
High performance live migration through dynamic
page transfer reordering and compression

Petter Svärd and Johan Tordsson
Dept. of Computing Science

Umeå University
SE-90187 Umeå, Sweden

Email: {petters, tordsson}@cs.umu.se

Benoit Hudzia
SAP Research CEC Belfast

SAP (UK) Limited
BT37 0QB Newtownabbey

Email: benoit.hudzia@sap.com

Erik Elmroth
Dept. of Computing Science

Umeå University
SE-90187 Umeå, Sweden
Email: elmroth@cs.umu.se

Abstract—Although supported by many contemporary Virtual
Machine (VM) hypervisors, live migration is impossible for cer-
tain applications. When migrating CPU and/or memory intensive
VMs two problems occur, extended migration downtime that
may cause service interruption or even failure, and prolonged
total migration time that is harmful for the overall system
performance as significant network resources must be allocated
to migration. These problems become more severe for migration
over slower networks, such as long distance migration between
clouds. We approach this two-fold problem through a combina-
tion of techniques. A novel algorithm that dynamically adapts
the transfer order of VM memory pages during live migration
reduces the risk of re-transfers for frequently dirtied pages. As
the amount of transferred data is thereby reduced, the total
migration time is shortened. By combining this technique with a
compression scheme that increases the migration throughput the
migration downtime is also reduced. An evaluation by means
of synthetic migration benchmarks shows that our combined
approach reduces migration downtime by a factor 10 to 20,
shortens total migration time by around 35%, as well as consumes
between 26% and 39% less network bandwidth. The feasibility
of our approach for real-life applications is demonstrated by
migrating a streaming video server 31% faster while transferring
51% less data.

Index Terms—Platform virtualization, Virtual machine moni-
tors, Performance evaluation

I. INTRODUCTION

Current live migration techniques have two main problems
when it comes to migrating memory or CPU intensive Virtual
Machines (VMs) or migrating VMs over slow networks.
Firstly, the sheer amount of data that needs to be transferred
is very large. Memory pages which are frequently updated
are likely to be sent several times during the live migration
process, which leads to long migration times and thus wastes
valuable network bandwidth. Secondly, as a VM easily can
dirty memory pages faster than these can be transferred over
the network, extended migration downtime commonly occurs,
potentially causing service interruption.

In this contribution we analyze and address these two main
problems by using a combination of techniques. To reduce
the total migration time we propose a method to dynamically
adapt the transfer order of memory pages, dynamic page
transfer reordering. In this scheme, the page update frequency
is sampled and this information is used to calculate a page
weight, which is then used to prioritize the transfer of less

frequently updated pages before the busy ones. By leaving
busy pages until last, the number of page re-transfers is
reduced, thereby reducing the amount of data to be transferred
and thus the total migration time. However, this technique does
not directly address the second problem. Migration downtime
can still be long and to reduce it, we combine dynamic
page transfer reordering with delta compression techniques,
investigated in a previous contribution [13], to increase the
migration throughput and thus reduce migration downtime.

We implement the combined page transfer reordering and
compression algorithm as a modification to the KVM hypervi-
sor. The performance in terms of re-sent pages, total migration
time for migration, and downtime is evaluated using a series
of tests with synthetic benchmarks and a real-world streaming
video application. The evaluation demonstrates good results
compared to the standard KVM algorithm. For live migration
over a 1000 Mbit/s network, the total migration time was
reduced with around 30% in the typical case, with savings in
terms of the amount of data transferred with up to 39%. For
synthetic benchmarks, the migration downtime was reduced
by a factor of 10 to 20 depending on working set size.

II. BACKGROUND

Live migration enables increased flexibility in provisioning
of resources and current VM hypervisors have support for
live migration with downtimes as low as tens of a second
when migrating over Local Area Networks (LANs). Wide Area
Network (WAN) migration, as demonstrated by Ramakrishnan
et al. [11] and Travostion et al. [14] usually involves both
longer migration times and downtimes.

In order to live migrate a VM its runtime state must be
transferred from the source to the destination with the VM
still running. If the VM’s file system is kept on a network
share accessible to both source and destination it need not be
migrated. This is difficult in cross-site and WAN migration
so in these cases the file system needs to be migrated. In
this contribution we only consider memory migration, but our
algorithms could be adapted for storage migration.

A. Typical live migration algorithm

There are several variations of the live migration algorithm
but most implementations share the same basic idea, first

proposed by Clark et al. [3]. The migration starts with the
hypervisor marking all memory pages as dirty. The algorithm
then iteratively transfers dirty pages over the network until the
number of pages remaining to be transferred is below a certain
threshold or a maximum number of iterations is reached.
Transferred pages are marked as clean by the hypervisor.
Notably, as the VM operates as usual during live migration,
already transferred memory pages may be dirtied during an
iteration and must thus need to be re-transferred. To stop
further memory writes and enable transfer of the remaining
pages, the VM is at some point suspended on the source. When
the complete memory contents has been transferred, the VM is
resumed at the destination and the live migration is complete.
An illustration of this process can be seen in Figure 1. This
figure also illustrates two important performance criteria for
(live) migration: migration downtime and total migration time.

Fig. 1. Overview of a typical live migration process.

In addition to transparency to users in terms of non-
interrupted service operation, other requirements for live mi-
gration include low impact on the performance of the running
VM and any co-hosted VMs. If the live migration process uses
too much system resources, VM performance suffers and in the
worst case, service is interrupted. Another requirement is that
live migration should be transparent to VMs and applications
running inside the VMs so that they need not be migration
aware in any way.

III. POTENTIAL PROBLEMS WITH LIVE MIGRATION

There are two main challenges for live migration that can
limit its usefulness, especially in WAN migration scenar-
ios, extended total migration time and extended migration
downtime. While extended migration downtime hurts service
operations, extended total migration time is harmful to the
infrastructure as more resources are consumed. In this section
we describe them in more detail and discuss their effects on
VMs and hosted applications during live migration.

A. Extended total migration time

When migrating large memory intensive VMs and/or mi-
grating over slow network links, the amount of data that
needs to be transferred over the network can be large which
leads to long migration times. Most hypervisors keeps track of
which pages that are modified by using a dirty page bitmap, a
memory structure where a bit is set for each dirty page. During
live migration, the bitmap is scanned from top to bottom,
starting with the lowest RAM offset. If a page is marked
as dirty in the bitmap it is transferred to the destination.
For VMs running memory intensive workloads, there is a

high probability that frequently updated pages are transferred
multiple times during the live migration process since they
are being dirtied again between iterations. Since only the final
version of a page is needed, re-transfers are an unnecessary
waste of bandwidth and also increase the total migration time.
This page resend problem was first identified by Clark et al.
[3] and they also propose a solution where a page that has
been dirtied since the last iteration is skipped. Although this
approach can reduce the number of page resends it is a rather
blunt tool, for example, pages that are dirtied every other
iteration are still re-transferred.

For the majority of migration scenarios, it is desirable to
reduce the total migration time. For example, in large multi-
VM data centers such as federated clouds [12] [5], VM
migration must be performed as fast as possible as to free
up the VM resources for other use and adapt quickly to meet
business level objectives such as cost or energy consumption
reduction. There is also the issue of resource consumption. As
the live migration process uses significant network resources,
the longer the migration runs, the more resources it consumes.
This harms the overall system performance, both for the
services provided by the VM and for any co-located VMs
in the same data center.

B. Extended migration downtime

Since the VM continues to write to memory during live
migration and memory bandwidth is orders of magnitude faster
than network bandwidth, there is a risk that the memory pages
cannot be transferred over the network as fast as they are being
dirtied. In these cases, the VM must be suspended prematurely,
potentially with a considerable amount of memory left to
transfer, which can lead to extended migration downtime. This
downtime depends not only on the VM size and network speed
but also on the type of workload the VM is running. Memory
and CPU intensive workloads are harder to migrate because of
their high memory dirtying rate. It has been demonstrated by
Liu et al. that for VMs as small as 156 MB of RAM, migration
downtime can be up to 3 seconds over a Gigabit network [9].
In our previous work, downtimes of up to 28 seconds were
measured for a 1 GB VM migrated over fast Ethernet [13].

Extended migration downtime can lead to several issues
including service interruption, consistency issues, and un-
predictable performance. The main problem is that if the
downtime is too long, network connections time out and are
dropped which leads to service interruption. Another problem
is that during critical execution phases, extended downtime
often leads to missed timers, delayed events, or clock drift.
Server applications that make use of transactions and triggers
rely heavily on precise scheduling, timers, and the capability
of the underlying database system to perform operations
efficiently and according to the ACID [6] properties. They are
thus sensitive to variations in delay and these kind of issues
can lead to data corruption and/or crashes.

IV. ALGORITHMS FOR HIGH PERFORMANCE LIVE
MIGRATION

To address the page resend problem, we propose an ap-
proach, dynamic page transfer reordering, where the transfer
of less frequently written pages is prioritized over frequently
updated ones. By saving the frequently updated pages for last,
the risk of having to re-transfer these pages is reduced. To
achieve this, we calculate a page weight for each page based
on the number of times a page has been updated during the
migration process and transfer pages in order of page weight.

In a previous contribution [13] we propose a live migration
algorithm that uses delta compression to increase migration
throughput and thus reducing the migration downtime. By
combining dynamic page transfer reordering with delta com-
pression, we can increase reduce both the total migration time
and the migration downtime.

Notably, dynamic page transfer reordering and delta com-
pression are not only complementing techniques, but there are
also synergy effects of using them in combination. As dynamic
page transfer reordering prioritizes less frequently updated
pages, these pages are typically sent at the start of the live
migration process and the most frequently update pages are
more likely to be transferred towards the end of the iterative
dirty page transfer phase. As the number of pages remaining
to transfer is smaller in later iterations and these pages are
frequently updated, there is a high probability that a page
that needs to be re-sent exists in the delta compression cache.
To summarize, ideally, less frequently updated pages are sent
only once while the frequently updated pages are re-sent
in compressed form, thereby increasing migration throughput
towards the end of live migration

As discussed earlier, the live migration process must not
hurt the performance of the VM to be migrated or any co-
hosted VMs. This stipulates the requirement that the algorithm
has to be lean in terms of CPU and resource utilization. As
the number of memory pages can be in the order of several
millions for large VMs, code added to the live migration
algorithm can severely affect the performance of both live
migration and VM operation when not performing migration.
Care must be taken as to design efficient algorithms that do
not waste resources. In the remainder of this section, we
outline the standard KVM live migration algorithms and our
improvements to it.

A. Standard KVM live migration algorithm

The standard KVM migration algorithm for dirty page
transfer scans the memory contents from the lowest address
to the highest. For each page, the algorithm checks the dirty
page bitmap to see if the page is dirty and thus needs to be
transferred. If a page is empty, i.e. all zeroes, it is treated as
a special case where only a header flag is sent instead of the
full page. To avoid saturating the network and slowing down
the VM, the scan exits after a certain amount of data has
been sent and the dirty page bitmap is updated. At this stage,
the hypervisor also calculates the estimated remaining time of

migration. If this is below a certain threshold, live migration
moves on to the stop-and-copy phase.

Because this algorithm transfers pages in a in a top to
bottom order, it suffers from the page resend problem. Also,
since it does not use any other form of compression than
the empty page exception, migration throughput for non-zero
pages is limited to the network bandwidth.

B. Improved algorithm

To realize our proposed dynamic page transfer reordering
technique we calculate a page weight for each page according
to its update frequency. Our algorithm then transfers the pages
by order of this page weight. As these page weights must
be re-calculated fast and efficiently between page transfer
iterations and for the overhead reasons discussed earlier, a
lean mechanism is preferred. Other requirements include the
ability to group several pages together into one priority class.
To meet these requirements, we add a page priority map on
top of the dirty page bitmap. The page priority map organizes
pages by different page weights as illustrated in Figure 2.

Fig. 2. Page priority map.

To populate this map the page update frequency information
must be obtained and one way of counting page updates is
to modify the hypervisor’s VM memory write functionality.
Pages that are being most frequently updated can then be given
higher page weight, i.e., be pushed down the page priority
map. However, as we do not want to hurt the performance of
the VM outside of live migration this approach is not ideal.
Instead, we manage the page update information between live
migration iterations only, in conjunction with the dirty page
bitmap update. The dirty page update algorithm is modified to
keep track of the number of times each page is being updated
and a page weight is calculated. The page weight update
function can be implemented in a number of ways by taking
different factors into account such as latest update iteration,
number of resends, current page weight, etc. As a proof-
of-concept we have settled on a additive increase/decrease
scheme with different factors for increase and decrease based
on the number of updates. The rationale behind this scheme
is that if a page has been updated multiple times during live
migration it should be pushed faster down the priority map
than a page that has been updated once or twice only. An in-
depth study of page weight calculation schemes is beyond the

scope of this paper. However, we have implemented a variation
where page weights are randomized, making the algorithm
transfer the pages in a pseudo random block order. In the
evaluation we compare this version with our selected approach
to see if transferring pages by update frequency actually makes
a difference or if it is the non-sequential scan transfer order
of pages that accounts for the improvement.

Our proposed algorithm can be modified to handle page
weight by blocks of pages instead of single pages. Due to the
relatively small page size compared to the memory structures
handled by modern server applications, if a page is updated, it
is likely that its neighboring pages are also updated in the near
future. Handling blocks instead of pages saves space for the
priority map and speeds up priority calculations and memory
scans during live migration. However, a too large block size
can lead to a coarse page weight assignment and the algorithm
might fail to transfer pages by order of update frequency.

1) Delta compression extension: The idea of delta com-
pression is to increase migration throughput by reducing the
amount of data transferred. This is achieved by sending XOR
deltas between page versions instead of the full page contents.
As the hypervisor only keeps the most recent version of a
page, previous versions must be stored in a cache to enable
creation of the delta pages. Since the XOR delta page is the
same size as the full page it has to be compressed prior to
transfer in order to increase the migration throughput. The
delta compression extension used in this evaluation is derived
from the implementation used in our previous work [13] and
adapted to work in parallel with the dynamic page transfer
reordering technique.

2) Combined algorithm: To implement dynamic page trans-
fer reordering, the standard live migration algorithm is mod-
ified to transfer pages by order of page weight. A current
page weight value is maintained and incremented every time
the page scan starts over from the lowest address. Only
pages whose page weight matches the current page weight
are considered during each scan. The current page weight
counter is reset to zero between iterations in conjunction with
the updates of the dirty bitmap and page weight. Note that only
the page weight counter is reset, not the actual page weights.
If the hypervisor runs out of pages at the current page weight,
it moves on to the next weight level. This approach means
that less frequently updated pages are prioritized, leading to a
decrease in page re-sends.

The algorithm is also modified to support compression and
caching. Pages are stored in a 2-way set associative cache [4].
If a previous version of a page exists in the cache, a delta page
is created by applying a binary XOR operation to the old and
the new version of the page and this delta page is compressed
using binary RLE compression [10]. The RLE algorithm is
particularly suitable in this case since the delta pages consists
of sequences of zeros and ones. The compressed delta page is
then sent instead of the full page.

Finally, the standard KVM approach to calculate the migra-
tion bandwidth in terms of transferred bytes/second is not suit-
able for our combined algorithm. As delta compressed memory

pages are much smaller than uncompressed ones and there is a
certain overhead for caching and compression, the bandwidth
calculation would render a too small value, compared to how
many pages that have actually been transferred. To rectify this
problem, we utilize the number of sent pages instead of sent
bytes as a measure of progress.

C. Implementation

Our dynamic page transfer reordering live migration algo-
rithm is implemented as a modification to the KVM hypervi-
sor. In KVM, the dirty page bitmap resides in a kernel module
and is updated when a page write occurs. The obvious place to
manage the page priority calculation functionality is when this
bitmap is updated. However, apart from modifications to the
kernel modules being cumbersome, such a solution also risks
slowing the overall performance of VMs as this additional
code always is executed, not only during migration. Instead,
we can leverage the fact that KVM maintains a copy of the
dirty page bitmap in userspace code. This bitmap is updated
against the kernel module copy after each live migration
iteration. Since the userspace copy is updated only during live
migration, code inserted here does not affect the performance
of the VM when the VM is not migrated. A drawback with
this approach is that when live migration is initiated, all pages
have the same update count. This can however be rectified
by triggering the dirty page bitmap update function a while
before live migration starts.

The delta compression implementation poses similar chal-
lenges. In order not to degrade performance the caching
and compression algorithms must be lean and efficient. Each
CPU cycle spent on caching is a waste if there is a cache
miss. Also, the compression scheme must be efficient so
that the time spent on compression is outweighed by the
shorter transfer time of the compressed pages. To fulfill these
requirements we have chosen a 2-way set associative caching
scheme in combination with word-wise Run Length Encoding
compression. An in-depth discussion of these techniques can
be found in our previous contribution [13].

V. EVALUATION

To evaluate the performance of our algorithms, we perform
a series of live migration tests with VMs running two kinds of
workloads with varying working set sizes. In these tests, the
standard KVM Algorithm, denoted Vanilla, is compared to
the algorithm proposed in this paper, denoted PRIO, where
dynamic page transfer reordering is combined with delta
compression, and a version with only the delta compression
modification, henceforth called XBRLE (XOR Binary Run-
Length Encoding).

A. Experimental scenarios

To put load on the VMs, the LMBench [2] benchmarking
software is used. The LMBench benchmark generates a very
high page dirtying rate by allocating a big block of mem-
ory and then continuously overwriting the memory contents
through a series of 4 byte store and increments. Using several

instances of LMBench as workload, we vary the size of the
working set and perform a series of migrations where we
measure migration downtime, total migration time, amount of
data transferred, and number of page resends.

Finally, to evaluate the PRIO algorithm’s performance in
a real world scenario, we live migrate a streaming video
server over a limited bandwidth link to simulate a cross-
site migration. The streaming video scenario is an example
of a real world application where the memory data already
is compressed as the video buffer is in h.264 format in our
case. The details of the setup of the experimental scenarios
are presented in Table I.

TABLE I
SUMMARY OF EXPERIMENTAL SCENARIOS.

Scenario VM Size Workload Network Algorithms
Migration
downtime

2GB,
1 vcpu

LMBench 1000
Mbits/s

Vanilla,
XBRLE,
PRIO

Total migra-
tion time

2GB,
1 vcpu

LMBench 1000
Mbits/s

XBRLE,
PRIO

Streaming
video

512MB,
1 vcpu

VLC video
server

100
Mbits/s

Vanilla,
PRIO

B. Experimental setup

The evaluation was performed on two 3.06 GHz HP G6950
servers with 8 GB of RAM. The version of KVM used for the
evaluation is 0.13.0. This version is used both as is (the Vanilla
algorithm) and as a basis for the two modified versions. The
cache size for the delta compression part of the algorithm was
set to match the size of the working set in the VMs.

C. Experimental results

In this section, the results from the evaluation scenarios are
presented. It can be seen that, in our tests, the PRIO algorithm
outperforms the Vanilla and XBRLE algorithms in terms of
transferred data and migration time while obtaining the same
low migration downtime as the XBRLE algorithm.

1) Migration downtime comparison: In the first scenario,
we compared the migration downtime for the Vanilla, XBRLE,
and PRIO algorithms live migrating a 2 GB VM running
LMBench with various amounts of RAM allocated, spanning
from 64 to 1024 MB. The results can be seen in Table II. It is
obvious that, even over Gigabit Ethernet, the Vanilla algorithm
simply cannot keep up with memory intensive VMs with a
large working set. Already with a working set size of a mere
64 MB the downtime exceeds 1 second and for 256 MB it
is 3 seconds, which can be fatal to applications that rely on
transactions and database connections.

Using delta compression, the migration throughput is in-
creased and it can be seen that the XBRLE and PRIO
algorithms both significantly outperform the Vanilla algorithm.
The very short downtimes (less than 0.5 s) observed for
both algorithms also for the largest working set sizes are
well below the SRTT (TCP connection timeout threshold)
of 5 seconds for Gigabit Ethernet. This means that both
algorithms can be used to obtain sustained service operation

for common client-server applications with 1024 MB working
sets. Compared to each other, the algorithms have similar
performance, although, with smaller working sets, the XBRLE
algorithm achieves a slightly lower downtime, potentially due
to additional hypervisor overhead induced by the slightly more
complex PRIO algorithm.

TABLE II
LIVE MIGRATION DOWNTIME.

WS Size 64 MB 128 MB 256 MB 512 MB 1024 MB
Vanilla 1 s 1.6 s 3 s 5.8 s 9.1 s
XBRLE 0.05 s 0.8 s 0.1 s 0.2 s 0.35 s
PRIO 0.1 s 0.2 s 0.26 s 0.3 s 0.36 s

2) Total migration time comparison: In the second sce-
nario, we compare total migration time, the amount of trans-
mitted data, and the number of page resends for two different
working set sizes, 512 and 1024 MB. The maximum allowed
migration downtime was in this case set to 300 ms. As demon-
strated in the previous scenario, the Vanilla algorithm would
require a migration downtime of 6 and 9 seconds respectively
for the two selected workload sizes and it is therefore left out
of this scenario. The results from the downtime comparison
can be seen in tables III and IV. From Table III it can be seen
that migration time for PRIO is reduced from 32 s to 20 s in the
512 MB case and from 52 s to 36 s in the 1024 MB case, both
when compared with XBRLE. The reason for this decrease in
downtime is illustrated in Table III where it can be seen that
the amount of transferred data for PRIO is reduced by about
39% for 512 MB working set and by 26% for 1024 MB.

To further study the second of these criteria, the number
of page re-transfers, the hypervisor was modified to log the
number of page sends during migration. As seen in Table IV
the PRIO algorithm only sends four pages more than three
times and just a small amount of pages more than two times,
while in the XBRLE case, a significant amount of pages are
being sent three and four times, accounting for the difference
in transferred data between the two algorithms.

TABLE III
MIGRATION TIME/TRANSMITTED DATA.

VM Size 512 MB 1024 MB
XBRLE 32 s / 657 MB 52 s / 1316 MB
PRIO 20 s / 404 MB 36 s / 972 MB

TABLE IV
PAGE RESENDS FOR 1024 MB WORKING SET SIZE.

Resends 1 2 3 4 5 6
XBRLE 528k 265k 262k 94k 23k 4
PRIO 528k 225k 48k 3 1 0

3) Streaming video: In the final scenario, a VLC streaming
video server streaming a 720p video, was migrated using the
PRIO algorithm using the Vanilla algorithm as comparison.
The network bandwidth was limited to 100 Mbit/s to simulate
a cross-site cloud migration scenario. The maximum migration

downtime was set to 500 ms which is as low as the Vanilla
algorithm can manage in this scenario. This downtime is
short enough for the gap in the data stream to fit inside the
video buffer on the client, which means that the migration
is transparent to the end user. In this scenario, the PRIO
algorithm was also tested against a modified version where
the pages where transferred in a pseudo-random order instead
of by update frequency, denoted Pseudo-random.

The results from the test are shown in Table V. As seen
in this table, total the migration time is reduced by 30% and
the amount of transferred data is reduced by 51%. Notably,
the pseudo-random algorithm also outperforms the Vanilla
algorithm although not by much. For this use case, the
properties of the application, more particularly, the fact that the
video stream already is compressed, makes streaming video
less suitable for the delta compression scheme. As even the
Vanilla algorithm can achieve a short enough downtime in
this case (with the help of client side buffering), the benefit of
delta compression is neglectable from a downtime perspective.
However, as compression also helps to reduce the amount of
data transferred, this technique is useful when combined with
page transfer reordering.

TABLE V
HD VIDEO MIGRATION.

Total migration time Transferred data
Vanilla 22.1 s 459 MB
Pseudo-random 20.1 s 389 MB
PRIO 15.4 s 225 MB

VI. DISCUSSION

In this section we discuss differences between the three live
migration algorithms evaluated in the paper and their effects
on live migration. We also discuss how the page weight of the
PRIO algorithm can be used to identify which VMs are most
suitable for migration.

A. Extended downtime and total migration time

Extended downtime is caused by the live migration al-
gorithm’s inability to keep up with the dirtying rate of the
VM to be migrated, causing the algorithm to reach a steady
state where the VM has to be suspended in order to transfer
the remaining memory pages. As the XBRLE and PRIO
algorithms compress the pages, they show a decrease in
migration downtime because the hypervisor has the possibility
to catch up as the cache hit ratio rises, improving the migration
throughput. The XBRLE algorithm’s slightly shorter downtime
in the 64 to 256 MB cases is caused by the increased overhead
in the PRIO algorithm. This makes more of a difference with
smaller working set sizes, but the difference is marginal and
at 512 MB the PRIO algorithm has caught up.

The total migration time varies with the amount of data
transferred during live migration and with the migration
throughput. Using the Vanilla and XBRLE algorithms, there is
a high probability of the same pages being retransmitted during
subsequent iterations due to the page resend problem, thereby

increasing the amount of data being transferred. In the PRIO
case however, if the page weight update function is successful
in organizing the pages in order of update frequency, the
algorithm tends to transmit different pages each iteration which
leads to fewer iterations and less data being transferred in total.
This is clearly visible in our second evaluation scenario, the
total migration time comparison, and also in the streaming
video scenario.

B. Suitable scenarios for dynamic page transfer reordering

If all pages have the same update frequency, there is a risk
that the algorithm only chases the pages down the priority
map, as pages receive similar page weights, leading to no
gain in migration downtime. Dynamic page transfer reordering
performs best with workloads where the VM working set has
unevenly distributed page updates. Ideally, these pages are
transmitted in order of update frequency. In our evaluation, we
use the LMBench software which has an uniform distribution
of page updates within the allocated memory block. However,
as several LMBench instances of different sizes are used to
add up to a larger working set size, this leads to a more
heterogeneous distribution of updates and the PRIO algorithm
is still successful in reducing the total migration time. Finally,
in the streaming video case, using VLC server, the page
updates are unevenly distributed and good results are obtained
for the PRIO algorithm.

C. Impacts on live migration predictability

In cloud environments it is often desirable to migrate VMs
between sites, e.g., to offload capacity, reduce costs, improve
server consolidation, or bring services closer to users. It is not
uncommon that several candidates exists as to which VMs
to migrate. Traditionally, most placement algorithms for VMs
do not take into account the time it takes to migrate a VM,
the migration cost. Recent work [8] has outlined methods
where the migration cost is taken into account. However the
migration cost is considered the same for all VMs of a certain
type. Since the migration time is directly dependent on the
working set size, total amount of memory, and the migration
throughput, it is beneficial to have a good estimate of the
current working set size. We propose that the page weights
can be used to estimate this. By collecting data for a period
of time before migration, a reasonable guess as to the size of
the working set can be made by examining the page weight
distribution. This information can then be used in conjunction
with CPU usage and total memory size to determine which
VMs are best suited for live migration and approximate the
cost in terms of downtime and resources to migrate them.

VII. RELATED WORK

The use of delta compression to increase migration through-
put and reduce downtime is studied by us in a previous con-
tribution [13]. Another use of delta compression is by Wood
et al. [15] who propose a strategy to increase live migration
performance between cloud sites. In addition to using delta
compression, their solution involves data deduplication. Zheng

et al. [16] propose an improved VM disk storage block live
migration algorithm that includes an analysis of the write
history to storage blocks. They use this information to schedule
the transfer order of the blocks, thereby reducing the amount
of storage data being transferred during live migration. The
idea of leveraging update frequency when migrating is similar
to our page transfer reordering scheme but their approach
is however concerned with storage migration only. Storage
migration poses different challenges than memory migration,
for example due to the slower updates of storage blocks
compared to memory pages.

The page resend problem was identified by Clark et al.
[3]. They propose a combination of techniques to reduce
its impacts, by scanning the memory structure in a pseudo-
random order and skipping pages that have been dirtied in
the previous iteration. However, they do not analyze the page
update frequencies or transfer pages by them so their approach
is dependent of the success of the pseudo-random scan to
select the proper pages to minimize page resends.

An alternative approach to live migration is the use of pull
techniques, also known as post-copy migration. In this case,
the processor state is transferred at the start of migration
followed by the memory contents. Since the processor state
is transferred the VM can be started before the full memory
contents have been transferred. If a page is missing at the
destination when the VM requests it, this page has to be
transferred over the network before execution can continue.
This approach is implemented and investigated by Hines et al.
[7]. Their evaluation indicates that the page resend problem is
virtually eliminated, resulting in very low migration downtime.
However, in their evaluation an average of 21% of the pages
in a VM generate network page faults, suggesting degraded
service performance for some time after migration. If these
page faults occur close in time to each other, the correct
operation of transaction sensitive and real-time applications
might be at risk. Furthermore, pull-based migration may be
unsuitable in maintenance scenarios, where the source host
and/or network link may need to be shut down rapidly.

VIII. CONCLUSION AND FUTURE WORK

The goal of our algorithms is to tackle both the extended
migration time and the extended downtime problems that
exist in current VM live migration approaches. Our evalu-
ation demonstrates that the use of page update priorities to
reduce page resends during migration is a promising approach
and reduces migration time in several cases. It also shows
that the page priority approach can be combined with delta
compression techniques to achieve the reduction in migration
downtime associated with such techniques.

Our proposed algorithm is highly dependent on fast and
efficient schemes for page privatization and compression. To
further improve the performance of live migration, different
page weight calculation schemes can be investigated. The
overall goal is a lean page weight calculation that can dy-
namically adjust to achieve a suitable distribution of page
weights for different kinds of workloads. To do this, an in

depth study of how the hypervisor writes to pages before
and during migration would be useful. This problem is very
similar to the well studied one of how to design optimal page
replacement algorithms for page tables [1]. Finally, the page
weight calculation algorithm could be made more accurate if
larger data samples are collected by tracking page writes also
during normal hypervisor operation and not only during live
migration. Such an always-on sampling algorithm must also be
implemented in a manner that does not hurt the performance
of the VM operation.

ACKNOWLEDGMENTS

We acknowledge Aidan Shribman, Tomas Ögren, and
Eliezer Levy for their contributions to this work. Financial
support has been provided by the EC FP7 under grant agree-
ments no. 215605 (RESERVOIR) and 257115 (OPTIMIS) as
well as by UMIT research lab and the Swedish Government’s
strategic research project eSSENCE.

REFERENCES

[1] A. Aho, P. Denning, and J. Ullman. Principles of optimal page
replacement. Journal of the ACM (JACM), 18(1):80–93, 1971.

[2] Bitmover. Lmbench, 2010. http://www.bitmover.com/lmbench/.
[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield. Live migration of virtual machines. In NSDI ’05, pages
273–286. ACM, May 2005.

[4] U. Drepper. Memory part 2: CPU caches. http://lwn.net/Articles/252125.
[5] A. Ferrer, F. Hernandez, J. Tordsson, E. Elmroth, et al. OPTIMIS:

a holistic approach to cloud service provisioning. Future Generation
Computer Systems, 28:66–77, 2011.

[6] T. Haerder and A. Reuter. Principles of transaction-oriented database
recovery. ACM Comput. Surv., 15:287–317, 1983.

[7] M. R. Hines and K. Gopalan. Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning. In
VEE ’09, pages 51–60. ACM, 2009.

[8] W. Li, J. Tordsson, and E. Elmroth. Modelling for dynamic cloud
scheduling via migration of virtual machines. 2011. Accepted.

[9] P. Liu, Z. Yang, X. Song, Y. Zhou, H. Chen, and B. Zang. Heterogeneous
live migration of virtual machines. Technical report, Parallel Processing
Institute, Fudan University, 2009.

[10] D. Pountain. Run-length encoding. Byte, 12(6):317–319, 1987.
[11] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe. Live data center

migration across WANs: a robust cooperative context aware approach.
In INM ’07, pages 262–267. ACM, August 2007.

[12] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan. The RESERVOIR model and architecture
for open federated cloud computing. IBM Journal of Research and
Development, 53(4):1–11, 2009.

[13] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of
delta compression techniques for efficient live migration of large virtual
machines. In VEE ’11, pages 111–120. ACM, 2011.

[14] F. Travostino. Seamless live migration of virtual machines over the
MAN/WAN. In SC ’06, page 290. ACM, November 2006.

[15] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
Cloudnet: dynamic pooling of cloud resources by live WAN migration
of virtual machines. In VEE ’11, pages 121–132. ACM, 2011.

[16] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai. Workload-aware live
storage migration for clouds. In VEE ’11, pages 133–144. ACM, 2011.

