauthier 1986
Megaraptora Benson, Carrano, et Brusatte 2010a
Megaraptoridae Novas, Agnolin, Ezcurra, Porfiri, et Canale 2013
Megaraptoridae gen. et sp. indet.

3.1. Material

The associated but fragmentary postcranial skeleton (LRF 100–106)
includes proximal parts of the right ulna and the left or rightmanual un-
gual (?)I-2, possible fragments of the distal tibia, the left metatarsal III,
the pubic peduncle of the left ilium, numerous rib and gastral rib frag-
ments, andmany unidentified fragments.Many of the elements are pre-
served as natural casts (pseudomorphs) in bluish-grey common opal
(potch), which in places shows flashes of reds and blues that are associ-
ated with precious opal. Unfortunately, this unusual mode of
fossilisation generally results in the total loss of bone microstructure
(Rey, 2013), which in this case obviates histological observation that
may have provided clues as to the maturity of the individual.

3.2. Locality and horizon

LRF 100–106 was excavated from an underground mine at the
‘Carter's Rush’ opal field, 35 km southwest of the town of Lightning
Ridge, north-central New South Wales. The specimen comes from the
top of the Finch Claystone near its contact with the overlying
Wallangulla Sandstone (both pertaining to the Griman Creek Forma-
tion, RollingDownsGroup, Surat Basin Green et al., 1997), and ismiddle
Albian in age.

3.3. Comments

Opalised fossils at Lightning Ridge (and other opal-bearing regions
such as Coober Pedy and Andamooka) are typically discovered follow-
ing a protracted process of extraction, sieving, washing and sorting of
bulk sediments. As a result, fossils discovered during this process are
typically small, isolated, and abraded, and any association between
specimens is lost. In contrast, LRF 100–106was discovered in situ during
excavation of an underground mine at the ‘Carter's Rush’ opal field.
Some of the bones were recognised and manually removed by miners
and eventually donated to the Australian Opal Centre in 2005. Regretta-
bly, an unknown number of boneswere not recognised and presumably
destroyed prior to or during excavation of what was almost certainly a
more complete skeleton than is currently represented. Fresh breaks on
most of the recovered bones (e.g. ulna, manual ungual) attest to the un-
fortunate damage done during excavation. Although the original (in
situ) positions of the bones were not recorded during excavation, the
overall paucity of dinosaur fossils and the extreme rarity of large
(N10 cm) bones in theGrimanCreek Formation all suggest the elements
come from a single individual. Moreover, the respective sizes of bones,
lack of overlapping elements, and megaraptoran features present on
many of the bones are all consistentwith their assignment to a single in-
dividual. Thus, we reject the possibility that the specimen represents a
chimera as has been argued for some other Australian dinosaurs (see
Please cite this article as: Bell, P.R., et al., A large-clawed theropod (Din
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Herne and Salisbury, 2009 and counterargument by Rich et al., 2010).
No other fossil remains were found (or at least recognised by the
miners) alongside the megaraptoran elements.

In 1932, a singlemetacarpal I (NHMUKR3718) also from theGriman
Creek Formation at Lightning Ridge was used to erect a new theropod
taxon, Rapator ornitholestoides (von Huene, 1932). Recent comparisons
with Australovenator andMegaraptor suggest megaraptoran affinities of
NHMUK R3718 although there is disagreement regarding the validity of
R. ornitholestoides (Hocknull et al., 2009; Agnolin et al., 2010; White
et al., 2013b). We follow Agnolin et al. (2010) in considering
R. ornitholestoides as a nomen dubium and although NHMUK R3718
and LRF 100–106 may conceivably pertain to the same taxon, there
are no overlapping elements to test this hypothesis.

LRF 100–106 is referred to a medium-sized (approx. 6 m long)
megaraptorid theropod (see the Discussion section) characterised by
the proximal end of metatarsal III strongly asymmetrical (mediolateral
aspect) with trapezoidal cranial process extending further distally
along the shaft than the caudal process giving an overall ball-peen
hammer-shaped profile; and contact for metatarsal II on metatarsal III
divided into cranial and caudal halves by a shallow, longitudinal groove.
Although no formal taxon is erected, it differs from the only named
Australian megaraptorid, Australovenator, based on the following com-
bination of features: 1. more robust cranial process on the ulna; 2.
more gracile manual ungual I-2 (or II-3) with sharply defined median
ridge on proximal articular surface; 3. prominent, broad groove be-
tween the articular facet and the flexor tubercle on manual ungual I-2
(convergent inMegaraptor); 4. metatarsal III with a well-developed lat-
eral ridge on proximal shaft; and 5. distal articular surface of metatarsal
III as wide as it is long.

4. Description

4.1. Ulna

Theproximal endof the right ulna consists of the articular surface for
the humerus and part of the olecranon process (Fig. 2). In lateral view,
the bone is craniocaudally broadest between the cranial process and
the caudal crest, tapering distally. The humeral articular surface is arcu-
ate in mediolateral view and flattened across the articular surface to
form a smooth contact with the distal humerus. The cranial process is
triangular in lateral view and relatively robust, as in Megaraptor and
the Victorian cf. Megaraptor, but unlike the more gracile form of
Australovenator (Fig. 3). A lateral ridge extends along the midline of
the ulna for the full preserved length of the element (Fig. 2D). The
ridge is low, symmetrical in section and becomes less prominent distal-
ly. Although broken, the crest is reminiscent of the lateral crest present
in the megaraptorids Australovenator, Megaraptor, and cf. Megaraptor
from Victoria (Novas, 1998; Smith et al., 2008; White et al., 2012). As
the proximal part of the crest is broken in LRF 100–106, it is unclear
whether it also formed a prominent tuberosity as in Australovenator
and Megaraptor (Fig. 2A, D). Several spinosauroids (Baryonyx,
Poikilopleuron, Suchomimus, Torvosaurus) also possess a lateral tuberos-
ity; however, they lack the proximodistally-orientated crest present in
megaraptorids (Smith et al., 2008). Caudal to the lateral crest, the
caudolateral surface forms a shallow but broad fossa, which Smith
et al. (2008) posited as the insertion for the m. triceps brachii complex.
Such a fossa is present in megaraptorids and some spinosaurids
(Baryonyx, Suchomimus); however, the fossa is more caudally facing in
the latter group (Smith et al., 2008). The forelimb osteology is not
well known in allosauroids although a caudolateral fossa is absent in Al-
losaurus (Madsen, 1976), Acrocanthosaurus (Currie and Carpenter,
2000), and Concavenator (Ortega et al., 2010, Fig. 4). Several small
neurovascular foramina pierce the surface of this fossa in LRF 100–
106. The medial surface is concave and comparatively featureless.
Proximally, the sheared base of the olecranon process is mediolaterally
compressed; the medial and lateral sides meet to form a sharply
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 2.Megaraptoridae gen. et sp. indet. right proximal ulna in (A, D) lateral, (B, E) proximal, and (C, F)medial views. (G) Reconstruction of right ulna showing knownparts inwhite (not to
scale). Outline based on Australovenator. Grey in A–F = broken bone surface; grey in G= reconstructed areas. ar, ulna–humerus articular surface; cp, cranial process; cc, caudal crest; lc,
lateral crest and gr, groove.
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defined caudalmargin, or crest. Amediolaterally compressed olecranon
process and caudal crest are both peculiar to megaraptorids (Smith
et al., 2008; Novas et al., 2013). A similar condition is present in
Suchomimus and Baryonyx; however, in these taxa the olecranon pro-
cess (in proximal view) is distally expanded compared to the triangular
Fig. 3. Comparison of megaraptorid proximal left ulnae. Right ulna of the Lightning Ridge thero
olecranon process.

Please cite this article as: Bell, P.R., et al., A large-clawed theropod (Din
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process inmegaraptorids. In addition, the olecranon process and cranial
process of LRF 100–106 andmegaraptorids are in the same craniocaudal
plane when viewed proximally, whereas they form a comparatively
acute angle in Baryonyx and Suchomimus (Smith et al., 2008). Separating
the olecranon process and the proximal articular surface is a shallow,
pod reversed for clarity. Scale bars = 5 cm. cp, cranial process; lt, lateral tuberosity and op,
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transverse sulcus visible in lateral aspect (Fig. 2C, F). This sulcus exposes
the internal trabecular bone, therefore it is unclear whether this feature
is real or an artefact; the latter may be more likely given its close prox-
imity to other fractures (e.g. on the lateral crest and olecranon process).
A small sulcus is present on the right ulna of Australovenator (absent on
the left), where it too is associated with a break in the specimen (White
et al., 2012; S. Salisbury pers. comm. 2014). No sulcus is evident in any
specimen referred to Megaraptor (Novas, 1998, Fig. 1; Agnolin et al.,
2010, Fig. 19) nor in an isolated megaraptoran ulna (NMV P186076)
from the Aptian–Albian of Victoria (Smith et al., 2008; Fig. 3).
4.2. Manual ungual

The proximal end of a manual ungual is identified as belonging to
digit I or digit II based on its large size, which is comparable to that of
Australovenator (Table 1). It preserves the proximal articular surface,
flexor tubercle and part of the ungual blade (Fig. 4). Parts of the lateral
and palmar surfaces are obscured by opal spicules (a product of diagen-
esis); however, enough can be discerned to tell that the ungual was
strongly mediolaterally compressed and tapered to a sharp edge along
its inner curvature (palmar margin). The proximal articular surface is
dorsoventrally elongate (height to width ratio = 2:1), ovoid, and
strongly ginglymoid (Fig. 4A, E), typical of megaraptoran theropods
(Novas, 1998; Novas et al., 2013). The lateral and medial margins of
the articular surface extend as low ridges onto the dorsal part of the un-
gual continuing a short distance distally before converging at the mid-
line. These ridges delineate a raised proximodorsal extensor tubercle,
the dorsal portion of which is missing in this specimen. Immediately
distal to this region, both lateral and medial sides of the ungual are
ornamented by numerous, fine, axially-orientated striations. In both
Australovenator (White et al., 2012) and Megaraptor (Novas, 1998;
Calvo et al., 2004), the distal halves of the medial and lateral grooves
are asymmetrically positioned so that the medial groove is positioned
higher than the lateral one. Although both grooves are present in LRF
100–106, not enough of the claw is preserved to identify whether
theywere similarly asymmetrical. As a result, it is not currently possible
to identify whether this element is from the left or right side. The flexor
tubercle is low as in Australovenator (White et al., 2012) andMegaraptor
(Novas, 1998), square in palmar view and separated from the proximal
articular surface by a deep sulcus. This sulcus extends distally onto the
lateral andmedial surfaces of the ungual (Fig. 4E, F). The flexor tubercle
is subdivided into discrete regions in palmar view (Fig. 4H): proximally,
it forms a flattened, transverse rectangular platform. The platform is
delineated distally by a low transverse ridge in front of which are two
shallow depressions (medial and lateral flexor facets) separated by a
median ridge.
Table 1
Comparative measurements (in mm) of select elements in three megaraptorids. As identificati
cluded for both unguals I-2 and II-3.
Data from Novas (1998), Calvo et al. (2004), and White et al. (2012).

Manual ungual I-2 Articular facet height
Proximal width
Proximal height
Articular facet height:proximal width

Manual ungual II-3 Articular facet height
Proximal width
Proximal height
Articular facet height:proximal width

Metatarsal III Length
Proximal width
Proximal length (craniocaudally)
Distal width
Distal length (medial maleolus)
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4.3. Pubic peduncle of ilium

An incomplete, triangular bone is tentatively identified as the ventral
end of the pubic peduncle of the ilium. This element is known in two
megaraptorans, Fukuiraptor (Azuma and Currie, 2000; Benson et al.,
2010a) and Aerosteon (Sereno et al., 2008; Novas et al., 2013). The bone
is broken transversely exposing numerous matrix-filled voids. The
smooth, ovoid walls of the intervening bone (=opal), suggests these
structures are real and not artefacts of the opalisation process. We inter-
pret these spaces as pneumatic chambers (Fig. 5C). Pneumatisation of
the ilium is a derived feature shared by Megaraptora and Neovenator
(Sereno et al., 2008; Benson et al., 2010a). In ventral aspect, the bone
forms an asymmetrical triangle; the medial and lateral sides are caudally
divergent, although themedial edge extends further caudally than the lat-
eral edge forming a sharply attenuating caudal process in distal view
(Fig. 5C). The medial and lateral caudal processes are separated by a
broad concavity that forms the acetabular margin. This contrasts with
the condition in othermegaraptorans for which this element is preserved
and most tetanurans in which the pubic peduncle is broadly U-shaped in
distal view (e.g. Novas et al., 2013, Fig. 15). It also differs from the heart-
shaped outline of megalosauroids (Eustreptospondylus, Sadlier et al.,
2008; Megalosaurus, Benson, 2009). The ventral articular surface is ob-
scured by matrix but weakly convex in lateral view and tapers dorsally
such that the articular surface is the longest and broadest part of the pre-
served element. The medial and lateral surfaces are ornamented by fine
dorsoventrally-orientated striations (Fig. 5A, B), which are likely scars
representing the attachment site for connective tissues between the
pubic peduncle and the pubis (Hutchinson, 2001). The pubic peduncle
has a length to width ratio of 1.6, consistent with Sinraptor and
Megalosauroidea, but lower than Aerosteon, Neovenator and derived
allosauroids (length:width = 2–2.5) (Sereno et al., 2008; Benson et al.,
2010a; Novas et al., 2013).
4.4. Fibula

Two incomplete bones are tentatively interpreted as parts of the
shaft and distal end of the (?)left fibula. Despite uncertainly regarding
the identification of these bones, they are briefly described here to sup-
plement the description. The largest fragment, broken both proximally
and distally, measures 9.5 cm long. Medially an elongate concavity ex-
tends along the entire length of the bone (Fig. 6B), which may corre-
spond to the longitudinal groove on the fibula of Australovenator
(Hocknull et al., 2009). The lateral surface forms a convex V-shape in
cross-section. The second fragment appears to represent the distal tip
of the fibula. In distal view, the lateral margin is convex, the apex of
this convexity lying cranial of the midpoint. The medial margin is flat,
on of manual ungual I-2 is tentative for LRF 100–106, comparative measurements are in-

LRF
100–106

Australovenator
wintonensis

Megaraptor
namunhuaiquii

58 44.97 ?
31 26.08 ?
68 59.84 95
1.87 1.72 ?
? 45.89 ?
? 24.88 ?
? 55.13 65
? 1.84 ?
350 322 450?
43 36.94 ?
94 79.43 ?
51.5 53.54 75
51 47.45 ?

osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 4.Megaraptoridae gen. et sp. indet. left or right manual ungual (?)I-2 in (A, E) proximal; (B, F) right lateral; (C, G) left lateral, and; (D, H) ventral aspects; (I) reconstruction of ungual
showing known part in white (not to scale). Outline based onMegaraptor. Grey in A–H= broken bone surface; grey in I = reconstructed areas; cross-hatching=matrix. su, sulcus; dp,
depression; et, extensor tubercle; gr, vascular groove; mr, median ridge; r, ridge and tr, transverse ridge.
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where it presumably formed an articulating facet for the distal tibia
(Fig. 6E).

4.5. Metatarsal III

The left metatarsal III is the most complete element of LRF 100–106
(Fig. 7). In general, it is elongate and transversely narrow, typical of
most coelurosaurs (including megaraptorans), Mapusaurus, but con-
trasting with the more stout proportions in Neovenator and basal
tetanurans (Novas, 1998; Coria and Currie, 2006; Hocknull et al.,
2009; Novas et al., 2013). It is straight in both mediolateral and
craniocaudal views andmeasures roughly 9% longer than the equivalent
element on the holotype of Australovenator (Table 1). In mediolateral
view, the proximal end of the metatarsal is asymmetrically expanded
craniocaudally (Fig. 7C); the cranial process is trapezoidal and extends
farther distally than the roughly cuboidal-shaped caudal (palmar)
process. This configuration gives the proximal metatarsal the overall
appearance of a ball-peen hammer, which strongly contrasts with the
fan-shaped profile that is otherwise widespread among Theropoda
(e.g. Currie and Zhao, 1993; Azuma and Currie, 2000; Coria and Currie,
2006; Fig. 7L, M) and is here considered a potential autapomorphy of
the new specimen. The cranial process in Neovenator approaches the
condition in LRF 100-106; however,Neovenator differs in that the crani-
al margin of the cranial process (when viewed medially) is parallel to
the shaft of the metatarsal (Brusatte et al., 2008, pl. 42) whereas it is
oblique in LRF 100–106. The caudal process in Neovenator is broken;
therefore a full comparison cannot be made. Medially, the flat contact
for metatarsal II is divided into cranial and caudal halves by a shallow,
longitudinal groove (Fig. 7L) and is demarcated caudally by a curved,
raised rim of bone (Fig. 7L). The proximal part of metatarsal III is
unknown in Megaraptor; however, neither the raised caudal rim nor
the longitudinal groove is present in Australovenator, Fukuiraptor, or
Neovenator and are thus considered potential autapomorphies of
the newmegaraptorid. In proximal view, the articular surface is round-
ed cranially and mediolaterally expanded, constricted at its midpoint,
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and mediolaterally expanded caudally, although less so than the
cranial half. At the caudal margin of the proximal articular surface,
the medial and lateral margins meet to form a right angle in proximal
aspect (Fig. 7I). This contrasts with the blunt, roughly square caudal
end in Australovenator. A prominent craniolateral swelling (in proximal
view) continues distally by way of a prominent lateral crest that
extends approximately one-quarter the length of the shaft (Fig. 7C, F).
The height of this crest diminishes abruptly at its distal end but
continues as a low ridge for at least two-thirds the length of the
shaft (Fig. 7F, G). This arrangement differs from Australovenator in
which the transition between the proximal crest and the ridge is
gradual rather than abrupt. The distal one-third of the shaft is
damaged, so the full extent of this ridge cannot be determined in this
specimen. Proximally, this ridge would have braced the medial face of
metatarsal IV.

In cross-section, the shaft is teardrop-shaped proximally (the point-
ed end facing cranially), becoming sub-circular distally. The distal ex-
tremity of the metatarsal is weakly expanded both mediolaterally and
craniocaudally as in Fukuiraptor (Azuma and Currie, 2000) and
other megaraptorids for which this element is preserved. The distal ar-
ticular surface is roughly square in distal view (maximum distal
width:maximum craniocaudal length = 1:1) and weakly ginglymoid
compared to Megaraptor (Novas, 1998) and Australovenator, but more
so than the megaraptoran Fukuiraptor (Azuma and Currie, 2000). The
distal part of metatarsal III is missing in Neovenator, therefore compari-
sons are impossible. Deep collateral ligament insertion pits are present
on either side of the distal articular surface. Despite damage to
the craniolateral portion of the distal metatarsal, the distal articular sur-
face appears to extend proximally onto the cranial face of the metatar-
sal, which is unusual for theropods but is synapomorphic for
Megaraptoridae (Novas et al., 2013). The proximal margin of the articu-
lar surface sharply demarcates a broad extensor ligament fossa that ex-
tends the full width of the element (Fig. 7A, E). This differs from both
Megaraptor and Australovenatorwhereby there is only a weakly demar-
cated transition between the distal articular surface and the extensor
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 5. Megaraptoridae gen. et sp. indet. pubic peduncle of the left ilium in (A) lateral;
(B) medial; (C) dorsal views showing the highly pneumatic interior; (D) ventral outline
with associated measurements, and; (E) left ilium in lateral view showing known region
(white) in the new specimen. ac, acetabulum; pn, pneumatic chamber and st, scars for the
attachment of connective ligaments between pubic peduncle and pubis.
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fossa. The proximal border of this fossa is not visible due to breakage of
the specimen.
4.6. Ribs and gastralia

Fragments of several ribs and gastralia were recovered with the ho-
lotype. An incomplete rib head (Fig. 8A) comprising the capitulum is
craniocaudally compressed with a concave dorsal margin and straight
ventral margin (length = 5.5 cm). The proximal articular facet is ellip-
tical; the long axis of which forms an acute anglewith the dorsalmargin
of the capitulum in craniocaudal view. A section of rib shaft measuring
12.5 cm is nearly straight and tapers distally. The cranial surface is con-
vex. Caudally, the rib is broadly concave medially, convex laterally
where it is buttressed by a rounded longitudinal ridge. This ridge dimin-
ishes distally such that the distal cross-section ismore elliptical. A 10 cm
section of gastral rib preserves a distinct widening (overtubulation) of
the shaft (Fig. 8C). However, surface preservation of this element is
poor so it cannot be determined if this widening represents the fusion
of two elements (see Sereno et al., 2008), or is pathological or some
other artefact. No evidence of pneumaticity was found in any of the
gastralia or rib elements.
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5. Phylogenetic analyses

5.1. Parsimony analyses

In order to assess the affinities of the Lightning Ridge theropod, it
was scored usingmodified versions of themost recent and comprehen-
sive character matrices for megaraptorans, provided by Novas et al.
(2013) and Zanno and Makovicky (2013), supporting, alternatively, a
tyrannosauroid and carcharodontosaurian placement of Megaraptora.
Modifications of the Novas et al. (2013) dataset involved the inclusion
of the new specimen, two Jurassic coelurosaurians (Archaeopteryx and
Zuolong) and the recently named megaraptoran Siats (Zanno and
Makovicky, 2013), and the addition of 26 newmorphological characters
relevant in resolving the positions of the added taxa, resulting in a data
matrix of 313 characters and 49 taxa, with Ceratosaurus used as an
outgroup (see Supplementary information). In both datasets, character
scores for Megaraptor were updated following Porfiri et al. (2014).
Characters 255, 271 and 285 were a priori set with weight = 0 as they
became redundantwith other included characters, respectively, charac-
ters 35, 78 and 108 (as outlined by Porfiri et al., 2014). Each dataset was
analysedunder both parsimony analysis andBayesian inference, the lat-
ter integrating morphological and stratigraphic data following the
method described by Lee et al. (2014a,b). Parsimony analyses per-
formed heuristic searches with 100 random addition sequence repli-
cates and tree bisection reconnection using the Hennig Society version
of TNT (Goloboff et al., 2008). The search using the modified dataset of
Novas et al. (2013) retrieved 448most parsimonious treeswith a length
of 1031 steps (Consistency Index = 0.36, Retention Index = 0.64). Un-
surprisingly, the overall results are similar to those of the original
analysis by Novas et al. (2013). Megaraptorans were recovered among
Coelurosauria in a largely unresolved polytomy due to the uncertain
position of Siats, found, alternatively, as related to ornithomimosaurs, as
closer to maniraptorans than tyrannosauroids, as a basal megaraptoran,
and as closer to tyrannosaurids thanXiongguanlong.When Siats is pruned
a posteriori from the results, the reduced strict consensus of the shortest
trees recovered a monophyletic Megaraptora, including the new
theropod, as sister-taxon of the clade including Tyrannosauridae,
Appalachiosaurus and Xiongguanlong (Fig. S1). The most parsimonious
results of the analysis did not support an allosauroid placement
for megaraptorans, as measured by step differences between alternative
placement of megaraptorans and our preferred topology: forcing
megaraptorans among allosauroids (as per Benson et al., 2010a;
Zanno and Makovicky, 2013) produced topologies 8 steps longer
than the unforced topologies, with Neovenator and Chilantaisaurus as
successive closest relatives of megaraptorans among the basalmost
carcharodontosaurian lineage. Nevertheless, this alternative allosauroid
hypothesis is not a statistically worse explanation of the data than the
tyrannosauroid placement, based on the Templeton test (p N 0.7, N =
88; Templeton, 1983).

We also analysed the placement of the newAustralian theropod and
megaraptorans using the dataset of Zanno and Makovicky (2013).
Modifications to the original dataset of those authors included the addi-
tion of the new specimen and the rescoring of several cranial characters
for Megaraptor following the findings of Porfiri et al. (2014)
(see Supplementary information). The topologies recovered in the
second analysis are largely comparable to the original results by
Zanno and Makovicky (2013). In all 20,844 shortest trees found
(tree length = 1053; CI = 0.41; RI = 0.69), the Lightning Ridge the-
ropod is recovered among megaraptorans, the latter placed among
carcharodontosaurian allosauroids (Fig. S1). Since the ingroup of the
second dataset lacks both derived tyrannosauroids and representatives
of the other main coelurosaur clades, the quantitative support for the
tyrannosauroid/coelurosaurian placement for Megaraptora supported
by Novas et al. (2013) cannot be tested with the dataset of Zanno and
Makovicky (2013). Therefore, based on re-analysis of themost compre-
hensive datasets published, we consider premature any placement of
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 6.Megaraptoridae gen. et sp. indet. partial fibula. Shaft section in (A) lateral and; (B)medial views. Distal end fragment in (C) lateral; (D) distal, and; (E)medial views. (F) Schematic of
fibula showing inferred position of present material (white). gr, groove and tf, tibial facet.
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Megaraptora beyond Tetanurae incertae sedis. We note, however, that
wider taxon sampling in the Novas et al. (2013) dataset (compared to
that of Zanno and Makovicky, 2013) and the recent discovery of
tyrannosauroid features in the skull of Megaraptor lends support to the
tyrannosauroid hypothesis (Novas et al., 2013; Porfiri et al., 2014). Nev-
ertheless, we discuss the tempo and mode of megaraptoran evolution
under both the alternative carcharodontosaurian and tyrannosauroid
hypotheses.

5.2. Bayesian and RASP analyses

Bayesian analysis integrating the morphological data (used in the
parsimony analyses) and stratigraphic data was performed with
BEAST (Drummond et al., 2012) following the method of Lee et al.
(2014b). Stratigraphic data and age constraints for each terminal were
obtained primarily from the Paleobiology Database (http://paleobiodb.
org/) and from the literature, using the known geochronological ages
for the formations inwhich the taxawere found or themean of the geo-
logic stages associated with those formations. In themodified dataset of
Novas et al. (2013), root age prior (i.e., the maximum age of the last
common ancestor of Ceratosaurus and tetanurans) was set along a uni-
form range between 167 Mya (the age of the oldest terminal included,
Megalosaurus) and 201 Mya, the latter considered as a ‘loose’ hard con-
straint that consistently pre-dates the age of the oldest potential
tetanurans and excluding coelophysids from Ceratosauria (as resulted
in the parsimony analysis of the dataset of Zanno and Makovicky,
2013). Relevant for the purpose of this analysis, we remark that less re-
strictive root age assumptions, based on a more inclusive Ceratosauria
(e.g., Allain et al., 2007) returned results for the neotetanuran nodes
similar to those mentioned above, more restrictive, age assumption.
Tetanuran monophyly was forced, following outgroup definition in
the parsimony analyses, but no age constraint or internal topologies
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for Tetanurae were enforced. In the modified dataset of Zanno and
Makovicky (2013), root age prior (i.e., the maximum age of the last
common ancestor of Eoraptor, Herrerasaurus and neotheropods) was
set along a uniform range between 233 Mya (the age of the oldest
terminals included, Eoraptor and Herrerasaurus) and 252 Mya (the
Permian–Triassic boundary), the latter considered as a ‘loose’ hard con-
straint that consistently pre-dates the age of the oldest potential
dinosauromorphs. In both analyses, rate variation across traits was
modelled using the gamma parameter, and rate variation across
branches wasmodelled using an uncorrelated relaxed clock. The analy-
ses used four replicate runs of 40 million generations, with sampling
every 4000 generations. Burnin was set at 20%, and the Maximum
Clade Credibility Tree (MCCT) of the four post-burnin samples was
used as framework for phyletic reconstruction.

The analysis of the modified dataset of Novas et al. (2013) produced
a topology largely consistent with the parsimony analysis (Fig. S2).
Megaraptora was recovered as a tyrannosauroid subclade closer to
tyrannosaurids than proceratosaurids. Fukuiraptor was placed as the
basalmost megaraptoran and sister taxon of Megaraptoridae, and the
Lightning Ridge theropod as the oldest and most basal member of the
latter clade. Although some of the included megaraptoran taxa are
based on very fragmentary remains, the phyletic placement of the new
Australian taxon was robust, with posterior probability (pp) values of
Megaraptora, Megaraptoridae, and of the megaraptorid subclade
excluding LRF 100-106 that resulted, respectively, 0.78, 0.89 and 0.71.
Siatswas recovered as closer to ornithomimids than other coelurosaurs
as in one of the alternative topologies found in the parsimony analysis,
although this placement is weakly supported (pp= 0.29). Cladogenetic
timing inferred by the Bayesian analysis placed themegaraptoran diver-
gence from other tyrannosauroids at about 150 Mya, and the origin of
the lineage leading to the Gondwananmegaraptorans (Megaraptoridae)
at about 130 Mya.
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 7.Megaraptoridae gen. et sp. indet. leftmetatarsal III in (A, E) cranial, (B, F) caudal, (C, G) lateral, (D, H)medial, (I) proximal, and (J) distal aspects. (K) Close-up of distal cranial surface
identified by boxed area (i) in A showing broad extensor fossa. (L, M) Comparison of proximal part of metatarsal III in medial view between (L) Lightning Ridge theropod and
(M) Australovenator (right element reversed for clarity). Region of close-up in L indicated by boxed area (ii). Light grey = broken bone surface; dark grey = plaster; cross-hatching =
matrix. al, cranial process of proximal metatarsal; ex, extensor fossa; fl, flexor fossa; lcr, lateral crest; lr, lateral ridge; mg, medial groove; pl, caudal process of proximal metatarsal and
r, rim demarcating cranial limit of contact with metatarsal II.
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The BEAST analysis of the modified dataset of Zanno and
Makovicky (2013) also produced a topology largely consistent with
the parsimony analysis (Fig. S2b). Megaraptorans are placed as a
basal carcharodontosaurian lineage, diverging from the Neovenator
lineage at about 135 Ma (pp = 0.62). Both Chilantaisaurus and Siats
are recovered as megaraptorans more derived than Fukuiraptor,
although this result is moderately supported (pp = 0.50). The new
Australian theropod is found as the basalmost member of the
Gondwanan megaraptorids, a result weakly supported (pp b 0.50)
probably due to the fragmentary preservation of both LRF 100–106
and other basalmegaraptorans. The divergence of themegaraptorid lin-
eage from other megaraptorans is placed at about 121 Ma.

The two alternative topologies recovered by the Bayesian analyses
were used as phyletic frameworks for palaeobiogeographic reconstruc-
tion, inferring ancestral geographic placement of nodes using RASP (Re-
construct Ancestral State in Phylogenies, Yan et al., 2011). The
distribution range of the selected theropod taxa was a priori divided
into six areas: Asia (A), Europe (B), North America (C), Africa (D),
South America (E) and Australia (F). Each terminal taxon was scored
for the geographic area character state according to the continent(s) it
was recovered in (e.g., the new specimen was scored as “F”, whereas
Fukuiraptor was scored as “A”). Biogeographic inferences on the phylo-
genetic frameworks were obtained by utilising Statistical Dispersal-
Vicariance Analysis (S-DIVA) and Bayesian Binary Markov (BBM)
Chain Monte Carlo analysis (Yu et al., 2010). S-DIVA and BBMmethods
suggest possible ancestral ranges at each node and also calculate prob-
abilities of each ancestral range at nodes. The S-DIVA and BBM analyses
performed ten Markov ChainMonte Carlo analyses of 50million gener-
ations, sampling every 100 trees. State frequencies were set as fixed and
among-site rate variation was set using the gamma parameter. The first
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Gondwanan origin of megaraptorid th..., Gondwana Research (2015), http
20% of the recovered trees were discarded and the remaining trees
were used to infer ancestral range distribution at nodes. In the S-DIVA
analyses, direct range dispersal constraints were forced, excluding
those routes considered as not plausible based on Jurassic and Creta-
ceous palaeogeographic reconstructions (Meschede and Frisch, 1998;
Viramonte et al., 1999; Case et al., 2000; Fitzgerald, 2002; Jokat et al.,
2003; Macdonald et al., 2003; Cook, 2012; Fanti, 2012; Huston et al.,
2012)

5.3. Results of palaeobiogeographic analyses

In the following paragraphs, we focus on the results yielded by the
palaeogeographic analyses relative to Megaraptora.

5.3.1. Novas et al. (2013) dataset

5.3.1.1. S-DIVA analysis (Fig. 9a). S-DIVA analysis indicated that the last
common ancestor of megaraptorans and other tyrannosauroids was
Asian or, alternatively “Asiamerican”. The analysis was unable to infer
the ancestral range of the last common ancestor of Fukuiraptor and
more derived megaraptorans; however, equally robust support was
found for an Australian or “Australia–South America” ancestral range
for Megaraptoridae. The analysis found an equal support for a South
American or an “Australia–South American” range for the last common
ancestor of the megaraptorids more derived than the Lightning Ridge
theropod

5.3.1.2. BBM analysis (Fig. 9b). BBM analysis also indicated that the last
common ancestor of Megaraptora and other tyrannosauroids was
Asian. An Asian ancestral range for Megaraptora is inferred for the
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 8. Megaraptoridae gen. et sp. indet. (A) thoracic rib head, (B) rib shaft, and
(C) gastralia fragment. Overtubulation, presumably the result of a healed fracture, indicat-
ed by arrowheads.
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earliest Cretaceous phase of megaraptoran evolution. A diffusion event
from Laurasia to Gondwana is consequently inferred to occur by no
later than the early Aptian, with the most plausible ancestral range of
the last common ancestor of the Lightning Ridge theropod andmore de-
rived megaraptorids (at ca 113 Ma) placed in Australia. The ancestral
range of the last common ancestor of the more derived megaraptorids
(at ca 103 Ma) is placed in South America. A single dispersal event
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from South America to Australia is inferred to have occurred after
96 Ma, leading to Australovenator.

5.3.2. Zanno and Makovicky (2013) dataset

5.3.2.1. S-DIVA analysis (Fig. 10a). S-DIVA analysis also indicated
that the last common ancestor of megaraptorans and other
carcharodontosaurians was Eurasian, with an Asia ancestral placement
for the megaraptoran node including Fukuiraptor. The range of the last
common ancestor of the new Lightning Ridge taxon and more derived
megaraptorids is inferred as Australian, whereas the analysis was un-
able to determine the ancestral area of more derived megaraptorids
(Australovenator and the South American taxa).

5.3.2.2. BBM analysis (Fig. 10b). BBManalysis indicated that the last com-
mon ancestor of Megaraptora and other carcharodontosaurians was
European or, alternatively, Eurasian. An Asian root of Megaraptora is
also supported, with Siats and Megaraptoridae as results of distinct dis-
persal episodes out of Asia. The last common ancestor shared by the
new specimen with more derived megaraptorids is inferred to be
Australian. Similarly, the last common ancestor of Australovenator and
the South American megaraptorids Aerosteon andMegaraptor is also in-
ferred to be Australian. Accordingly, the South Americanmegaraptorids
are interpreted as descendants from a migration event from Australia
that occurred between 102 and 92 Ma.

6. Discussion

Despite its fragmentary nature, LRF 100–106 is assigned to
Megaraptoridae based on the identification of a number of synapomor-
phies, including: 1. metatarsal III with a distal ginglymoid proximally
extended and wide extensor fossa; 2. base of olecranon process
mediolaterally compressed suggesting the presence of a sharp caudal
crest on proximal ulna (Smith et al., 2008); 3. lateral ridge on the prox-
imal ulna; 4. broad fossa on the caudolateral aspect of proximal ulna
(present also in Baryonyx walkeri and Suchomimus tenerensis; Smith
et al., 2008). Furthermore, if our identifications of the pubic peduncle
of the ilium andmanual ungual I are correct, then two additional synap-
omorphies may be added to this list: extensive pneumatisation of the
ilium (present also inNeovenator; Benson et al., 2010a), and transverse-
ly compressed manual ungual I with dorsoventrally elliptical proximal
end. The association and overall morphology of the preserved bones,
as well as the presence of derived megaraptoran features consistently
agree in referring all specimens to a single taxon. The discovery of this
theropod supplements earlier reports based on isolated Australian ma-
terial (Smith et al., 2008; Agnolin et al., 2010; Benson et al., 2012) that
extends Megaraptoridae into the Albian.

6.1. Comparison between Australian megaraptorans

Only one named megaraptoran is currently recognised from
Australia: Australovenator, from the upper part of theWinton Formation
(lower Turonian; Tucker et al., 2013) in central-western Queensland
(Fig. 1). A nearly complete left ulna (NMV P186076) from the Albian-
aged Eumeralla Formation in Victoria represents an indeterminate
megaraptoran similar to Megaraptor (Smith et al., 2008; Agnolin et al.,
2010). Features listed by Hocknull et al. (2009) and Agnolin et al.
(2010) that distinguish NMV P186076 from Australovenator (presence
of a curved caudalmargin of the olecranon process, and absence of a lon-
gitudinal groove on the lateral surface of the shaft) cannot be observed in
the new specimen because it is incomplete. However, NMV P186076 dif-
fers from the Lightning Ridge theropod in its smaller size (estimated at
two-thirds the length of LRF 100–106 based on the assumption that
LRF 100–106 shares similar proportions to Australovenator) and a pro-
portionately more slender cranial process that is rounded distally in
proximal view (Fig. 3). The same features distinguish Australovenator
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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Fig. 9. Palaeogeographic ancestral area reconstruction of Tetanurae, from a Bayesian relaxed-clock analysis based on the dataset of Novas et al. (2013). (A) S-DIVA analysis and (B) BBM
analysis. Colours and letters at each node represent the geographic areas of origin (A, Asia; B, Europe; C, North America; D, Africa; E, South America; F, Australia) with relative likelihood of
alternate hypotheses represented as a pie graph. Ambiguous geographic areas of origin are indicated by black nodes. (For interpretation of the references to colours in this figure legend,
the reader is referred to the web version of this article.)
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from the new specimen, although Australovenator is closer in size to LRF
100–106 than NMV P186076 (Fig. 3). Based on comparative measure-
ments of the available material, the Lightning Ridge theropod was ap-
proximately 10% larger than Australovenator making it the largest
theropod yet discovered in Australia. In addition to its larger size, the
Lightning Ridge taxon can be differentiated from Australovenator by:
1.)median ridge that subdivides the proximal articular region onmanual
ungual I (or II) sharp; 2.) boundary between distal articular surface and
extensor fossa of metatarsal III sharply demarcated; 3.) proximal meta-
tarsal III asymmetrical and ball-peen hammer-shaped in mediolateral
view; 4.) proximal contact for metatarsal II on metatarsal III subdivided
by a longitudinal groove, and; 4.) lateral ridge on metatarsal III well de-
veloped. Furthermore, the ribs of Australovenator display strongly dorso-
ventrally constricted “necks” on the capitulum. This contrasts with the
comparatively weakly constricted “neck” on the only known capitulum
of the Lightning Ridge theropod; however, we concede that this differ-
ence may be due to the incompleteness of the new specimen, variation
along the dorsal series, or both.

A third putative megaraptoran is represented by an isolated meta-
carpal I (NHMUK R3718; the holotype of R. ornitholestoides) from the
same locality as the new specimen. However, as discussed earlier, the
validity of Rapator is not universally accepted (Hocknull et al., 2009;
Please cite this article as: Bell, P.R., et al., A large-clawed theropod (Din
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Agnolin et al., 2010; White et al., 2013b). Lack of overlapping material
precludes comparison or unequivocal assignment of NHMUKR3718 rel-
ative to thenew specimen, although the possibility that the two are con-
generic (or conspecific) cannot be dismissed.

6.2. Palaeobiogeography of Megaraptora

The fragmentary and still largely debated theropod record of
Australia has led to different interpretations on the tempo and mode of
theropod evolution in the continent. Were these taxa mid-Cretaceous
immigrants from other Gondwanan landmasses (i.e. Antarctica and
South America) or neoendemic taxa that evolved from late Jurassic–
earliest Cretaceous forms that were widespread across much of Gond-
wana and possibly other landmasses? In their recent review, Poropat
et al. (2015) remarked on the problematic palaeobiogeographic inter-
pretations of Australia's dinosaurs, which is symptomatic of its highly
fragmentary fossil record. Those authors identified two opposing
views: one which identifies a fauna of ceratosaurids, dromaeosaurids,
neovenatorids, tyrannosauroids, and spinosaurids with Laurasian
affinities and an alternative, less-specific interpretation that argues
for Gondwanan ties in the Australian fauna. Besides the relatively
well-documented affinities between Australian and South American
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
://dx.doi.org/10.1016/j.gr.2015.08.004
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Fig. 10. Palaeogeographic ancestral area reconstruction of Tetanurae, from a Bayesian relaxed-clock analysis based on the dataset of Zanno andMakovicky (2013). (A) S-DIVA analysis and
(B) BBM analysis. Colours and letters at nodes represent the geographic areas of origin (A, Asia; B, Europe; C, North America; D, Africa; E, South America; F, Australia) with relative like-
lihood of alternate hypotheses represented as a pie graph. Ambiguous geographic areas of origin are indicated by black nodes. (For interpretation of the references to colours in this figure
legend, the reader is referred to the web version of this article.)
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dinosaurs (Molnar and Salisbury, 2005; Smith et al., 2008; Agnolin et al.,
2010; Benson et al., 2012; Novas et al., 2013; Poropat et al., 2015),
affinities shared by Asian (Fukuiraptor) and Australian (the Lightning
Ridge taxon, Australovenator) megaraptorans with other Asian thero-
pods (e.g., Chilantaisaurus and several basal tyrannosauroids) play a piv-
otal role in this debate. Interestingly, similar Asian–South American
affinities have been recently identified for the Australian titanosaur
Diamantinasaurus matildae (Poropat et al., 2015). Diamantinasaurus
was recovered as closely related to both a roughly coeval South
American taxon (Tapuiasaurus from Brazil) but also to a latest Creta-
ceous Asian (Opisthocoelicaudia from Mongolia) taxon (Poropat et al.,
2015).

In order to properly discuss the results presented in this study, it is es-
sential to include data for two important clades, tyrannosauroids and
carcharodontosaurids. The fossil record of basal tyrannosauroids predates
the oldest knownmegaraptorans and supports aMiddle–Late Jurassic ra-
diation of tyrannosauroids prior to a Laurasian–Gondwana break-up
(Holtz, 1994; Kellner, 1999; Hutt et al., 2001; Xu et al., 2004, 2006;
Brusatte and Benson, 2013). The oldest record of carcharodontosaurids
is from the Upper Jurassic of western Africa (Rauhut, 2011), which is
consistent with the results of the time-calibrated Bayesian analyses pro-
posed here that places the carcharodontosaurid divergence close to the
Jurassic–Cretaceous boundary. Independent of the preferred placement
of Megaraptora among Tetanurae, the fossil record of putative
megaraptoran sister-taxa supports a Late Jurassic origin of the clade.
Palaeobiogeographic implications of both the Novas et al. (2013) and
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Zanno and Makovicky (2013) datasets presented here include the pri-
mary divergence of megaraptorans from other theropods in the latest
Jurassic–earliest Cretaceous (Figs. 9, 10). Our analyses also concur in
1) placing the basal part of the megaraptoran evolution in Asia in the
latest Jurassic–earliest Cretaceous; 2) supporting an active diffusion
of megaraptorans from Laurasia to Gondwana in the earliest Early
Cretaceous, and; 3) suggesting an Early Cretaceous radiation of
megaraptorids across Gondwana. Furthermore, S-DIVA and BBM analy-
ses of both the Novas et al. (2013) and Zanno and Makovicky (2013)
datasets support Australia as the ancestral area of late Early Cretaceous
evolution of Megaraptoridae (Figs. 9, 10). Moreover, this interpretation
is consistent with the megaraptoran record from the upper Lower Cre-
taceous of Australia (Smith et al., 2008; Agnolin et al., 2010; Benson
et al., 2012; this paper) even excluding the new taxon from the
abovementioned analyses. Significantly, this interpretation challenges
earlier claims that Australia played a primarily passive role in the evolu-
tion and dispersal of various dinosaur groups (Molnar, 1992a, 1997).

Pending further discoveries from continental Africa and Madagascar,
data presented here, calibrated with well-documented palaeogeographic
reconstructions concur on a latest Jurassic-to-earliest Cretaceous cosmo-
politanism of several theropod groups, including megaraptorans. On the
contrary, the Hauterivian–Barremian interval can be inferred as a
chronological limit for biogeographical connections between southern
landmasses and Europe/northern landmasses following widespread
continental break-up and the appearance of vast epicontinental seas
(Crame, 1999; Ezcurra and Agnolin, 2012; Fanti, 2012 and references
osauria: Tetanurae) from the Lower Cretaceous of Australia and the
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therein). The survival of theropod taxa in the Australian continent
is here interpreted as early dispersal (i.e. Laurasia–Gondwana)
followed by vicariance combined with local faunal turnover (see also
Agnolin et al., 2010; Benson et al., 2010b, 2012; Novas et al., 2013).
These interpretations are mirrored by an increasing number of for-
merly Gondwanan clades recently discovered in Laurasia, such as
rebbachisaurid sauropods, ‘elaphrosaur’, and carcharodontosaurian
theropods, which argue for similar latest Jurassic–earliest Cretaceous
cosmopolitanism of these respective groups (Brusatte et al., 2009;
Hocknull et al., 2009; Xu et al., 2009; Benson et al., 2010b; Barrett
et al., 2011; Mannion et al., 2011; Torcida Fernández-Baldor et al.,
2011). Furthermore, the apparent proliferation of megaraptorid taxa
in the Late Cretaceous coincides with the final stages of the total frag-
mentation of Gondwana, in particular the separation of South America
from Africa. Similar trends have also been observed in abelisauroid the-
ropods and titanosaurid sauropods, which suggest that vicariance
played an important role in the later evolution of these groups (Fanti,
2012). However, we note that the fossil record of basal megaraptorans
is limited and that future discoveries from the Early Cretaceous of
Australia may alter this view.

Contrary to earlier interpretations, Australiawas not an evolutionary
cul-de-sac for unidirectional dispersal events within Gondwana, nor
was it simply a refugium for relict taxa (e.g. Rich and Rich, 1989; Rich
and Vickers-Rich, 1994; Rich, 1996; Rich and Vickers-Rich, 2003; Rich
et al., 2014). Instead, this specimen provides new evidence that
Australia played an active role in the evolution and radiation of at
least one group of apex theropods. Significantly, the Australian origin
of megaraptorid theropods is echoed by eusuchian crocodylomorphs
wherein I. duncani from the earliest latest Lower Cretaceous of Queens-
land suggests the origin of this clade also has an Australian root
(Salisbury et al., 2006). Evidently, faunal interchange involved complex
and multidirectional interplay between the Gondwanan landmasses
and it is anticipated that future discoveries from the Cretaceous of
Australia will contribute to the increasingly complex picture of dinosaur
palaeobiogeography (Upchurch, 2008).

7. Conclusions

The new Lightning Ridge megaraptoran is the largest and only the
second theropod described from Australia based on a partial skeleton.
This new taxon supplements and confirms earlier reports based on iso-
lated Australian material (Smith et al., 2008; Agnolin et al., 2010;
Benson et al., 2012; White et al., 2013b) that definitively extends
Megaraptoridae into the Albian. Cladogenetic timing inferred by the
Bayesian analysis of the two relevant, most recent comprehensive
datasets placed the megaraptoran divergence from other theropods
close to the Jurassic–Cretaceous boundary (~140 Mya) and the origin
of the lineage leading to Gondwanan megaraptorans (Megaraptoridae)
at about 130 Mya, approximately 20 Ma prior to the appearance of the
Lightning Ridge theropod. Although the phylogenetic position of
Megaraptora remains equivocal, these results continue to challenge
previous assertions that the Cretaceous of Australia consisted largely
of relict fauna derived from elsewhere in Gondwana (e.g. Rich and
Rich, 1989; Rich and Vickers-Rich, 1994; Rich, 1996; Rich and
Vickers-Rich, 2003; Rich et al., 2014). Instead, thesefindings provide ev-
idence of complex faunal interchange between Australia and the rest of
Gondwana leading to the evolution of Megaraptoridae.
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