Petra Rettberg

Petra Rettberg
German Aerospace Center (DLR) | DLR · Institute of Aerospace Medicine

Dr. rer. nat.

About

619
Publications
116,442
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,920
Citations
Additional affiliations
January 1993 - present
German Aerospace Center (DLR)

Publications

Publications (619)
Article
Full-text available
Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, “Biology in Space and Analogue Environments”, focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present o...
Article
As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection,...
Article
Full-text available
Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without grav...
Article
The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these...
Article
Full-text available
The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: “How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?” This is one of the five major scientific issues of the ESA road...
Chapter
Full-text available
The study of the biologic effects of space radiation is considered a “hot topic,” with increased interest in the past years. In this chapter, the unique characteristics of the space radiation environment will be covered, from their history, characterization, and biological effects to the research that has been and is being conducted in the field. A...
Article
Full-text available
Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. Ho...
Article
Full-text available
Planetary protection is a set of measures agreed upon at an international level to ensure the protection of scientific investigation during space exploration. As space becomes more accessible with traditional and new actors launching complex and innovative projects that involve robotics (including sample return) and human exploration, we have the r...
Article
Full-text available
Cyanobacteria are gaining considerable interest as a method of supporting the long-term presence of humans on the Moon and settlements on Mars due to their ability to produce oxygen and their potential as bio-factories for space biotechnology/synthetic biology and other applications. Since many unknowns remain in our knowledge to bridge the gap and...
Article
The Committee on Space Research's (COSPAR) Planetary Protection Policy states that all types of missions to Venus are classified as Category II, as the planet has significant research interest relative to the processes of chemical evolution and the origin of life, but there is only a remote chance that terrestrial contamination can proliferate and...
Conference Paper
Die Suche nach außerirdischem Leben gehört zu den aufregendsten Forschungsrichtungen in unserer Zeit. Bisher kennen wir nur einen einzigen Leben tragenden Planeten, unsere Erde. Die Erforschung von sogenannten extremophilen Mikroorganismen ermöglicht uns abzuschätzen, wo in unserem Sonnensystem bewohnbare Gegenden sein können. So kann eine zielgeri...
Article
Planetary protection guidance for martian exploration has become a notable point of discussion over the last decade. This is due to increased scientific interest in the habitability of the red planet with updated techniques, missions becoming more attainable by smaller space agencies, and both the private sector and governments engaging in activiti...
Article
Full-text available
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living...
Conference Paper
Full-text available
The Committee on Space Research’s (COSPAR) Planetary Protection Policy (herein referred to as the Policy) has been developed through deliberation between the scientific community and the national space agencies to 1) ensure that scientific investigations of possible extra-terrestrial life forms, precursors, and remnants are not jeopardized; and 2)...
Conference Paper
A selection of the core questions in astrobiology deal with the origin of life on Earth, life in extreme environments on Earth, and the search for past and present life on other celestial bodies. We are therefore searching for new model-organisms for astrobiology in extreme environments, the so-called Martian analog environments, which are similar...
Conference Paper
Full-text available
Exploring the limits of life is one of the objectives for better understanding how organisms have arisen on Earth, how they tolerate extreme conditions and how they might survive on other planets or moons. These investigations could help with understanding which Earth microorganisms could survive on other celestial bodies, such as the icy Moons: Eu...
Conference Paper
Full-text available
With future long-term space exploration and life detection missions on Mars, understanding the microbial survival beyond Earth as well as the identification of past life traces on other planetary bodies becomes increasingly important. The series of the Tanpopo space mission experiments target a long-term exposure (one to three years) of microorgani...
Conference Paper
In our solar system Mars and Enceladus are the most promising targets for a search for evidence of life. The subsurface of Mars and the subsurface oceans of Enceladus might be habitable. The general environmental conditions of both are quite different, but both have in common the presence of water, low average temperatures, the availability of carb...
Book
Full-text available
A space station is a spacecraft capable of supporting a human crew in orbit for an extended period of time, and is therefore a type of space habitat. It lacks major propulsion or landing systems. An orbital station or an orbital space station is an artificial satellite (i.e. a type of orbital spaceflight). Stations must have docking ports to allow...
Article
Full-text available
The identification of reliable biomarkers, such as amino acids, is key for the search of extraterrestrial life. A large number of microorganisms metabolize, synthesize, take up and excrete amino acids as part of the amino acid metabolism during aerobic and/or anaerobic respiration or in fermentation. In this work, we investigated whether the anaero...
Article
Full-text available
Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia and low nutrient availability) make them valuable sources for finding new polyextremophilic microbes, and for exploring the limits of life. Mars, especially at its surface, is still considered to be...
Conference Paper
Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia, and low nutrient availability) make them a valuable source of new polyextremophilic microbes in general and for exploring the limits of life. These are seen as vital sources of information for Astro...
Chapter
EURO—CARES (European Curation of Astromaterials Returned from the Exploration of Space) was a European Commission funded project under the Horizon 2020 Research and Innovation program and ran between January 2015 and December 2017. The core project team was made up of academic and industry experts from 14 different organisations from the United Kin...
Conference Paper
Planetary Protection is at the heart of space exploration. The international standard for planetary protection has been developed by the Committee on Space Research (COSPAR) which provides a forum for international consultation and has formulated a Planetary Protection Policy with associated requirements. The COSPAR Panel on Planetary Protection (P...
Conference Paper
Understanding the extent to which non-fastidious pathogenic bacteria can survive in extraterrestrial conditions will help to improve astronaut safety. Despite stringent decontamination protocols, terrestrial microorganisms were previously found to travel on the bodies of astronauts, on spaceships and equipment. This might enable the microorganisms...
Conference Paper
Full-text available
As space agencies plan to expand human presence in space and to settle on the Moon first and Mars later, developing strategies to achieve this goal in a sustainable way is necessary. These include in situ resource utilization (ISRU) and recovering of materials by waste recycling (1). Microbe based technologies may be pivotal to the success of human...
Conference Paper
Mars analogues environments are some of the most extreme locations on Earth. Their unique combination of multiple extremes (e.g. high salinity, anoxia, and low nutrient availability) make them a valuable source of new polyextremophilic microbes in general, and for exploring the limits of life. These are seen as vital sources of information for Astr...
Article
The COSPAR Panel on Planetary Protection met in Closed Session on 9 April 2021 to discuss matters concerning lunar exploration.
Chapter
Sample return missions are among the most exciting space missions, providing both scientifically unique information and an unparalleled mechanism for the inspiring the public. Returned samples allow us to make critical ground truth measurements that can calibrate remote sensing measurements from spacecraft. Some scientific studies can only be done...
Article
Full-text available
Radiation of ionizing or non-ionizing nature has harmful effects on cellular components like DNA as radiation can compromise its proper integrity. To cope with damages caused by external stimuli including radiation, within living cells, several fast and efficient repair mechanisms have evolved. Previous studies addressing organismic radiation toler...
Article
Dried biofilms of Chroococcidiopsis sp. CCMEE 029 were revived after a 672-day exposure to space vacuum outside the International Space Station during the EXPOSE-R2 space mission. After retrieval, they were air-dried stored for 3.5 years. Space vacuum reduced cell viability and increased DNA damage compared to air-dried storage for 6 years under la...
Conference Paper
The EDEN ISS greenhouse, integrated in two joined containers, is a confined mobile test facility in Antarctica for the development and optimization of new plant cultivation techniques for future space programs. The EDEN ISS greenhouse was used successfully from February to November 2018 for fresh food production for the overwintering crew at the An...
Conference Paper
The International Space Station (ISS) is a unique, completely confined habitat for the human crew and co-inhabiting microorganisms. In the experiment EXTREMOPHILES we investigated the microbial bioburden and biodiversity from three surface and air sampling events aboard the ISS during increments 51 and 52 (2017) with respect to: i) microbial source...
Article
Full-text available
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining co...
Conference Paper
Understanding the extent to which non-fastidious pathogenic bacteria can survive in extraterrestrial conditions will help to guarantee the safety of astronauts. Despite stringent decontamination protocols, terrestrial microorganisms were previously found to travel on the bodies of astronauts, on spaceships and equipment. This might create the possi...
Article
Full-text available
In the coming decade, as we prepare for the first mission to Mars with a human crew, we have a continuing obligation to protect the integrity of scientific investigations at Mars. In particular, it is unlikely that the search for life on Mars will be completed by the time the first crew systems arrive at the martian surface. Indeed, some consider t...
Conference Paper
Ignicoccus hospitalis is an extremophilic Archaea that has demonstrated an extraordinary high tolerance to ionizing radiation. The cells remain viable after exposure to X-ray doses up to 12 kGy, metabolically active after up to 118 kGy and completely repair DNA damages within one hour. This is surprising since ionizing radiation is not present in i...
Conference Paper
Planetary Protection is an international concern and responsibility. The international standard for planetary protection has been developed by the Committee on Space Research (COSPAR) which provides a forum for international consultation and has formulated a Planetary Protection Policy with associated requirements that are put in place after examin...
Article
Full-text available
Background Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth’s ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. Methods In the MASE project (Mars Analogues for Space Exploration), we...
Conference Paper
The EDEN ISS greenhouse is a confined mobile test facility in Antarctica for the development and optimization of new plant cultivation techniques for future space programs. The EDEN ISS greenhouse was in operation from February to November 2018 for fresh food production for the overwintering crew at the German Antarctic Neumayer III station. During...
Conference Paper
The search for past or present life in our solar system is a major driver for space exploration. So far, Earth is the only known planet which harbors life. Our understanding of habitability is based on our knowledge about the physical and chemical limits of life on Earth and directs the search for extraterrestrial life in space missions. Habitable...
Chapter
Full-text available
The survival limits of the desert cyanobacterium Chroococcidiopsis were challenged by rewetting dried biofilms and dried biofilms exposed to 1.5 × 10³ kJ/m² of a Mars-like UV, after 7 years of air-dried storage. PCR-stop assays revealed the presence of DNA lesions in dried biofilms and an increased accumulation in dried-UV-irradiated biofilms. Diff...
Chapter
The halophilic archaeon Halococcus morrhuae and the biofilm‐forming bacterium Halomonas muralis were exposed to space conditions during the EXPOSE‐R2 mission. Evidence for both strains co‐existing on a mural in the castle Herberstein (Austria) has been found and here we tested the theory that the biofilm produced by Hlm. muralis may act as a protec...
Article
Full-text available
Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Ea...
Conference Paper
Antimicrobial surfaces are a well suited technology to prevent and reduce microbial loads in sensitive areas, where high humidity and temperature levels are causing increased microbial loads. These can endanger human health, health of organisms e.g. in bioregenerative life-support systems as well as technical equipment. Antimicrobial surfaces are p...
Article
Full-text available
Background The extraordinarily resistant bacterium Deinococcus radiodurans withstands harsh environmental conditions present in outer space. Deinococcus radiodurans was exposed for 1 year outside the International Space Station within Tanpopo orbital mission to investigate microbial survival and space travel. In addition, a ground-based simulation...
Article
Full-text available
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experimen...
Conference Paper
Ignicoccus hospitalis es un organismo extremófilo que pertenece al dominio Archaea. Se caracteriza por crecer bajo condiciones muy específicas, puesto que es un microbio hipertermófilo, estrictamente anaerobio y quimiolitoautótrofo; metaboliza azufre elemental por reducción y utiliza CO2 como fuente de carbono, fijándolo por medio de una ruta única...
Conference Paper
The deep-sea anoxic brines of the Red Sea include some of the most extreme locations on Earth (1). Their unique combination of high salinity, high-pressure, anoxia, and varying levels of hydrothermal input make them a valuable source of new polyextremophilic microbes and for exploring the limits of life. They have recently been proposed as relevant...
Conference Paper
Auf der Erde ist das Leben allgegenwärtig. Ein Vielzahl von Organismen lebt in Gegenden, die aus menschlicher Sicht extrem sind. Die Isolation und Charakterisierung solcher Extremophile dient zur Abschätzung der Habitabilität von Planeten und Monden und emöglicht die gezielte Suche nach extraterrestrischem Leben. Neben den Eismonden des äußeren Son...
Article
Preamble: Noting that COSPAR has concerned itself with questions of biological contamination and spaceflight since its very inception, and noting that Article IX of the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies (also known as the UN Outer Space Tr...
Article
Full-text available
In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter’s moon Europa and Saturn’s moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, pen...
Article
The last decade has witnessed a renewed interest in space exploration. Public and private institutions are investing considerable effort toward the direct exploration of the Moon and Mars, as well as more distant bodies in the solar system. Both automated and human-crewed spacecraft are being considered in these efforts. As inevitable fellow travel...
Article
Full-text available
The HabitAbility: Brines, Irradiation and Temperature (HABIT) instrument will be part of the ExoMars 2020 mission (ESA/Roscosmos) and will be the first European In-situ Resource Utilization (ISRU) instrument capable of producing liquid water on Mars. HABIT is composed by two modules: Environmental Package (EnvPack) and Brine Observation Transition...
Chapter
Full-text available
Five bacterial (facultatively) anaerobic strains, namely Buttiauxella sp. MASE-IM-9, Clostridium sp. MASE-IM-4, Halanaerobium sp. MASE-BB-1, Trichococcus sp. MASE-IM-5, and Yersinia intermedia MASE-LG-1 isolated from different extreme natural environments were subjected to Mars relevant environmental stress factors in the laboratory under controlle...
Article
Full-text available
The EDEN ISS greenhouse, integrated in two joined containers, is a confined mobile test facility in Antarctica for the development and optimization of new plant cultivation techniques for future space programs. The EDEN ISS greenhouse was used successfully from February to November 2018 for fresh food production for the overwintering crew at the An...
Conference Paper
Hypersaline environments are subjected to dynamic environmental conditions which can result in precipitation of salt crystals, including halite. Microbial communities living in salt-saturated environments get trapped inside halite, including members of the three domains of life, but primarily haloarchaea. Entombment is a strategy for avoiding the h...
Article
Five bacterial (facultatively) anaerobic strains, namely Buttiauxella sp. MASE-IM-9, Clostridium sp. MASE-IM-4, Halanaerobium sp. MASE-BB-1, Trichococcus sp. MASE-IM-5, and Yersinia intermedia MASE-LG-1 isolated from different extreme natural environments were subjected to Mars relevant environmental stress factors in the laboratory under controlle...
Article
Full-text available
The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within t...
Conference Paper
Full-text available
The International Space Station (ISS) is a unique, completely confined habitat for the human crew and co-inhabiting microorganisms. In the experiment EXTREMOPHILES we investigated the microbial bioburden and biodiversity from three surface and air sampling events aboard the ISS during increments 51 and 52 (2017) with respect to: i) microbial source...
Conference Paper
In Kooperation mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) und dem Max-Planck-Institut für Radioastronomie gibt die Stadtbibliothek Köln einen Einblick in die aktuellen Projekte der Kölner und Bonner Weltraumforschung.
Article
Full-text available
The Planetary Protection of Outer Solar System (PPOSS) project tackled the science, technology and policy-making components related to biological and organic contamination of outer solar system bodies, in particular icy moons. This intensive three-year program has provided an international platform and forum where science, industry and policy actor...
Article
Full-text available
The Planetary Protection of Outer Solar System (PPOSS) project tackled the science, technology and policy-making components related to biological and organic contamination of outer solar system bodies, in particular icy moons. This intensive three-year program has provided an international platform and forum where science, industry and policy actor...
Conference Paper
Plant cultivation in large-scale closed environments is challenging and several key technologies necessary for space-based plant production are not yet space-qualified or remain in early stages of development. The EDEN ISS project (EC Horizon 2020 RIA, grant no. 636501, https://eden-iss.net/) developed and demonstrated higher plant cultivation tech...
Poster
The cold, arid, remotely located and perennially ice covered environment of the Antarctic ice sheet is the most hostile place on Earth. It has long been considered an analogue to how life might persist in the frozen landscape of the major Astrobiological targets of our solar system such as Mars or the Jupiter’s ice-covered moon Europa. In the frame...
Conference Paper
Full-text available
The HABIT (HabitAbility, Brines, Irradiation and Temperature) instrument, will be the first Swedish Instrument that will land on the surface of Mars as a part of the ExoMars 2020 mission (ESA/IKI). It is also the first European ISRU (In-situ Resource Utilization) instrument capable of producing liquid water on Mars extracting atmospheric water vapo...
Conference Paper
Antimicrobial surfaces are a highly promising approach in preventing/ reducing microbial loads in sensitive areas. There, high humidity and temperature levels are causing microbial contamination - endangering human health, health of organisms e.g. in bioregenerative life-support systems as well as technical equipment. Antimicrobial surfaces are ben...
Article
Full-text available
The survival limits of the desert cyanobacterium Chroococcidiopsis were challenged by rewetting dried biofilms and dried biofilms exposed to 1.5 × 10³ kJ/m² of a Mars-like UV, after 7 years of air-dried storage. PCR-stop assays revealed the presence of DNA lesions in dried biofilms and an increased accumulation in dried-UV-irradiated biofilms. Diff...
Article
Full-text available
One of the main objectives for astrobiology is to unravel and explore the habitability of environments beyond Earth, paying special attention to Mars. If the combined environmental stress factors on Mars are compatible with life or if they were less harsh in the past, to investigate the traces of past or present life is critical to understand its p...