Association for Computational Linguistics

EACL 2003

10th Conference of The European Chapter

Proceedings of the Workshop on
Computational Linguistics for the
Languages of South Asia
Expanding Synergies with Europe

April 14th 2003
Agro Hotel, Budapest, Hungary

Association for Computational Linguistics

EACL 2003

10th Conference of The European Chapter

Proceedings of the Workshop on
Computational Linguistics for the
Languages of South Asia
Expanding Synergies with Europe

April 14th 2003
Agro Hotel, Budapest, Hungary

The conference, the workshops and the tutorials are sponsored by:

Chief Patron of the Conference:

Dr. Ferenc Baja]
Political State Secretary

Office of Government Information Technology and Civil Relations
Prime Minister’s Office

Linguistic Systems BV

Leo Konst (Managing director)

Postbus 1186, 6501 BD Nijmegen, Nederland
tel: +31 24 322 63 02

fax: +31 24 324 21 16

e-mail: info@euroglot.nl, leokonst@telebyte.nl,
http://www.euroglot.nl

Xerox Research Centre Europe

Irene Maxwell

6 chemin de Maupertuis

38240 Meylan, France

Tel: +33 (0)4.76.61.50.83

Fax: +33 (0)4.76.61.50.99 i

email: info@xrce.xerox.com xrce
website: www.xXrce.xerox.com Py —
ATALA

Jean Veronis

Jean.Veronis@Qup.univ-mrs.fr m A
45 rue d’Ulm

75230 Paris Cedex 5, France

http://www.atala.org

ELRA/ELDA EUROPEAN

Khalid Choukri Z e
choukri@elda. fr = E &
55-57 rue Brillat Savarin < @
75013 Paris, France * =
Tel: (+33 1) 43 13 33 33, Z A’i
Fax: (+33 1) 43 13 33 30 RESOURCES

http://www.elda.fr

(©April 2003, Association for Computational Linguistics

Order copies of ACL proceedings from: Priscilla Rasmussen, Association for Computational Linguis-
tics, 3 Landmark Center, East Stroudsburg, PA 18301 USA, Phone +1-570-476-8006, Fax +1-570-476-
0860, URL http://www.acl-web.org.

INTRODUCTION

This volume contains the papers accepted for publication at the EACL 2003 Workshop on “Computational
Linguistics for South Asian Languages -- Expanding Synergies with Europe”, held on April 14, 2003 at Budapest,
Hungary, along with the EACL 2003, the 10" Conference of the European Chapter of the Association for
Computational Linguistics.

The aim of the workshop is to bring together researchers in computational linguistics for the languages of
South Asia, highlight the current state of art, and create a roadmap for future work and collaboration. This work is of
great relevance not just for South Asia, but also Europe and the rest of the world, for two reasons: the vast South
Asian diaspora means that South Asian languages are important minority languages in many parts of the world; and
work in South Asian languages also contributes to the growth of the field of linguistics by bringing in fresh
perspectives that are specific to these languages.

We had invited both short position papers and full papers on topics relevant to the theme of the workshop,
with focus on two aspects — language models, tools and applications, and development of corpora and other lexical
resources. The papers were subject to rigorous blind reviewing by at least two competent reviewers per paper. We
are glad to say that despite the relatively short notice, the response has been extremely good. The program
committee has done a good job of a challenging task!

This workshop is part of a 3-year project called SCALLA, Sharing Capability in Localization and
Language Technologies, funded in part by the European Union in the Asia IT&C programme. This is a project of
the Open University, UK, in collaboration with the following: the National Centre for Software Technology, India
(NCST, now merged with the Centre for Development of Advanced Computing, CDAC), the Indian Statistical
Institute (ISI) Kolkata, India, Lancaster University, UK and ELRA, France. The project aims to bring together
researchers from South Asia and Europe to document and advance the state of the art in the field of localization and
language technology. This is being done through a series of 3 workshops — the first was organized at NCST
Bangalore in November 2001, and served to document the status quo. The current EACL 2003 workshop is the
second, and aims to identify specific areas of future work and collaboration. The third and final workshop will be
organized by ISI Kolkata in India and will conclude the project.

The workshop will open with a keynote address by Aravind Joshi following which we will have a number
of sessions each addressing some key issue. Each session will be introduced by a short presentation from some
member of the workshop, and be expected to reach some conclusion about the current state of computational
linguistics for South Asian languages and what the important future work is. The focus will be on short scene-setting
summaries followed by discussions, rather than on formal conference-style presentations. The later part of the day
will see the participants break out into working groups on specific topics, which will be consolidated in the
concluding session. By the end of the workshop we hope to have evolved a common roadmap for the growth of
computational linguistics of these languages.

We are deeply grateful to all the people who have made this workshop possible. In particular — Donia Scott
for helping to initiate it, Steven Krauwer, Patrick Paroubek and the rest of the EACL team for their constant support,
Aravind Joshi for his encouragement and participation, and for giving the keynote address, BB Chaudhuri and Tony
McEnery, program co-chairs, for the special role they have played, all the program committee members for their
inputs, the European Union’s Asia IT&C programme for funding this project which allowed many participants’
travel to be funded, and most of all, to al/ the authors, participants and their institutions for making this workshop a
success.

Pat Hall
Durgesh Rao

March 2003

SPONSOR

m)

CO-OPERATION OFFICE

The SCALLA project (Sharing CApability in Localization and LAnguage technologies).
Funded in part by the European Union’s Asia IT&C programme, vide contract ASI/B7-301/97/0126-05.

KEYNOTE SPEAKER
Aravind Joshi, University of Pennsylvania, USA

ORGANIZERS

Pat Hall, Open University, UK
Durgesh Rao, DR Systems, India

PROGRAM COMMITTEE

B B Chaudhuri, ISI Kolkata, India (Co-Chair)

Tony McEnery, Lancaster University, UK (Co-Chair)
Srinivas Bangalore, AT&T Research, USA

Pushpak Bhattacharya, IIT Bombay, India

Sushama Bendre, IIIT Hyderabad, India

Khalid Choukri, ELRA, France

Venu Govindaraju, CEDAR, SUNY Buffalo, USA
B D Jayaram, CIIL Mysore, India

Aravind Joshi, University of Pennsylvania, USA
Adam Kilgarriff, Brighton University, UK

Hema Murthy, IIT Madras, India

K Narayana Murthy, University of Hyderabad, India
Rajeev Sangal, IIIT Hyderabad, India

Donia Scott, ITRI, University of Brighton, UK
RMK Sinha, IIT Kanpur, India

Udaya Narayan Singh, CIIL Mysore, India

Harold Somers, UMIST, UK

Roger Tucker, HP Labs, UK.

PRELIMINARY PROGRAM

Day 1/1: Monday, April 14, 2003

0900-0910

0910-1030

1030-1100

1100-1145

1145-1230

1230-1400

1400-1530

1530-1600

1600-1645

1645-1745

1745-1800

Welcome

Keynote Address
Aravind Joshi

MORNING COFFEE BREAK

Current State of CL for South Asian Languages
Session Chair: Pat Hall

Corpora for Speech and Writing
Session Chair: Tony McEnery

LUNCH

Linguistic Issues and Applications
Session Chair: Durgesh Rao

AFTERNOON COFFEE BREAK

Speech Generation and Recognition
Session Chair: B.B. Chaudhuri

Working Groups

Conclusion

vi

Table of Contents

Corpus Data for South Asian Language Processing
Paul Baker, Andrew Hardie, Tony McEnery and B.D. Jayaramcceeeeveercenccnceas 1

Productive Encoding of Urdu Complex Predicates in the ParGram Project
Miriam Butt, Tracy Holloway King and John T. Maxwell IIlccecieineiniincncennns 9

Saarthak: A Bilingual Parser for Hindi, English and Code-switching Structures
P. Goyal, Manav R. Mital, A. Mukerjkee, Achla M. Raina, D. Sharma, P. Shukla and
| Y41 v 3 RO 15

A Morpho-Syntax Based Adaptation and Retrieval Scheme for English to Hindi EBMT
Deepa Gupta and Niladri Chatterjee cveeeereereenrseerercertonssestssssssenssnscosssessens 23

Computational Linguistics (CL) in Pakistan: Issues and Proposals
Sarmad HUSSAIN ceeverierieeieciesnesacieciesncsacirctentessessessaciacescncsnssessasasssnsanse 31

Corpora in Minor Languages of India: Some Issues
B. MalliKarjun cuvceeieeieeeeeeesenscnrsescescossssssssssessesssnssescassssssssesnssesssssssncsns 35

A Lightweight Stemmer for Hindi
Ananthakrishnan Ramanathan and Durgesh D. Ra0 .cccvvevieniiniinniiniinienncinenences 43

Finite State Morphological Processing of Oriya Verbal Forms
Kalyani R. Shabadi ceeecereerriieiierieriescenesesiierierientontonsconcsnssescsessessonssssens 49

South Asian Languages in Multilingual TTS-related Database
Ksenia Shalonova and ROger TUCKET c.uiiuienreiniennienienicnncininncinrescnncsnssnssens 57

Context Sensitive Pattern Based Segmentation: A Thai Challenge
Petr Sojka and David ANtOS .eceeieereercenieniieeisersessenssnscosessesssnssesconssnssnnss 65

vii

viii

Corpus Data for South Asian Language Processing

Paul Baker, Andrew Hardie,
Tony McEnery
Department of Linguistics,
Lancaster University, UK
{j.p.baker, a.hardie,
a.mcenery}
@lancaster.ac.uk

Abstract

The EMILLE Project (Enabling Minority
Language Engineering) was established
to construct a 67 million word corpus of
South Asian languages. In addition, the
project has had to address a number of
issues related to establishing a language
engineering (LE) environment for South
Asian language processing, such as
translating 8-bit language data into
Unicode and producing a number of basic
LE tools. This paper will focus on the
corpus construction undertaken on the
project and will outline the rationale
behind data collection. In doing so a
number of issues for South Asian corpus
building will be highlighted.

1 Introduction

The EMILLE project' has three main goals: to
build corpora of South Asian languages, to
extend the GATE LE architecture” and to develop
basic LE tools. The architecture, tools and
corpora should be of particular importance to the
development of translation systems and
translation tools. These systems and tools will, in

! Funded by the UK EPSRC, project reference GR/N19106. The project
commenced in July 2000 and is due to end in September 2003.

2 Funded by the UK EPSRC, project references GR/K25267 and
GR/M31699.

B.D. Jayaram

Central Institute of Indian Languages,

Mysore, India

jayaram@ciil.stpmy.soft.net

turn, be of direct use to translators dealing with
languages such as Bengali, Hindi and Punjabi
both in the UK and internationally (McEnery,
Baker and Burnard, 2000).

This paper discusses progress made towards
the first of these goals and considers to a lesser
extent the third goal of the project. Readers
interested in the second goal of the project are
referred to Tablan et al (2002).

2 Development of the corpora

This section describes our progress in collecting
and annotating the different types of corpora
covered by EMILLE. EMILLE was established
with the goal of developing written language
corpora of at least 9,000,000 words for Bengali,
Gujarati, Hindi, Punjabi, Sinhalese, Tamil and
Urdu. In addition, for those languages with a UK
community large enough to sustain spoken
corpus collection (Bengali, Gujarati, Hindi,
Punjabi and Urdu), the project aimed to produce
spoken corpora of at least 500,000 words per
language and 200,000 words of parallel corpus
data for each language based on translations from
English. At the outset we decided to produce our
data in Unicode and annotate the data according
to the Corpus Encoding Standard (CES)
guidelines’. As the project has developed, the
initial goals of EMILLE have been refined. In the
following subsections we describe the current

3 Readers interested in the markup of the corpus are referred to Baker et al
(2002).

state of the EMILLE corpora and outline the

motives behind the various refinements that have
been made to EMILLE’s goals.

2.1 Monolingual written corpora

The first major challenge facing any corpus
builder is the identification of suitable sources of
corpus data. Design criteria for large scale
written corpora are of little use if no repositories
of electronic text can be found with which to
economically construct the corpus. This causes
problems in Indic corpus building as the
availability of electronic texts for Indic languages
is limited. This availability does vary by
language, but even at its best it cannot compare
with the availability of electronic texts in English
or other major European languages. We realised
that much of the data which, in principle, we
would have liked to include in the corpus existed
in paper form only. On EMILLE, it would have
been too expensive to pay typists to produce
electronic versions of the 63 million words of
monolingual written corpus (MWC) data. Even if
the initial typing had been affordable, checking
the data for errors would have added a further
cost, particularly since tools for error correction,
such as spell checkers, do not exist for many of
the languages studied on EMILLE (Somers,
1998, McEnery and Ostler, 2000). Scanning in
the text using an optical character recognition
(OCR) program is a viable alternative to typing
in printed text for languages printed in the
Roman alphabet. However, OCR programs for
Indic scripts are still in their infancy (for an
example of some early work see Pal and
Chaudhuri, 1995) and were not considered stable
and robust enough for this project to use
gainfully.’

As part of a pilot project to EMILLE’, we ran
a workshop that examined potential sources of
electronic data for Indian languages. The
workshop identified the Internet as one of the
most likely sources’. This prediction proved

4 We wished to produce the corpora in the original scripts and hence avoided
Romanised texts altogether.

> This project, Minority Language Engineering (MILLE), was funded by the
UK EPSRC (Grant number GR/L96400).

‘While we also considered publishers of books, religious texts, newspapers
and magazines as a possible data source, the prevalence of old-fashioned hot-
metal printing on the subcontinent made us realise early on that such sources
were not likely providers of electronic data. Indeed, a number of publishers
expressed an interest in helping us, but none could provide electronic versions
of their texts.

accurate, and we have gathered our MWC corpus
from the web on the basis of four, largely
pragmatic, criteria:

1. Data should only be gathered from
sources which agreed to the public
distribution of the data gathered for
research purposes;

2. Text must be machine readable: we could
not afford to manually input tens of
millions of words of corpus data;

3. Each web-site used should be able to
yield significant quantities of data: to
focus our efforts we excluded small
and/or infrequently updated websites
from our collection effort;

4. Text should be gathered in as few
encoding formats as possible: as we map
all data to Unicode, we wished to limit
the amount of mapping software we
needed to author to achieve this task.

While the first three criteria are somewhat easy to
understand and have been discussed elsewhere
(Baker et al, 2002) the fourth criteria merits some
discussion. Ideally, we would have liked to
include texts that already existed in Unicode
format in our corpus. However, when we first
started to collect data, we were unable to locate
Indic documents that had been created in
Unicode.” We found that creators of Indic
documents on the internet typically rely on five
methods for publishing texts online:

They use online images, usually in GIF or
JPEG format. Such texts would need to be keyed
in again, making the data of no more use to us
than a paper version;

e They publish the text as a PDF file.
Again, this made it almost impossible to
acquire the original text in electronic
format. We were sometimes able to
acquire ASCII text from these
documents, but were not able to access
the fonts that had been used to create the
Indic script texts. Additionally, the
formatting meant that words in texts
would often appear in a jumbled order,
especially when acquired from PDF

7 To date, the only site we have found that uses Unicode for Indic languages
is the BBC’s; see for example www.bbc.co.uk/urdu or www.bbc.co.uk/hindi.

documents that contained tables,
graphics or two or more columns;

* They use a specific piece of software in
conjunction with a web browser. This
was most common with Urdu texts,
where a separate program, such as Urdu
98, is often used to handle the display of
right-to-left text and the complex
rendering of the nasta’lig style of Perso-
Arabic script;

e They use a single downloadable True
Type (TTF) 8-bit font. While the text
would still need to be converted into
Unicode, this form of text was easily
collected;

¢ They use an embedded font. For reasons
of security and user-convenience, some
site-developers have started to use
OpenType (eot) or TrueDoc (pfr) font
technology with their web pages. As with
PDF documents, these fonts no longer
require users to download a font and save
it to his or her PC. However, gaining
access to the font is still necessary for
conversion to Unicode. Yet gathering
such fonts is difficult as they are often
protected. We found that owners of
websites that used embedded fonts were
typically unwilling to give those fonts
up. Consequently using data from such
sites proved to be virtually impossible.

There are a number of possible reasons for the
bewildering variety of formats and fonts needed
to view Indic language data on the web. For
example, many news companies who publish
Indic language data on the web use in-house
fonts or other unique rendering systems, possibly
to protect their data from being used elsewhere,
or sometimes to provide additional characters or
logos that are not part of ISCII. However, the
obvious explanation for the lack of Unicode data
is that, to date, there have been few Unicode-
compliant word-processors available. Similarly,
until the advent of Windows 2000, operating
systems capable of rendering Indic Unicode data
successfully were not in widespread use. Even
where a producer of data had access to a Unicode
word-processing/web-authoring ~ system they
would have been unwise to use it, as the readers
on the web were unlikely to be using a web

browser which could successfully read Unicode
and render Indic scripts.

Given the complexities of collecting this
data, we chose to collect text from Indian
language websites that offered a single
downloadable 8-bit TTF font. Unlike fonts that
encode English, such as Times New Roman as
opposed to Courier, Indic fonts are not merely
repositories of a particular style of character
rendering. They represent a range of
incompatible glyph encodings. In different
English fonts, the hexadecimal code 0042 is
always used to represent the character “B”.
However, in various fonts which allow one to
write in Devanagari script (used for Hindi among
other languages), the hexadecimal code 0042
could represent a number of possible characters
and/or glyphs. While ISCII (Bureau of Indian
Standards, 1991) has tried to impose a level of
standardisation on 8-bit electronic encodings of
Indic writing systems, almost all of the TTF 8-bit
fonts have incompatible Indian glyph encodings
(McEnery and Ostler, 2000). ISCII is ignored by
Indic TTF font developers and is hence largely
absent from the web. To complicate matters
further, the various 8-bit encodings of Indic
writing systems have different ways of rendering
diacritics, conjunct and half-form characters. For
example, the Hindi font used for the online
newspaper Ranchi Express tends to only encode
half-forms of Devanagari, and a full character is
created by combining two of these forms
together. For example, to produce he (U+092A —
Devanagari character he) in this font, two
keystrokes would need to be entered (h +

e).However, other fonts may use a single
keystroke to produce he.
We were mindful that for every

additional source of data using a new encoding
that we wished to include in our corpus, an
additional conversion table would have to be
written in order to convert that corpus data to the
Unicode standard. This issue, combined with the
scarcity of existing Indic electronic texts, meant
that we didn’t use as many sources of data as we
would have initially liked, meaning we had to
focus almost exclusively on newspaper material.
However, as is noted in the following paragraph,
as a consequence of the collaboration between
Lancaster University and the Central Institute of

Indian Languages (CIIL), the eventual corpus
will now contain a wider range of genres.

Web data gathered on the basis of these
four criteria would have allowed us to fulfil our
original MWC project goals. However, the MWC
collection goals of the project have altered
significantly. Thanks to a series of grants from
the UK EPSRC® the project has been able to
establish a dialogue with a number of centres of
corpus building and language engineering
research in South Asia. As a consequence, the
EMILLE team has joined CIIL in Mysore, India,
with the goal of producing a wider range of
monolingual written corpora than originally
envisaged on the EMILLE project. One effect of
this change means that the uniform word counts
of the monolingual written corpora will be lost.”
Each language will now be provided with
varying amounts of data, though no language will
be furnished with less than two million words.
However, there is a further important effect of
this collaboration: the corpus will now be able to
cover a much wider range of languages (14 rather
than 7) and a wider range of genres. By a process
of serendipity, the corpus data being provided by
CIIL covers a wide range of genres but not
newspaper material.'” As the material gathered at
Lancaster focuses exclusively on newspapers, the
CIIL and Lancaster data is complementary. Table
1 shows the state of the EMILLE/CIIL
monolingual written corpora at present, and the
revised target corpus size.

The collection phase for the
EMILLE/CIIL MWC data is nearly finished.
Only around 13 million words of data remain to
be collected.'" Consequently, the focus of the
project is now falling increasingly on parallel and
spoken data.

8 Grants GR/M70735, GR/N28542 and GR/R42429/01.

This change was also necessitated by the varying availability of suitable
newspaper websites for the different languages. For Hindi and Tamil, for
example, plenty of data is available to be gathered; for Punjabi and Bengali,
somewhat less; for Urdu, almost none.

The data provided by CIIL to the project covers a number of genres,
including Ayurvedic medicine, novels and scientific writing.
1 3.5 million words of Bengali, 2.1 of Hindi, 5.2 of Punjabi, 2.8 of Tamil, 4
of Sinhalese and 1.4 of Urdu.

Language Target word Current
count word count
(millions) (millions)
Assamese 2.6 2.6
Bengali 9.0 5.5
Gujarati 10.6 10.6
Hindi 12.0 11.2
Kannada 2.2 2.2
Kashmiri 2.3 2.3
Malayalam 2.3 2.3
Marathi 2.2 2.2
Oriya 2.7 2.7
Punjabi 9.0 4.5
Sinhalese 9.0 6.0
Tamil 15.0 13.9
Telegu 4.0 4.0
Urdu 3.0 1.6
Total 85.9 72.1

Table 1: Word counts for each language in the
EMILLE/CIIL Corpus as of January 2003

2.2 Parallel corpora

The problems we encountered in collecting
MWC data were also encountered when we
started to collect parallel data. However, the
relatively modest size of the parallel corpus we
wished to collect (200,000 words in six
languages) meant that we were able to
contemplate paying typists to produce electronic
versions of printed parallel texts. We eventually
decided to do this as we had an excellent source
of parallel texts which covered all of the
languages we wished to look at: UK government
advice leaflets. This was a good source of data
for us, as we wished to collect data relevant to
the translation of Indic languages in UK in a
genre that was term rich.

The leaflets we were able to gather were
mostly in PDF or print-only format, though some
also used 8-bit encodings. Typing these texts
became a necessity when the UK government
gave us permission to use the texts, but the
company that produced the electronic versions of
the texts refused to give us the electronic
originals. We found it economic to pay typists to
produce Unicode versions of the texts using
Global Writer, a Unicode word-processor.'

12 When the project began, Global Writer was one of the few word-

processors able to handle the rendering of Indic languages in Unicode. Since
then, Microsoft have made Word 2000 Unicode-compliant. However, unless

The research value of the British
government data is very high in our view. The
UK government produces a large number of
documents in a wide range of languages. All are
focused in areas which are term-rich, e.g.
personal/public health, social security and
housing. To build the parallel corpus we
collected about 75 documents from the
Departments of Health, Social Services,
Education and Skills, and Transport, Local
Government and the Regions."

Other than the need to type the data from
paper copies, the parallel corpus also presented
one other significant challenge: while most of the
data is translated into all of the languages we
need, there are a few instances of a document not
being available in one of the languages. Our
solution is to employ translators to produce
versions of the documents in the appropriate
language. While far from ideal, this is not
unprecedented as the English Norwegian Parallel
Corpus project also commissioned translations
(see Oksefjell, 1999). All such texts are identified
as non-official translations in their header.

The parallel corpus is now complete, and we
are beginning the process of sentence aligning
the texts using the algorithm of Piao (2000).

2.3 Spoken corpora

For the collection of spoken data we have
pursued two strategies. Firstly we explored the
possibility of following the BNC (British
National Corpus) model of spoken corpus
collection (see Crowdy, 1995). We piloted this
approach by inviting members of South Asian
minority communities in the UK to record their
everyday conversations. In spite of the generous
assistance of radio stations broadcasting to the
South Asian community in the UK, notably BBC
Radio Lancashire and the BBC Asian Network,
the uptake on our offer was dismal. One local
religious group taped some meetings conducted
in Gujarati for us, and a small number of the
people involved in typing work on the project
agreed to record conversations with their family
and friends. The feedback from this trial was

running on a Windows 2000 machine the Unicode compliance of Word 2000
is not apparent.

13 We were also able to take a smaller number of texts from the Home Office,
the Scottish Parliament, the Office of Fair Trading, and various local
government bodies (e.g. Manchester City Council).

decisive — members of the South Asian minority
communities in Britain were uneasy with having
their everyday conversations included in a
corpus, even when the data was fully
anonymised. The trial ended with only 50,000
words of spoken Bengali and 40,000 words of
Hindi collected in this way.

Consequently we pursued our second
strategy and decided to focus on Asian radio
programmes broadcast in the UK on the BBC
Asian Network as our main source of spoken
data." The BBC Asian Network readily agreed to
allow us to record their programmes and use
them in our corpus. The five languages of the
EMILLE spoken corpora (Bengali, Gujarati,
Hindi-Urdu, and Punjabi) are all covered by
programmes on the BBC Asian Network. At least
four and a half hours in each language (and more
in the case of Hindi-Urdu) are broadcast weekly.
The programmes play Indian music (the lyrics of
which have not been transcribed) as well as
featuring news, reviews, interviews and phone-
ins. As such the data allows a range of speakers
to be represented in the corpus, and some
minimal encoding of demographic features for
speakers is often possible as at least the sex of the
speaker on the programmes is apparent.

The recordings of the radio programmes
are currently being digitised and edited, to
remove songs and other such material. The
recordings will be made available in conjunction
with the transcriptions. = However, the
transcriptions and recordings will not be time
aligned. An obvious future enhancement of this
corpus data would be to work on techniques,
already well established for English, to time align
the transcriptions.

The recording and transcription of the
broadcasts is ongoing and to date we have
completed the transcription of 265,000 words of
Bengali, 109,000 words of Gujarati, 41,000
words of Hindi, 119,000 and words of Urdu.

4 Corpus Annotation

The corpus annotation research of EMILLE has
recently expanded to cover another form of
annotation — the annotation of demonstratives —
in Hindi. The work on Hindi is at an early stage,

14 Programmes broadcast in Bengali and Urdu on BBC Radio Lancashire
make up the remainder of the spoken corpus.

with an annotation scheme originally designed to
annotate demonstratives in English (Botley &
McEnery, 2001) being used to annotate Hindi.
The annotation is currently underway and the
goal is to annotate the demonstratives in 100,000
words of Hindi news material by the end of the
project. However, the project always intended
from the outset to explore morphosyntactic
corpus annotation of Urdu. The work undertaken
on this is covered in the next section.

4.1 Morphosyntactic Annotation

On the EMILLE project we wished to develop a
POS tagger for at least one of the languages
covered by the project. The language we have
chosen to focus on is Urdu. We selected Urdu for
a number of reasons. Firstly, it is widely spoken
in the UK, both as a first and second language,
and native speakers were available to be
consulted at Lancaster where this part of the
project is taking place. Secondly, as the lingua
franca of a multilingual community (that of
South Asian Muslims) and the official language
of Pakistan, Urdu has considerable political and
cultural importance. Thirdly, there are a number
of factors that we anticipated would make
tagging Urdu more complicated than tagging any
other EMILLE language. For example, the right-
to-left directionality of the Perso-Arabic script in
which Urdu is written and the presence of
grammatical forms borrowed from Arabic and
Persian, which are structurally quite distinct from
Indo-Aryan forms, mean that Urdu represents a
unique challenge in our data. It seemed the best
course of action to confront these problems by
choosing Urdu as the language for which to
develop POS tagging.

The first stage of the work was to
develop a tagset for use in Urdu texts and
corpora. The next stage, now underway, is to test
the tagset’s usability in manual tagging, and build
up a set of tagged texts to serve as training data
for the final phase of this part of the project. This
will be to automate the tagging and subsequently
tag the whole of the Urdu corpus. In this section,
we discuss the first, completed stage of this
process, in which a tagset for Urdu was devised
using the Urdu grammar of Schmidt (1999) as a
basis.

The tagset was created in accordance with
the EAGLES guidelines on morphosyntactic
annotation (Leech and Wilson, 1999). These
guidelines were designed to help standardise
tagsets for the official languages of the European
Union. While Urdu did not fall under the
EAGLES remit, it was decided to work with this
international standard in order to ensure the
maximum utility of the final tagged corpus. Also,
from a typological perspective it is not
unreasonable to expect that the EAGLES
guidelines would prove compatible with Urdu on
the grounds that both Urdu and the original
EAGLES languages were all of the Indo-
European family. Indeed, it transpired that most
of categories in the attribute-value system
outlined in the EAGLES guidelines were suitable
for application in the design of the Urdu tagset.
There was no major group of Urdu words for
which there was no equivalent category in
EAGLES. The EAGLES guidelines deal very
well with the gender, case and number system of
Urdu'® and need only minor modifications — for
example, since there was no value for oblique
case in the EAGLES system, the value for dative
case was used instead, on the grounds that the
usage of the Urdu oblique corresponds quite
closely to that of the dative in some EU
languages, such as German. The verbal system
proved a little more problematic, in the sense that
the mood, tense and finiteness features outlined
in the EAGLES attribute-value system do not
map easily onto those found in the Urdu
language.'®

However, the greatest difficulty arose in
dealing with the minor, idiosyncratic features of
Urdu — whilst the idiosyncratic features of the EU
languages are covered by the EAGLES
guidelines this is not the case for Urdu. These
features include: the appearance of case on some
verbal elements'’; the distinction between
‘marked” and ‘unmarked’ nouns; the Urdu
honorific pronoun ap, which does not fit easily
into any of the EAGLES categories for pronouns;

1

3 Urdu has masculine and feminine gender, singular and plural number, and
nominative and oblique case, all expressed in a single fusional suffix on each
noun / adjective.

Urdu verbs have one simple finite verb form (the subjunctive), two simple
forms that may be finite or non-finite (the perfective and imperfective
participles), and two further non-finite simple forms (the root and the
infinitive). There are, however, a large number of complex verb forms using
irregular auxiliary elements.

The participles and the infinitive can all display case.

the borrowed Persian enclitic called izafat; and
the problem of bound derivational suffixes which
appear in some contexts as independent tokens,
but not in others.'® However, none of these
problems were insurmountable. EAGLES has
proved a robust and useful framework within
which to approach Urdu POS tagging.

5 Accessing the corpus

A beta release of the EMILLE/CIIL corpus will be
available, free of charge, for users from April 2003.
The beta release of the corpus will contain a sample of
MWOC, parallel and spoken data for the core EMILLE
language. In order to register for access to the beta
release, users should contact Andrew Hardie.

6 Conclusion

The EMILLE project has adapted and changed
over the course of the past two years. With regard
to the EMILLE corpora, this has in large part
been due to the project team engaging in a
dialogue with the growing community of
researchers working on South Asian languages.
As a result of this dialogue the EMILLE team has
made some major changes to the original design
of the EMILLE corpora. However, as with all
large-scale corpus-building projects, other
changes have occurred on the project which have
been responses to unexpected factors, such as the
reluctance of members of the minority
communities to engage in the recording of
everyday spontaneous speech, and the lack of
compatible 8-bit font encoding standards used by
the different producers of Indic electronic texts.
Devising methodologies to convert the numerous
disparate 8-bit based texts to Unicode has been
one of the most complex and time-consuming
tasks of the project.

The area of South Asian corpus building
is growing. As well as work in the UK and India,
a new centre for South Asian language resources
has been established in the US". As the centres
cooperate and integrate their research, there is
little doubt that further work on the construction
and annotation of South Asian corpora will

18 For example, the adjectival suffix dar is written as an independent root
after some roots, but as a suffix after others. A number of other derivational
suffixes behave in the same way, as do some non-affixed words, for example
Téli fon, “telephone”. The phenomenon is common in borrowed vocabulary
(dar derives from Persian, Tel7 fon from English).

19 See http://ccat.sas.upenn.edu/~haroldfs/pedagog/salarc/overallplan.html

grow. As this work grows, I believe that corpus
builders should not loose sight of two important
truths. Firstly, that collaboration is better than
competition — the corpus produced by
Lancaster/CIIL will be larger and better because
we have accepted this. The construction of large
scale language resources needs the acceptance of
this truth if it is to be effective. Secondly, that
while many South Asian languages are entering
the growing family of languages for which
corpus data is available, there are still languages
spoken in South Asia and the world for which
corpus data is not available. While we must
celebrate the creation of corpora of Indic
languages, we should also think of the work yet
to be done in creating corpora for those
languages not yet corpus enabled.

References

Baker, JP, Burnard, L, McEnery, AM and Wilson, A
(1998) ‘Techniques for the Evaluation of Language
Corpora: a report from the front.” Proceedings of
the First International Conference on Language
Resources and Evaluation (LREC), Granada.

Baker, JP, Hardie, A, McEnery, AM, Cunningham, H,
and Gaizauskas, R (2002) ‘EMILLE, A 67-Million
Word Corpus of Indic Languages: Data Collection,
Mark-up and Harmonisation’. In: Gonzilez
Rodiguez, M and Paz Suarez Araujo, C (eds.)
Proceedings of 3rd Language Resources and
Evaluation Conference(LREC). Las Palmas de
Gran Canaria.

Botley, S.P. and McEnery, A. (2001) ‘Demonstratives
in English: a Corpus-Based Study’, Journal of
English Linguistics, 29:7-33.

Bureau of Indian Standards (1991) Indian Standard
Code for Information Interchange, 1S13194.

Crowdy, S. (1995) ‘The BNC spoken corpus’. In:
Leech, G, Myers, G and Thomas, J (eds.), Spoken
English on computer: transcription, mark-up and
application. Longman: London.

Leech, G and Wilson, A (1999) ‘Standards for
tagsets.” In van Halteren, H. (ed.), Syntactic
Wordclass Tagging. Kluwer: Dordrecht.

McEnery, A, Baker, JP and Burnard, L (2000).
‘Corpus Resources and Minority Language
Engineering.” In: M. Gavrilidou, G. Carayannis, S.
Markantontou, S. Piperidis and G. Stainhauoer
(eds) Proceedings of the Second International
Conference on Language Resources and
Evaluation (LREC): Athens.

McEnery, AM and Ostler, N (2000) ‘A New Agenda
for Corpus Linguistics — Working With All of the
World’s Languages.” In: Literary and Linguistic
Computing, 15:401-418.

Oksefjell, S (1999) ‘A Description of the English-
Norwegian Parallel Corpus: Compilation and
Further Developments.” In: International Journal
of Corpus Linguistics, 4:197-219.

Pal, U and Chaudhuri, BB (1995) ‘Computer
recognition of printed Bengali script.’ In:
International Journal of System Science, 26:2107-
2123.

Piao, S. S. (2000), Sentence and Word Alignment
Between Chinese and English, Ph.D. thesis, Dept.
of Linguistics and Modern English Language,
Lancaster University, UK.

Schmidt, RL (1999) Urdu: an essential grammar.
Routledge: London.

Somers, H. (1998) ‘Language Resources and Minority
Languages’, Language Today 5.

Tablan, V, Ursu, C, Bontcheva, K, Cunningham, H,
Maynard, D, Hamza, O and Leisher, M (2002) ‘A
Unicode-based Environment for Creation and Use
of Language Resources’. In: Gonzilez Rodiguez,
M and Paz Suarez Araujo, C (eds.) Proceedings of
3rd Language Resources and Evaluation
Conference(LREC). Las Palmas de Gran Canaria.

Productive Encoding of Urdu Complex Predicates in the ParGram Project

Miriam Butt Tracy Holloway King John T. Maxwell II1
Centre for Comp. Linguistics NLTT/ISTL NLTT/ISTL
UMIST Palo Alto Research Center Palo Alto Research Center
PO Box 88 3333 Coyote Hill Rd. 3333 Coyote Hill Rd.
Manchester M60 1QD UK Palo Alto, CA 94304 USA Palo Alto, CA 94304 USA

mutt@ccl.umist.ac.uk

Abstract

Complex Predicates are a crosslinguistically
general phenomenon, but are more perva-
sive in South Asian than in European lan-
guages. This paper describes an LFG solu-
tion for Urdu/Hindi complex predication in
terms of a RESTRICTION OPERATOR. The
solution is theoretically well motivated and
can be extended straightforwardly to related
phenomena in European languages such as
German, Norwegian, and French.

1 The ParGram Project

In this paper, we report on the implementation of com-
plex predicates (CP) for Urdu in the Parallel Grammar
(ParGram) project (Butt et al., 1999; Butt et al., 2002).
The ParGram project originally focused on three Euro-
pean languages: English, French, and German. Three
other languages were added later: Japanese, Norwe-
gian, and Urdu. The ParGram project uses the XLE
parser and grammar development platform (Maxwell
and Kaplan, 1993) to develop deep grammars, i.e.,
grammars which provide an in-depth analysis of a given
sentence (as opposed to shallow parsing or chunk pars-
ing, where a relatively rough analysis of a given sen-
tence is returned).

All of the grammars in the ParGram project use
the Lexical-Functional Grammar (LFG) formalism,
which produces c(onstituent)-structures (trees) and
f(unctional)-structures (attribute-value matrices) as
syntactic analyses. LFG assumes a version of Chom-
sky’s Universal Grammar hypothesis, namely that
all languages are governed by similar underlying
structures. Within LFG, f-structures encode a language
universal level of analysis, allowing for crosslinguistic
parallelism. ParGram aims to see how far parallelism
can be maintained across languages. In the project,
analyses for similar constructions across languages are
held as similar as possible. This parallelism requires the
formulation of a rigid standard for linguistic analysis.
This standardization has the computational advantage

thking@parc.com

maxwell@parc.com

that the grammars can be used in similar applications,
and it can simplify cross-language applications such as
machine translation (Frank, 1999).

The conventions developed within the ParGram
grammars are extensive. The ParGram project dictates
not only the form of the features used in the gram-
mars, but also the types of analyses chosen for con-
structions. The integration of new languages into the
project has so far proven successful, including the adop-
tion of the standards that were originally designed for
the European languages (Butt and King, 2002b). As the
new languages also contain constructions not necessar-
ily found in the original European languages, the inte-
gration of new languages has contributed to the formu-
lation of new standards of analysis. One such example
is furnished by complex predicates in Urdu.

2 South Asian Complex Predicates

South Asian languages are known for the extensive and
productive use of CPs. CPs combine a light verb with a
verb, noun or adjective to produce a new verb. For ex-
ample, Urdu has a large class of “aspectual” CPs which
combine with verbs to change the aktionsart properties
of the event. Examples are shown in (1b,c), cf. (1a).

(1) a. nAdyA Ayl
Nadya-NOM came
‘Nadya came.’

b. nAdyA A gayl
Nadya-NOM come went
‘Nadya arrived.’

c. nAdyA A paRI
Nadya-NOM come fell
‘Nadya came (suddenly, unexpectedly).’

The addition of a light verb modulates the event pred-
ication in subtle ways: beyond expressing defeasible
meanings such as benefaction, suddenness, inception,
or responsibility, the CP expresses a different aktionsart
in comparison to the simple main verb. For example, in
(1b) Nadya is in the result state of having arrived. The
aktionsart effects of the light verbs on the event predi-
cation are quite complex and continue to be the subject

of on-going theoretical research (Butt and Ramchand,
2003). The general effect is the encoding of a result
state (a song is in the state of having been sung, a per-
son is in the state of having arrived). However, a result
state can be interpreted in two differing ways depend-
ing on whether one wants to consider the event to come
(inception), or the event that has passed (completion).
The precise interpretation is lexically determined by the
light verbs. For the purposes of the Urdu grammar, we
mark light verbs like ‘go’ as signifying completion of
an action, whereas light verbs like ‘fall’ signify incep-
tion.

Although these aspectual CPs do not alter the subcat-
egorization frame of the verb, they change the resulting
functional structure of the sentence, providing new in-
formation about the kind of event/action that is being
described. The light verb also determines case marking
on the subject: light verbs based on intransitive main
verbs like paR ‘fall’ require a nominative subject. Light
verbs like [E ‘take’ or dE ‘give’, which are based on
(di)transitives main verbs, require an ergative subject.
For example, transitive main verbs in the perfect tense
usually require an ergative subject, as in (2a). When
combined with a light verb like paR ‘fall’, the subject
must be nominative as in (2b). Case marking in Urdu
is governed by a combination of structural and seman-
tic factors which we do not go into here (Butt and King,
2001). The light verb facts present an extension of the
basic pattern.

(2) a. nAdyA nE gAnA gayA
Nadya-ERG song sang
‘Nadya sang a song.’

b. nAdyA gAnA gA paRI
Nadya-NOM song sing fell
‘Nadya burst into song.

c. nAdyA nE gAnA gA lIyA
Nadya-ERG song sing took
‘Nadya sang a song (completely).’

As already mentioned, these CPs are extraordinarily
productive in Urdu: most verbal predication involves
complex predicate formation of the kind in (1) and (2).
A light verb is in principle compatible with any main
verb; however, (mostly semantic) selectional restric-
tions do apply so that some combinations are ruled out
completely, whereas others are subject to considerable
dialectal variation. Furthermore, the CPs are not formed
within the lexicon, but are the result of the syntac-
tic composition of two predicational elements (Alsina,
1996; Butt, 1995). Within LFG (as well as other syn-
tactic frameworks), predicational elements play a spe-
cial role: it is over these that argument saturation is
checked. The difficulties involved with CP formation

10

are better illustrated by means of another type of CP, the
Urdu permissive, which alters the argument structure of
the verb (Butt, 1995). The permissive light verb adds a
new subject and “demotes” the other verb’s subject to a
dative-marked indirect object, as in (3b), cf. (3a).

(3) a. nAdyA sOyl
Nadya-NOM slept
‘Nadya slept.’
b. yassinnE nAdyA kO sOnE dIA
Yassin-ERG Nadya-DAT sleep-INF gave
“Yassin let Nadya sleep.’

Since CPs are productive and occur frequently, an im-
plementation that is both scalable and efficient is neces-
sary. Most verbs can occur with several light verbs, and
a given light verb can in principle occur with any verb
of a given class (e.g., agentive verbs). So, it is not fea-
sible to have multiple lexical entries for each verb de-
pending on which light verb they occur with. This is
especially true since the CPs combine with auxiliaries
and other light verbs in predictable ways.

3 Implementation

The XLE implementation in use when Urdu joined Par-
Gram allowed for basic modifications of predicates. In
particular, it had an implementation of lexical rules that
was sufficient to handle the English passive: argument
grammatical functions could be renamed or deleted. An
example of this is shown in (4) for the Urdu passive; the
template is practically identical to that of English. In
this template, SCHEMATA indicates the predicate with
grammatical functions of the verb (e.g., for transitive
‘open’: 'kHOI<(SUBI)(0BJ)>'). In the active, noth-
ing happens (left disjunct); in the passive, the object
becomes the subject and the original subject is deleted
(right disjunct).

(4) PASS(_SCHEMATA)
{ _SCHEMATA
(" PASSIVE) = —

| -SCHEMATA

(" oBJ) —> (" SUBJ)
(" SUBJ)—> NULL
(" PASSIVE) = +}.

However, this operation over lexical items is not suf-
ficient to cover Urdu CPs. In the permissive, a sub-
ject is added and the predicate of the original verb is
treated as an argument of the light verb, while at the
same time assigning its arguments to the light verb. The
problem of Urdu CPs is somewhat reminiscent of the
head-switching type of structural mismatch discussed
in the context of machine translation. The RESTRIC-
TION operator has been proposed as a possible solu-
tion to the general problem of structural mismatches,
with the Urdu permissive cited as a particular instance

(Kaplan and Wedekind, 1993). However, as first for-
mulated, the solution only allowed the application of
the restriction operator within the lexicon and thus did
not take into account the powerfully recursive nature of
complex predication in Urdu, which allows the differ-
ent types of CPs to be stacked (Butt, 1994).

The need to treat a special type of Norwegian passive
and the Cps in Urdu brought the issue of complex pred-
ication into the forefront of the discussions within the
ParGram project. As part of these, a solution was found
in the recent implementation of restriction within XLE
(summer 2001) in which the restriction applies as part
of the syntactic composition of two predicates.

Restriction allows f-structures and predicates to be
manipulated in a controlled and detailed fashion. Given
an f-structure like (5a), it might be necessary to restrict
out the case information (e.g., in order to assign some
other case to the f-structure, as with subject of the CP
in (2b)). In this situation, the restriction operator ‘/° can
be applied to the current f-structure ("/CASE) in order to
arrive at the restricted f-structure in (5b). A restricted f-
structure is thus identical to the original f-structure ex-
cept that it does not contain the restricted attribute.

S a b.
PRED 'nAdyA’ PRED 'nAdyA’
PERS 3 NUM sg
NUM sg PERS 3
CASE erg

The Urdu grammar has pioneered the use of restric-
tion. Since the implementation is recent (December
2002), the exact details of the CP analysis within the
Urdu grammar are subject to change. One issue which
remains to be fully resolved is the interaction of differ-
ent types of light verbs and the modeling of the ver-
bal complex as a whole. Since the verbal complex in-
cludes different kinds of auxiliaries (passive, progres-
sive), modals, and light verbs which combine with main
verbs, adjectives, and nouns, the collection of interact-
ing phenomena is complex.

3.1 Aspectual Complex Predicates

An example of the current analysis of the aspectual Cp
in (6) is shown in (7) and (8). As mentioned above,
in LFG, the syntactic analysis comprises two parts: a
constituent-structure (a tree) and a functional-structure
(an attribute-value matrix). The c-structure in (7) al-
lows for a verbal complex which expands into a main
verb followed by a light verb. There is no compelling
evidence that Urdu has a VP (i.e., that a verb and its ob-
ject are contained under one constituent), hence we do
not assume one. Urdu is furthermore a language with
fairly free word order, so the trees are quite flat: noun

phrases are represented as sisters to one another under
S (see the c-structures in (10) and (13)). We do assume
KPs (Kase Phrases). Case markers in Urdu act as clitics
to NPs (Butt and King, 2002a), and as such have their
own phrase structure node. In (7) the subject is nomi-
native, which is phonologically null, so the KP has an
empty head. A full KP can be seen in the c-structure
analysis for the permissive in (10).

(6) nAdyA bOl paRI
Nadya-NOM speak fell
‘Nadya spoke up (suddenly, unexpectedly).’

(7) C-structure tree for aspectual CP

ROOT

S

RN

KP VCmain

NP Vmain V1ight

I‘\I \Y% paRI

nAdyA bOl

CS 1:

(8) F-structure AVM for aspectual CP
"nAdyA bOl paRI"

[PRED ’speak<[0:Nadyal’
PRED "Nadyd
S INTYPE [PROPER namé

SEM-PROP [SPECIFICH

O|CASE nom, GEND fem, NUM sg, PERS 3
TNS—ASP ASPECT perf, INCEPTIVE4]
[VMORPH MTYPE inf]
19|PASSIVE -, STMT-TYPEdecl, VTYPE complex—pre
PRED ' speak<[0:NadyaP”’
SUBJ [0:Nadya]
CHECK [_RESTRICTEDHY

IVMORPH [19-VMORPH]
14|PASSIVE -, STMT-TYPEdecl, VTYPE uner

The top f-structure in (8) represents the final analysis
of the cP. The bottom f-structure shows the f-structure
of the main verb bOI ‘speak’. The features which
have been restricted from the main verb’s f-structure
are VTYPE and TNS-ASP because these are the features
which the light verb can “overwrite”. In the case of (8),
the TNS-ASP features are provided entirely by the light
verb.

Within the ParGram project, the feature X-TYPE is
used to encode distinctions within a given category X
which are useful at the f-structure level of analysis.
The English grammar, for example, encodes different
kinds of adverbs (sentential, degree modifiers, etc.) via
the feature ADV-TYPE. The feature VTYPE is used in
the French grammar for auxiliary selection with unac-
cusative and unergative verbs. In the Urdu grammar,
we use the feature VTYPE to register the type of the ver-
bal predication. So, in (8), the final top structure has

11

VTYPE complex-pred, while the lower structure for
the main verb has VITYPE unerg because bO! ‘speak’
by itself is an unergative verb.

3.2 Permissive Complex Predicates

The restriction operation for permissive CPs is more in-
teresting, as shown in the resulting f-structures in (11)
for an intransitive main verb and in (14) for a transitive
main verb.

(9) yassinnE nAdyA kO sOnE dIA
Yassin-ERG Nadya-DAT sleep-INF gave
“Yassin let Nadya sleep.’

(10) C-structure tree for permissive CP

CS 1: ROOT
S
KP KP VCmain

ANVAN

NP K NP K Vmain Vlight-pred

N nE N kO \Y% dIA

yassin nAdyA sOnE

(11) F-structure AVM for permissive CP
"yassin nE nAdyA kO sOnE dIA"

[PRED "give<[0:Yassin} ’sleepx[l6:Nadyap’>’
RED "Yassinf
SUBT NTYPE [PROPER namg
SEM-PROP [SPECIFIC 4
O|CASE erg, GEND masc, NUM sg, PERS 3
PRED 'Nady&
opg_ry |NTYPE [PROPER namg

SEM—-PROP [SPECIFICH]
16|CASE dat, GEND fem, NUM sg, PERS 3
TNS—ASP [ASPECT perf, COMPLETIVEH
[VMORPH [MTYPE inf]
51|PASSIVE -, STMT-TYPEdecl, VTYPE complex-pred

PRED ’sleep<[l6:Nadyal’

SUBJ [16:Nadya]

CHECK [NMORPHobl, _RESTRICTEDH

IVMORPH [51-VMORPH]

32|PASSTIVE -, STMT-TYPEdecl, VFORM inf, VTYPE uner

Recall that the light verb dE ‘give’ adds a subject ar-
gument and demotes the subject of the main verb to
an indirect object. In addition to the VTYPE and TNS-
ASP features, the PRED and SUBJ of the main verb’s f-
structure are thus also restricted. This allows the final
f-structure to assign new grammatical functions when
necessary, i.e., to demote the SUBJ Nadya to an OBJ-
TH and to inherit any remaining arguments of the main
verb. The light verb dE ‘give’ subcategorizes for a sub-
ject (the permitter) and a predicate. In (11), the PRED
feature has the value of a composite argument structure,
namely a combination of the subcategorization frame of
dE ‘give’ (subject and another predicate) and the sub-
categorization frame of sO ‘sleep’ modulo the opera-
tions licensed via the restriction operator.

12

In (9) the main verb is the intransitive sO ‘sleep’ and
so there are no arguments for the CP to inherit other than
the demoted subject. The analysis in (14) shows what
happens with a transitive main verb like banA ‘make’.

(12) yassinnE nAdyA kO gHar banAnE dIA

Yassin-ERG Nadya-DAT house-NOM make-INF gave

“Yassin let Nadya build a house.’

(13) C-structure tree for permissive CP

Cs 1: ROOT
S
KP KP KP VCmain

NP K NP K NP

Vmain Vlight-pred

¢] IL \% dIA
|

vassin nAdyA gHar banAnE

N nE I‘\Ik

(14) F-structure AVM for permissive CP

"yassin nE nAdyA kO gHar banAnE dIA"

[PRED 'give<[0:Yassin} ’'make<[l6:Nadyal

RED 'Yassin
INTYPE

[32:gHarP’>"

[PROPER namg
SEM-PROP [SPECIFICH
O|CASE erg, GEND masc, NUM sg, PERS 3

RED ’Nadyd
INTYPE

SUBJ

[PROPER namg
SEM—PROP [SPECIFIC
16|CASE dat, GEND fem, NUM sg, PERS 3
RED 'gHar'
INTYPE [GRAIN masg
32EASE nom, GEND masc, NUM sg, PERS 3
TNS—-ASP [ASPECT perf, COMPLETIVEHY

OBJ-TH

OBJ

[VMORPH ~ MTYPE inf]
72|PASSIVE -, STMT-TYPEdecl, VTYPE complex-pred
[PRED 'make<[16:Nadya} [32:gHar}’
SUBJ [16:Nadyal
OBJ [32:gHar]

CHECK [NMORPH obl, _RESTRICTEDH
[VMORPH [72-VMORPH]
47|PASSIVE -, STMT-TYPEdecl, VFORM inf, VTYPE agentiv

The main verb banA ‘make’ has two arguments: a sub-
ject and an object. This is indicated in the bottom f-
structure in (14). The top f-structure represents the fi-
nal analysis. Here the SUBJ, PRED, and VTYPE fea-
tures of the main verb’s f-structure have been restricted.
The VTYPE feature now states that this is a complex—
pred. As in the previous example, the PRED feature
has the value of a composite argument structure. This
results in an overall three-place CP which subcatego-
rizes for a subject via the subcategorization frame of
dE ‘give’, an indirect object (OBJ-TH) which is the de-
moted subject of banA ‘make’, and finally an object
which is inherited from the subcategorization frame of
banA ‘make’. Despite the fact that the arguments come
from different sources and that the predication is com-
plex (as evidenced by the nesting inside the PRED value
in the top f-structure), at the level of f-structure, the
arguments function like those of a simplex predicate
(cf. Butt 1995).

4 Project Impact and Conclusions

The solution described above in terms of syntactic com-
position of arguments via the restriction operator allows
the manipulation of subcategorization frames outside
of the lexicon. This is particularly important as CPs in
Urdu/Hindi and other languages are productive and sep-
arable in the syntax: they do not present instances of
compounding or any other form of lexicalization. A
sophisticated manipulation of subcategorization frames
outside of the lexicon has not been previously possi-
ble, but finds clear applications for CPs crosslinguisti-
cally. A possible immediate application in the ParGram
project would be to the well known problem of suru
‘do’ and other CPs found in Japanese. With respect to
the European languages, the restriction operator opens
up an innovative treatment of a subtype of the Norwe-
gian passive, as in (15a), and allows for a potentially
more satisfactory treatment of the German lassen ‘let’
construction, as in (15b), or the French causative faire
‘make’.

(15) a. Kniven blir skaret kjgtt med.
the-knife is cut meat with
‘The knife cut the meat.’

b. Der Fahrer hat den Traktor
the-NOM driver has the-ACC tractor

reparieren lassen.
repair let
“The driver had the tractor repaired.’

The current ParGram analyses treat these phenomena as
instances of basic complement taking verbs, a solution
which is not supported by the linguistic evidence and
discussions amassed within theoretical linguistics.

The need to implement a productive analysis of CPs
for Urdu resulted in the establishment of a new standard
for analysis within the ParGram project: a scalable and
efficient solution for the general phenomenon of com-
plex predication is now available to the grammar writ-
ers for all of the project languages. In addition, passive
and causative, which are currently treated via lexical
rules in the grammars, could be reimplemented using
restriction, simplifying the verbal lexical entries. Thus,
we see that a change required for one language, in this
case the South Asian language Urdu, can benefit the im-
plementations of many languages.

References

Alex Alsina. 1996. The Role of Argument Structure in
Grammar. CSLI Publications.

Miriam Butt and Tracy Holloway King. 2001. Non-
nominative subjects in Urdu: A computational anal-
ysis. In Proceedings of the International Symposium

on Non-nominative Subjects, pages 525-548, Tokyo.
ILCAA.

Miriam Butt and Tracy Holloway King. 2002a. The
status of case. In Veneeta Dayal and Anoop Mahajan,
editors, Clause Structure in South Asian Languages.
Kluwer Academic Publishers, Dordrecht. To Ap-
pear.

Miriam Butt and Tracy Holloway King. 2002b. Urdu
and the Parallel Grammar project. In Proceedings of
COLING 2002. Workshop on Asian Language Re-
sources and International Standardization.

Miriam Butt and Gillian Ramchand. 2003. Building
complex events in Hindi/Urdu. In Nomi Ertischik-
Shir and Tova Rapoport, editors, The Syntax of As-
pect. Oxford University Press, Oxford. Submitted.

Miriam Butt, Tracy Holloway King, Maria-Eugenia
Nifio, and Frédérique Segond. 1999. A Grammar
Writer’s Cookbook. CSLI Publications.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
Parallel Grammar project. In Proceedings of COL-
ING 2002. Workshop on Grammar Engineering and
Evaluation.

Miriam Butt. 1994. Machine translation and complex
predicates. In Proceedings of KONVENS 94, pages
62-71.

Miriam Butt. 1995. The Structure of Complex Predi-
cates in Urdu. CSLI Publications.

Anette Frank. 1999. From parallel grammar develop-
ment towards machine translation. In Proceedings of
MT Summit VII, pages 134-142.

Ron Kaplan and Jirgen Wedekind. 1993. Restriction
and correspondence-based translation. In Proceed-
ings of the Sixth European Conference of the Associ-
ation for Computational Linguistics, pages 193-202.

John T. Maxwell, III and Ron Kaplan. 1993. The in-
terface between phrasal and functional constraints.
Computational Lingusitics, 19:571-589.

13

14

IO

A bilingual parser for Hindi, English and code-switching structures

P Goyal, Manav R Mital, A Mukerjee,
Achla M Raina, D Sharma, P Shukla, and K Vikram
Indian Institute of Technology, Kanpur,
Kanpur 208016,
Uttar Pradesh, India.
{pankajgo,manavrm,amit,achla,deepaks,praj,vikram} @iitk.ac.in

Abstract

We present a bilingual syntactic parser
that operates on input strings from Hindi
and English, as well as code-switching
strings drawing upon the two languages.
Using the HPSG formalism, we de-
velop grammars for Hindi and English,
as well as for the Hindi-English Code-
Switching variety (HECS), resulting
from contact between these languages in
the Indian context. The code-mixed va-
riety under consideration is spoken by
Hindi-English ambilinguals in northern
India and is regarded as a prestige di-
alect by the educated elite. Words and
larger phrasal constituents from the em-
bedded language are used with the syn-
tax of the matrix language, which is
predominantly Hindi. The parser de-
veloped here captures this in a lexicon
that mixes pure English, pure Hindi, and
cross-referenced lexical structures. For
ambiguous input, the system generates
the set of valid parses, and orders them
according to credibility using the ontol-
ogy derived from WordNet. The sys-
tem is part of g, a larger effort
aimed at developing a unified semantics
for restricted-domain Hindi and English
discourse.

1 Introduction

Most of the available work on natural language
parsing systems focuses on devices that operate
on a single language to generate the parsed out-
put. Generalized parsers that work on more than
one language are relatively rare, and mostly work
on structurally related languages such as English
and French, or English and German [Copestake
and Flickinger2000]). This paper builds on T
(Saarthaka) [Sharma et al.2002]], a bilingual
parser for Hindi and English, two structurally dis-
parate languages used in the Indian multilingual
context. Here we report work that extends this
parser to handle a popular code-mixed variety spo-
ken widely among northern Indian Hindi-English
ambilinguals. We shall refer to this variety as
Hindi-English Code-Switching (HECS).

The effort is a step towards a natural language
understanding system that would operate on bilin-
gual/multilingual texts set in a limited domain
story context. The larger aim is to provide multi-
lingual tools for animating textual stories in Hindi
and English [Mukerjee et al.2000]l. The philo-
sophical motivation lies in the relationship posited
between understanding of textual input and men-
tal imagery, which is here captured using graphic
animation.

The bilingual parser developed here is based on
the HPSG framework, which integrates many of
the crucial empirical and conceptual advances in
linguistic theory. Whereas the grammatical de-
scription for English is drawn from the available
work on this language [[Pollard and Sagl1994]l,
an HPSG grammar of Hindi has been devel-

15

16

oped here to provide the basis for the general-
ized parser. This grammar has been extended to
handle structures of the code-mixed variety under
consideration, HECS. The bilingual parsing sys-
tem works on an invariant set of principles that
encompass Hindi, English, and HECS grammars.
The code-switching structures are handled through
cross-referencing and additional subcategories in a
merged lexicon.

An important feature of T is that it provides
not only all possible parses for each string, but also
an ordering between them. This is done by a word
sense disambiguator, which uses the ontology de-
rived from WordNet [Fellbaum1998] to arrange
the output in a decreasing order of appropriate-
ness.

In its current phase of implementation, the
parser operates on pure English and pure Hindi in-
put strings, as well as code-switching strings from
HECS.

1.1 Hindi-English Code-Switching (HECS)

In India where English is a prestige language,
code-mixed varieties drawing upon English as the
embedded language assume a degree of prestige:

13

the mixed language can be
said to have prestige, since the amount
of mixing corresponds with the level of
education and is an indicator of mem-
bership in the elite group — Annamalai
[Annamalai2001]].

HECS is part of the speech repertoire of Hindi-
English ambilinguals, who switch codes in dif-
ferent speech contexts for sociolinguistic reasons
(e.g. to signal social distance/proximity in inter-
actions) or for purely linguistic reasons (e.g. to fill
a lexical gap in the matrix language). HECS is a
stable variety which demonstrates a certain regu-
larity in observing constraints on structure. Adopt-
ing the terminology from Peter Auer, it may be re-
ferred to as a “Fused Lect” as opposed to a “Mixed
Code” [Auer1998]].
Let us consider some examples from HECS:
(1) student = teacher & e library g
book issue T .
student CM teacher CM library CM book issue
operator-tense.

The student issued a book from the library

for the teacher.

(2) raama whom I saw yesterday 3TTsT qTETT
.

raama RM I saw yesterday today I

CM again meet-tense.

Today, I again met Ram, whom I had

seen yesterday.

The sentence (1) is constituted almost entirely of
English lexical items, yet the usage is perfectly
normal in most North Indian contexts. The verb
“issue” is drawn from English to fill a lexical gap
in Hindi. The code-switching verb “issue a‘ﬁ‘(kii)”,
consisting of the English verb “issue” and a form
of the Hindi operator “&XT” (kara), observes the
Hindi grammatical restrictions: each of the noun
phrases occuring in the string is followed by post-
positions " (ne)”, & faa(ke liye)”, and “T(se)” -
as required by Hindi grammar. These Hindi gram-
matical restrictions do not apply when the English
verb “issue” is used as the verbal head in a code-
switching context. Thus strings such as
(3)*student T issued a book teacher

& fo = library &,

(4)*FTeT issued fRaTa & rmTIH

& oo gea&eT 4.

which use English verbs are unacceptable in
HECS. Sentence (2) consists of a Hindi head-
verb with two noun phrases, of which one,
“YTH(raama)”, contains an English relative clause
in it. This code-switching string appears to ob-
serve restrictions imposed by Hindi grammar. It
may be noted that whereas in the corresponding
English version, a tense sequencing constraint on
the verb requires the form had seen in the rel-
ative adjunct, the code-switching string does not
observe this constraint.

1.2 Parsing Code-Switching Structures

The study of code-mixing has gained immense
popularity in recent years. Although much
work has been done on grammatical analy-
ses of different code-mixed varieties used in
South Asia [Joshil985, Annamalai2001], and
around the world [MacSwan1997, Mahootian and
Santorini1995]], implemented grammatical analy-
ses of code-mixed varieties are scarce.
Constraints on code-switching have been a sub-

ject of discussion ever since the earliest proposals
regarding grammatical properties of code-mixed
varieties began to appear in the 70’s. Most re-
searchers agree that code-mixing is governed by
a “third grammar” which constrains the interac-
tion of the two language systems. The important
question to investigate is whether machine imple-
mentation would require explicit construction of a
completely separate “third” grammar (and its as-
sociated lexicon), or whether this can be achieved
by suitable extensions to the existing grammars of
the matrix and embedded languages.

Some of the earlier constraints cited in the liter-
ature (following [MacSwan1997])) include

e Free Morpheme Constraint: There may be
no switch between a bound morpheme and
a lexical form unless the lexical form has
been phonologically integrated into the lan-
guage of the bound morpheme [Sankoff and
Poplack1981]].

e Equivalence Constraint: Code switching can
occur at points in discourse when the jux-
taposition of L1 and L2 elements does not
violate a syntactic rule of either language
[[Poplack1980].

e Dual Structure Constraint: Structure of the
embedded constituent need not conform to
the constituent structure rules of the matrix
language, so long as the placement in the ma-
trix language obeys the rules of the matrix
language [[Sridhar and Sridhar1980]].

Joshi (1985) proposes the Closed-Class constraint
which stipulates that closed class items (det., Q-
word, preposition, auxiliaries etc.) from one lan-
guage cannot be mixed with open class items from
the other. Mahootian and Santorini (1995) pro-
pose alternate accounts that focus on the Head-
complement relation in the sentence. In our work,
we adopt an approach similar to Mahootian and
Santorini, and and constrain the grammar such
that the lexical requirements of heads determine
the structure in code-switching strings. In other
words, phrasal heads determine the syntactic prop-
erties of the subcategorized elements, regardless
of the language from which these elements are
drawn. This position is also close to the Word

Grammar Integrity Corollary proposed by Belazi
et al [Belazi et al.1994] which stipulates that “A
word of language X, with grammar GX, must obey
grammar GX”.

Researchers who challenge a constraint-based
approach to code-mixing also question attempts
to assign different constituents of a code-mixed
variety to the so called matrix and embedded
languages, suggesting that such assignment is
largely a matter of perspective [[Agnihotri1998].
Agnihotri cites data that show violations of the
constraints proposed in the literature. He goes
on to suggest that “the concept of ’a language’
with its attendant codified grammar may not be
adequate for characterizing the constraints that
condition the nature of mixed codes . ”
[Agnihotri1998](p. 228).

Our work Hindi-English code mixing attempts
to capture some of the fuzziness inherent in code-
mixed varieties within the broader objective of
developing a machine implementable parser for
the mixed code, HECS. This is done through
a merged lexicon with cross-linkings between
English-Hindi Synsets. Also, we adopt a very gen-
eral structural constraint which invokes the subcat-
egorization properties of the lexical heads, regard-
less of the source language. As such, in our sys-
tem notions like matrix and embedded language
are simply a matter of terminological convenience.

2 Parser Implementation

Most parsers in use today [Copestake and
Flickinger2000, Carpenter and Penn1994] are not
general enough to incorporate more than one
language. = However, systems such as LKB
[Copestake and Flickinger2000]] and LilFes or
LILOG [Erbach1991] or [Chaitanya et al.1997]
can be made to process input from more than one
language. However, such systems have not been
extensively tested on languages like Hindi which
involve order independent unification.

Saarthaka implements a Hindi-English bilin-
gual parser that draws upon two separate lexicons
of Hindi and English. In handling pure Hindi or
pure English input strings, one or the other lex-
icon is chosen based on the words of the input
string. The question that arises while handling
HECS is whether to introduce a third mixed-code

17

18

lexicon, or whether to add appropriate structures
to an union of the existing lexicons. The merged-
lexicon approach appears to be more elegant than
a third grammar option, and also addresses the fact
that speakers of HECS are fluent in both Hindi and
English and are actually drawing upon both the
grammars to create a new fused lect.

Existing parsers based on commonly employed
grammatical formalisms like the ATN, TAG, CFG,
and HPSG rarely deal with multilingual syntactic
and semantic issues. @T¥@ is an advance to the
extent that it simultaneously operates on a bilin-
gual input, handles code-switching structures, and,
that it generates a list of parses in decreasing order
of appropriateness. Parsers such as LKB incorpo-
rate Minimal Recursion Semantics [[Copestake et
al.1995]], but our treatment is directly linked to the
WordNet [Fellbaum1998]], which provides access
to a large body of semantic data.

Another innovation is that unlike other imple-
mentations of HPSG which are built upon logic
languages such as Prolog, our parsing engine is
designed for portability and is built grounds-up in
Java.

3 Methodology

3.1 Domain

Saarthaka’s larger aim, that of generating graph-
ics animation from multilingual stories, requires
the use of a restricted domain within which object
graphic models and verb action procedures can
be instantiated. At present, the work is restricted
to stories involving a typical family environment,
with about 400 words in English and a little less
in Hindi. The Devanag transliteration scheme has
been used for representing the Hindi text.

In the domain under consideration, we found
it sufficient to use only a subset of the HPSG
feature sorts. However, some features needed
to be extended to incorporate aspects such as
obliqueness in Hindi grammar. For example, the
noun $TT can be used either in its root form
or in the oblique form, which is captured by
a new feature in the fifth subfield in its entry:

FArddr N(N,-,S,M,1,V)

Fa g N(N,-,S,M,0,V)

In the same spirit, verbal agreement for gender is

essential in Hindi, and is implemented by inserting
a new field in verb entries.

3.2 Grammar Generation

Since the HPSG grammar remains relatively unex-
plored for South Asian languages, we have devel-
oped our own grammar for Hindi within the broad
HPSG framework. Even for English, owing to the
larger objectives that require a semantic treatment,
we have constructed a grammar and lexicon of our
own. The needs of the code-mixed variety HECS
have led to further modification of the lexical and
grammatical structures.

Entries in the lexicon are Head-driven in the
spirit of HPSG, which implies that all the prop-
erties of a phrase are a function of the head of that
phrase. In order for the same parsing engine to
handle Hindi and English inputs, the design of the
lexicon needs to specify constrained word-order
grammars (as in English) as well as free word-
order grammars (as in Hindi).

As an example, consider the following entry in
the non code-mixed English lexicon,

dog:dog N(-,S,-.C) { D(S) | *J | ! }

The word following the colon is the root word,
used in semantic processing (here it is the same
as dog). This is followed by the lexical category,
with a list of the case, number, gender, property.
The second list is the set of features which can
exist in the sub-category of this head word - here
it means that the word dog, preceded necessarily
by one and only one determiner(singular), and any
number of adjectives would form a phrase with
dog as the head. Similarly the word dogs would
have

dogs :dog N(-,P-,C) { ~D(P) | *J | ! }
Here the notation ‘~’ indicates that the determiner
is not compulsory. Again, the entry for eats
would be
eats:eat V(BS) { N(N,S,-,-) | | | N(A,---) }

Let us now consider the entry ghara (house)

from the Hindi lexicon:

HT N(N,3,S.M,-,V) { ~D(S,M) | ~J(S,M)

| ~k(S.M) | !]}

The description of Hindi nouns consists of six fea-
tures as compared to four in English; the addi-
tional features in Hindi are Obliqueness and the
Person.

For the Hindi verb entry khaata, consider:
Qrar : @1 T(-,-,S,M,1,V) { / N(N,-,S,M,1,V)
| [N(A--, LLV) [a(V)]| ~i | ~p | ~s [~1] ~Y
\| 1}

The delimiters ‘/” and ‘\’ indicate that all fea-
tures occuring inside them are freely ordered in
the structure of which this word is the head. The
notation ‘[” and ‘]” indicate complimentarity - i.e.
only one of the features inside them can occur in
the sub-category. Note that the subcategorization
also differs on a few parameters which are unique
to each language.

The lexicon has entries for expressions that
might consist of more than one word. For instance
the expression ‘in front of’ in English and
‘@ f&T2 in Hindi have independent entries.

3.3 HECS Grammar Generation

Multilingual parsers permit text in one of several
languages to be input, and discriminate between
them at run-time. Such systems typically employ
different lexicons for each language, which are
identified based on the lexical items used.

Mixed-code parsers could be built using sepa-
rate lexicons for each of the input languages, or
by merging the lexicons. The merged lexicon op-
tion has an obvious advantage over separate lexi-
cons in terms of economy and elegance. Among
others, Macswan [MacSwan1997]] has claimed a
merged lexicon as a more viable option for mixed-
code grammars.

However, implementing a grammar based on a
merged lexicon has the problem that the syntac-
tic constraints of one language are applied to lexi-
cal items from the other, thus generating incorrect
parses. Consider the following example:

(5) raama who lives in the house books
F9 & T YL =T
becane ke liye kaanpura gayaa
to sell books went to Kanpur

Here the parser based on a merged lexicon, per-
mits the word “books” to accept “in the house” as a
subcategory based on its english lexical structure.
This results in two parses, including the following
incorrect one:

+-raama who lives in the house

books becane ke liye kaanapura

gayaa
—raama who lives
+-raama N(N,S,M, —-)
+-who lives
+-who W(-)
+-1lives H(P,S,V,N)
—in the house books becane

+ - — — — 4+

+-in P (N)

+-the house
+-the_D (-, -)
+-house_N (-, S, —

=)

+-in the house
|
|
|
|

+-in the house books
|
|
|
|
| , =
| +-books_N(-,P,
| +-becane_7 (P, -)
| +-ke liye_p ()
+-kaanapura_N(A,3,S,M,—,V)
+-gayaa_A(-,—,S,M,—-,V)
English being a verb medial language, the first
noun phrase - in this case “raama who lives in
the house”- should ordinarily be followed by a
verb phrase, introduced by a verbal rather than a
nominal element. But in the code-switching string
above, it is the Hindi purposive clause “books be-
cane ke liye”- beginning with a nominal element
“books” - that follows the first noun phrase. Now
since “books” has features specified by the En-
glish grammar, the parser sees it as a nominal head
subcategorizing the prepositional phrase “in the
house”, as in a sring like “in my house books are
kept in the study”, thus generating the incorrect
parse above.

One obvious solution to this problem would be
to abandon the merged lexicon option, and cre-
ate a third grammar and associated lexicon for the
code-mixed lect. The other solution is to retain
a merged lexicon and introduce an additional fea-
ture field indicating language - "H’ or ’E’. To han-
dle the above, *books’ is cross-linked with faaTa
(kitaabe.m), and takes an "H’ feature, and it does
not unify with the preceding phrase “in the house”.
The original entry of “books”, marked 'E’ is not
operative since the head verb is Hindi. Thus only
one possible parse is generated:

books becane ke liye kaanapura

—in the house books becane

)

+-raama who lives in the house

19

20

gayaa

raama who lives in the house

+-raama_N(N,3,S5,M,—,V,H)
+-who lives in the house
+—who_W(-)
+—1lives in the house
+-lives_H(P,S,V,N)
+—in the house

+-the house
+-the_D (-, -)
+-house_N(-, S, —,
books becane ke liye
+-books becane
|

2.
_IE)

+-books_N(A,3,P,F,1,V,H)

+_
|

|

|

|

|

|

| +-1in_P (N)
|

|

|
+_
|

|

|

| +-becane_7z (P, -)
| +-ke liye_p ()

+-kaanapura_N(A,3,S,M,—-,V,H)

+_gayaa_A(_l_ISIMI_IV)

Based on these considerations, in our work we
have used a merged lexicon with cross-linking be-
tween English-Hindi synsets, as well as source
language tags in the cross-linked entries.

3.4 HECS Parsing

The structure in mixed code is governed by the
head verb in the sentence, and correspondingly,
by other heads in the rest of the phrases. Thus, if
the head is from Hindi, the structure observes con-
straints imposed by the Hindi grammar (and sim-
ilarly for English). Given this broad constraint on
code-mixing, three specific mechanisms are used
to handle code-switching in HECS.

1. Noun substitution
Noun substitutions are handled as equiva-
lence relations between Hindi and English
words that function as synsets in HECS.
Thus an entry for the word ’books’ is
equated to the list of fields for ﬁn_d'la',
feamal which ’books’ can now replace
in code-switching sentences such as:
B’Hﬁ'books/ﬁﬁﬂ'ﬁ' EO) 9er]

or

[raama books/fFaTe TgaT &]

The two additional entries for books are:
feraTe,books :kitaab,book N(A,3,P,F,1,V,H)

feraTeT,books :kitaab,book N(N,3,P,F,0,V,H)

We note also that the entry for “books” with
feature "H’ inherits the PNG and oblique
features of the hindi noun “f&aTal” which
then constrain its usage.

Similarly, the Hindi word f&aTe is equated
with the entry of the English word *books’ as
books,kitaabe.m:book,kitaab N(-,P,-,-,E).
This enables us to parse sentences such as
[1 have issued these kitaabe.m]

Replacement of Hindi verbs by English
The Hindi verb can be replaced by an
English root verb plus the Hindi operator & T
(kara), and its morphological variants such
as f&ar,&r,&@r ("kiyaa’,’kii’,’karataa’)
etc. For example - the sentence
ESERETIEEETAN

can be replaced by

[E'Fﬁ‘ fRaTe read a?r]
In such cases the head verb, instead of ‘JT'.?I',
remains the Hindi &I, which takes on an
additional subcategory (the English root verb
“read” in the example). So the original entry
for FT (kii):
. & OAGCSSM-V) {m(V) | [N(A.-
SMLV)[a(V)]| ~i|~pl~s |~ 1~ Y\
|1}
now changes into FrFT A(-,-,S.M,-
V){/n(V)|IN(A-S,M,LVH)| a(V) |
plrs|~ 1]~ Y|~RV\ |1}
where English root verb entries are tagged
as “RV” so that the operator "kara’ can now
take them as subcategories:
read:read RV!

. Mixed Phrasal Constituents

Mixed phrasal constituents or clausal ad-
juncts depend on a hinge word which in the
main structure is being used as the matrix lan-
guage word, and in the phrasal constituent is
being used as an embedded language word.

Consider the sentence (5) again:

(5) raama who lives in the house books

g9+ & foa &= =T

Here, “raama” as the head of a subcategory
of TTIT (gayaa) is a Hindi word, yet in the
phrasal constituent “raama who lives in the
house” it appears as English - and thus serves

as the hingeword.

Similarly, in relative clauses, relative mark-
ers such as Hindi ST (jo) or English “which”,
“who” etc. act as the hingewords. In clausal
adjuncts, markers such as English “having”
or Hindi “-&¥” serve the hinge function.

Thus in order to parse mixed phrasal con-
stituents we need to introduce multiple
entries for the hingewords tagged as "H’ or
"E’. For example in sentence (5), “raama”,
as a Hindi Noun has to accept a subcategory
with ’lives’ as its head. This is done using
the entry:

THXH N(N,3,S,M,-,V.H){~S(-,-,-M,-,-)|

~KGEMPFISM|[~HES) | ~Q(N.-
aS7M31’W)| NP(Na_,SaM’laW)| NA(Na_
aS7Ma_,W)| NQ(A’_,_a_71,W)| NP(A,_a_7_

LW)| ~AA - -m W]}

here the subcategory ~H(-,S) (where H
stand for the verbs which act as heads to
relative phrases) has been added which
then takes 'who’ and ’in the house’ as its
English subcategories. Now consider the
predominantly English form of (5) -

(5b) raama STT 9 & Tgdrl %‘went to
Kanpur to sell books.

raama jo ghara me.m rahataa hai

raama who lives in the house

where raama being a subcategory of went’
is of type ’English’ or ’E’ and does not
take hindi subcategories. To handle this, the
reconstructed subcategory of “raama” looks
like -

raama:raama N(-,S,M,-,E){[~C | ~P(N)|
~G | ~K | ~YIEI ~HGS) ~Q(N,-
.S.M,1,W)}

Here the subcategory ~Q(N,-,S,M,1,W)(
where Q stands for the Hindi auxiliary &) has
been added which then takes ’rahataa’ in its
subcategory.

3.5 Parser Implementation

Parsing involves searching for all possible phrase
combinations which can unify with the grammar
to yield a sentence. In HPSG terms, it amounts
to finding the heads of all constituent phrases in
a given sentence and the phrases that saturate the
subcategories of these heads. With sentences that

are ambiguous all possible parses should be gen-
erated.

We apply a ‘Chart Parsi ng’ approach in which
a chart is maintained which stores intermediate
parses and avoids re-visits. The procedure consists
of the following steps:

1. If n is the number of tokens in a sentence, a
chart of size n x n is prepared. In this chart,
the position (i,j) at the end of the execution of
the algorithm, contains all possible parses of
the substring from word i to word j.

2. The parsing process iterates over every entry
for all the tokens in the sentence. Its ‘subcat-
egory’ object is examined to figure out if ap-
propriate phrases in the chart can saturate it.
If it succeeds, and if the generated ‘Phrase’ is
not present in the Chart, it is inserted at the
appropriate location in the chart. Equality of
phrases are checked with the concept of ‘ref-
erences’.

3. The program terminates if no new phrases
have been inserted at the end of a particular
iteration.

4. It can be easily proved that this procedure
will terminate. At the end, possible structures
for the complete sentence are found at loca-
tion (n,n).

4 Summary and Conclusion

The Hindi-English bilingual parser developed here
yields an output consisting of all possible parses
for strings from either of these languages and
from the code-mixed variety HECS. Subsequent to
the parsing, 9T (Saarthaka) orders the parses
in terms of their appropriateness through a Word
Sense Disambiguator [Vikram et al.2002]] using
the ontological classes derived from WordNet.
This ordering of possible parses has not yet been
implemented for Hindi and the mixed code HECS,
due to the unavailability of tools like WordNet for
Hindi at the moment. The system can however be
extended to structures from Hindi and HECS as
and when such tools become available.

The work assumes a general constraint on code-
mixing which has been stated as follows: Phrasal

21

22

heads determine the syntactic properties of the
subcategorized elements, regardless of the lan-
guage from which these elements are drawn.
This constraint is implemented through a lexicon
that contains entries from the matrix and embed-
ded languages, as well as cross referenced items
from both. Parsing of code-switching structures
is achieved by building constraints of the Hindi
phrasal heads into the lexicon such that they ap-
ply not only to Hindi subcategorized constituents
but also to those drawn from English.Similar mod-
ifications are done for the case when English is the
matrix language.

References

R.K. Agnihotri. 1998. Social Psychological Perspec-
tives on Second Language Learning. Sage Publica-
tions.

E. Annamalai. 2001. Managing multilingualism in In-
dia — Political and Linguistic manifestations. Sage
Publications, New Delhi.

Peter Auer. 1998. From code-switching via language
mixing to fused lects: Toward a dynamic typology
of bilingual speech. Technical Report InLiSt No. 6,
Interaction and Linguistic Structures, Freiburg i. Br.,
September.

Hedi M. Belazi, Edward J. Rubin, and Almeida J.
Toribio. 1994. Code switching and x-bar theory:
The functional head constraint. Linguistic Inquiry,
25(2):221-237.

Bob Carpenter and Gerald Penn. 1994. Ale the at-
tribute logic engine.

Vineet Chaitanya, Amba P. Kulkarni, and Rajeev San-
gal. 1997. Anusaaraka: Machine translation in
stages. Vivek, 10.

Ann Copestake and Dan Flickinger. 2000. An
open source grammar development environment and
broad-coverage English grammar using HPSG. In
Proceedings of the 2nd International Conference
on Language Resources and Evaluation, Athens,
Greece.

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne
Riehemann, and Ivan Sag. 1995. Translation us-
ing Minimal Recursion Semantics. In Proceedings
of the 6th. International Conference on Theoretical
and Methodological Issues in Machine Translation
(TMI-95), Leuven, Belgium, July.

Gregor Erbach. 1991. A flexible parser for a linguistic
development environment. In O. Herzog and C.-R.
Rollinger, editors, Natural Language Understanding
in LILOG. Springer, Berlin, Germany.

C. Fellbaum. 1998. Wordnet:an electronic lexical
database.

Aravind Joshi. 1985. Processing of sentences with
intrasential code switching. In Natural Language
Parsing: Psychological, Computational and The-
oretical Perspectives. Cambridge University Press,
Cambridge.

Jeffrey MacSwan. 1997. A Minimalist Approach to
Intrasentential Code Switchi Spanish-Nahuatl Bilin-
gualism in Central Mexico. Ph.D. thesis, University
of California Los Angeles.

Shahrzad Mahootian and Beatrice Santorini. 1995.
Codeswitching and the syntactic status of adnomi-
nal adjectives. Lingua, 95:1-27.

Amitabha Mukerjee, Kshitij Gupta, Siddharth Nau-
tiyal, Mukesh P. Singh, and Neelkanth Mishra.
2000. Conceptual description of visual scenes from
linguistic models. Journal of Image and Vision
Computing, Special Issue on Conceptual Descrip-
tions, 18(2):173-187.

Carl Pollard and Ivan E. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago.

S. Poplack. 1980. Sometimes i start a sentence in en-
glish y termino en espanol: Towards a typology of
code- switching. Linguistics, 18:581-618.

D. Sankoff and S. Poplack. 1981. A formal grammar
for code-switching. Papers in Linguistics, 14(1):3—
46.

Deepak Sharma, K. Vikram, Manav R. Mital,
Amitabha Mukerjee, and Achla M Raina. 2002.
Saarthaka - an integrated discourse semantic model
for bilingual corpora. In Proc. Intl Conf on Univer-
sal Knowledge and Language, Goa India, Nov.

K.N. Sridhar and S.N. Sridhar. 1980. Psycholinguis-
tics of bilingual code-mixing. Canadian Journal of
Pyschology, 34(4):409-418.

K Vikram, Deepak Sharma, Manav R. Mital, Amitabha
Mukerjee, and Achla M Raina. 2002. An hpsg and
wordnet based approach to word sense disambigua-
tion. In Kavitha M Sasikumar M, Jayaprasad Hegde,
editor, Artificial Intelligence: Theory and Practice,
KBCS-2002, Mumbai, India, December. Vikas Pub-
lishing House.

A Morpho - Syntax Based Adaptation and Retrieval
Scheme for English to Hindi EBMT

Deepa Gupta

Niladri Chatterjee

Department of Mathematics
LL.T Delhi, Hauz Khas
New Delhi, INDIA -110016

{gdeepa,

Abstract

This paper focuses on Example Based
Machine Translation (EBMT) between
English and Hindi, the most popular
language in South Asia. Given an input
sentence, an EBMT system retrieves
similar sentence(s) from its example
base and adapts their translation(s)
suitably to generate the translation of
the given input. This paper proposes a
systematic adaptation scheme that takes
into account the morphology and syntax
of the input and the retrieved source
language sentences. The advantage of
this method is that it provides an
objective way of measuring the
adaptation cost, and therefore can be
used as a good yardstick to measure the
similarity between two sentences. The
proposed scheme has been elaborated
with examples, the technique for
estimating adaptation cost has been
demonstrated. This paper also illustrates
the superiority of this scheme over
some existing similarity measurement
schemes.

Key Words — Morpho-syntactic tags, Sentence
patterns, Adaptation, Similarity.

1 Introduction

An Example-Based Machine Translation
(EBMT) (Nirenburg., 1993; Sato., 1992) system
uses its repertoire of past translation examples to
generate the translation of a given input sentence.

niladri}@maths.iitd.ac.in

Two key operations pertaining to EBMT are:

1. Retrieval — i.e. selecting an appropriate
sentence from the system’s database that is
similar to the given input sentence;

2. Adaptation — ie. carrying out necessary
modification in the retrieved example to suit
the requirement of the current input.

Evidently, the success of an EBMT depends
significantly on the efficiency of its adaptation
scheme.

Here we present an adaptation scheme for
English to Hindi translation using the morpho-
syntactic tags of the constituent words of the
input and the retrieved sentnces. The morpho-
syntactic tag of a word indicates its syntactic
function in the sentence. The tags are helpful in
identifying the root words, their roles in the
sentence and roles of the different suffixes (used
for declensions) in the overall sentence
construction. Fig. 1 provides an example of the
records stored in our example base. A record
contains the input sentence, its Hindi translation,
the root word correspondence and also the
morpho-syntactic tags of the words obtained by
using the tagging scheme proposed in
http://www.lingsoft.fi/cgi-bin/engcg for English
sentences. Fig. 1 also illustrates the role of
suffixes in English (e.g. “ing” to the root verb to
derive its present continuous form, and “s” for
plural number). Similarly, in Hindi too one may
use suffixes for declension. Section 2 discusses
Hindi suffixes in detail.

The adaptation scheme proposed in this
paper generates the desired translation by
modifying the root words and/or the suffixes in
accordance with the grammars of the source and

23

English sentence: The horses have been running for one hour.

Tagged form: @DN> DET CENTRAL ART SG/PL “the”, @SUBJ N NOM PL "horse” %ghodaa%,
@+FAUXV V PRES -SG3 “have”, @-FAUXV PCP2 “be”, @-FMAINV PCP1 "run" %daudaa%, @ADVL
PREP “for” %, @QN> NUM CARD “one” %ek%, @<P N NOM SG "hour" %ghantaa%.

Hindi sentence: # ghode ek ghante se daudaa rahen hain #

Figure 1. An Example Sentence and its Morpho-Syntactic Tags

the target language. It is a rule-driven approach
that considers the discrepancy between the input
and the retrieved sentence in the source
language. The rules are formed by taking into
account the grammars of both the source and the
target languages. The rules help in a systematic
step-by-step modification of a retrieved
translation example (consisting of an English
sentence and its Hindi translation) to the desired
translation. The scheme has the advantage that it
can estimate the total computational cost in
adapting a particular retrieved example into the
desired translation. This a priori estimate of
adaptation cost may be used in designing an
effective retrieval scheme that adds to the
efficiency of the EBMT system.

The paper is organised as follows. Section 2
gives an overview of suffixes in Hindi. Section 3
and 4 discuss the proposed adaptation procedure
and the cost estimation (for adaptation) scheme,
respectively. Section 5 compares the proposed
approach with existing similarity measurement
schemes.

2 An Overview of Suffixes in Hindi

Some examples of usage of Hindi suffixes for
declension are given below:

To change the Number for Nouns. There are six
possible suffixes for singular to plural conversion
in Hindi (Kellogg and Grahame., 1965): ‘en’,
‘yaan’, ‘iyaan’, ‘an’, ‘yen’, and ‘e’ For example:

Singular Plural
chidiyaa (bird) chidiyaan
ghodaa (horse) ghode
kakshaa (room) kakshayen

Declensions of Inflected Nouns.There are some
rules for making inflected nouns. Some of them
are as follows:

24

(13 2

1.Masculine singular nouns ending in “aa
change into “e” when some case ending is
added : e.g. ladkaa + ne ~ ladke ne. Nouns
ending in other vowels do not undergo such
changes (e.g. ghar ko, daaku kaa).

2.If a noun (masculine or feminine) ends in “a”,
it is changed into “aon” in plural, when a case
ending is added. For example: “in the house”
~ “ghar main” while “in the houses” ~
“gharon main”. Note that, normally the plural
of “ghar” is “ghar”. But because of the case
ending it changes to “gharon” in the above
example.

To modify the Adjective. Adjectives in Hindi are
modified according to the gender and number of
the corresponding noun. Some of the rules are:

1.If an adjective in Hindi ends in “aa” it changes
into “e” for plural. E.g. achchhaa ladkaa

(good boy) and achchhe ladke (good boys).

2.An adjective ending with “aa” changes into
“ii” for feminine.E.g. achchhii ladkii (good
girl) and achchhii ladkiyaan (good girls).

Verb Morphology. Morphology of verbs in Hindi
depends upon the gender, number and person of
the Subject. There are 11 possible suffixes (e.g
taa, tii, egaa) in Hindi that may be attached to
the root Verb. Also some auxiliary verbs (e.g.
hai, hain,) are used. For example:

He reads. -> wah padtaa hai
She reads. > wah padtii hai
He will read. —> wah padegaa.

Section 4 discusses how auxiliary verbs are
taken care of in adaptation. Section 3 discusses
operations involving the words and suffixes in a
retrieved example for suitable adaptation.

3 Adaptation Procedure using Word and
Suffix Operations

The proposed adaptation scheme is based on
seven different operations:

Word Replacement (WR): Each WR operation
replaces one word of the retrieved example with
a suitable word. If the input sentence is: “Ram is
eating rice”, and the retrieved example is “Ram
is eating bread ~ ram rotii khaa rahaa hai”, then
to generate the translation, one just needs to
replace “bread (rotii)” with “rice (chawal)”.

Word Deletion (WD): Through this operation
some words of the retrieved example are deleted.
For illustration, suppose the input sentence is
“Animals were dying of thirst”, and the retrieved
translation example is “Birds and animals were
dying of thirst ~ pakshii aur pashu pyassa se mar
rahii thii”. The desired translation can then be
obtained by deleting the “birds and (pakshii
aur)” part from the retrieved translation.

Word Addition (WA). Each WA operation
suggests addition of a new word to the retrieved
translation example. For illustration, one may
consider the example given just above with the
roles of input and retrieved sentences reversed.

Suffix Addition (SA): Here a suffix is added to
some word in the retrieved example. Note that,
the word here is in its root form.

Suffix Deletion (SD): By this operation the
suffix attached to a word may be removed and
the root word may be obtained.

Suffix Replacement (SR): Here a suffix in a
word is replaced with a different suffix to meet
the current translation requirements.

Copy (CP): When a word or suffix of the
example is retained intact in the new translation
then we call it copy operation.

Fig. 2 provides an example of adaptation
using the above operations. In this example the
input sentence is "Sita sings ghazals well", and
the retrieved translation example is: "He is
singing ghazal ~ wah ghazal gaa rahaa hai". The

translation to be generated is : "sita ghazalen
achchhii gaatii hai". When carried out the
adaptation using both word and suffix operations
the adaptation steps look as follows:

Input wah ghazal gaa rahaa hai.

0 U U) 2
Operation WR SA SA WD CP
\2 U U \2 2

Output sita ghazalen gaatii ¢ hai

Figure 2. Example of Adaptation

Note that if the retrieved example is “Ram is
playing cricket ~ ram cricket khel rahaa hai”
then also one may get the desired output but with
more number of operations. However if the
retrieved example is completely different from
the input sentence (e.g. “Can sita sing some
songs today ~ kyaa aaj sita kuchh gaane gaa
saktii hai”) then its adaptation will be
computationally even more expensive and will
involve more complicated reasoning,

The above discussion suggests that variety of
examples may be adapted to generate the desired
translation, but with varying computational costs.
For efficient performance an EBMT system
therefore needs to retrieve an example that can
be adapted to the desired translation with least
cost. This brings in the notion of “similarity”
among sentences. The proposed adaptation
procedure has the advantage that it can provide a
systematic way of evaluating the overall
adaptation cost. This estimated cost may then be
used as a good measure of similarity for
appropriate retrieval from the example base.
Section 4 discusses how the costs for the
proposed adaptation method may be estimated.

4 Cost Evaluation for Adaptation Based
on Word and Suffix Operations

The cost of adaptation depends on the number of
operations required for adapting a retrieved
example. Total cost is the sum of individual cost
of each operation used for the adaptation.
Further, to carry out the above operations the
system should have access to an English to Hindi
dictionary; and several operations (such as WA,
WR) require a search through the dictionary.
Cost measurement scheme therefore should take
into account the following:

25

e Although word operations involve dictionary
search, suffix operations involve only the
relevant suffixes in the languages concerned.
Since the number of suffixes is limited, their
use reduce dictionary search significantly.

e Since sentence structures in a language are
guided by strict syntactic rules, it is
straightforward to formulate rules regarding
operations on suffixes in a given context.

e For Word Deletion, in order to avoid
computationally expensive dictionary search,
one may store several information (as given
in Fig. 1) in an example record.

The following points may be noted regarding our
implementation of the proposed scheme:

1) Total cost of each operation depends on the
search time and the number of steps
executed. This number is called step counts
(Horwitz et al., 2000).

2) Average Search Time is being used to
measure the complexity of the dictionary
search procedure. Currently we are using
Sequential Search. However, one may use
other search algorithms (such as, binary
search), but that does not affect the relative
cost of the word and suffix operations.

3) In order to reduce the search time, instead of
using one dictionary, we are using different
word databases for different POS. Our word
databases (courtesy Sabdanjali dictionary of
IIIT Hyderabad) are of the following sizes:
Noun -13953, Adjective— 5449, Adverb—
1027, Prepostion-87, Pronoun-72 and
Verb—4330.

4) For applying any word or suffix operation,
one needs to first find the appropriate word
position in a retrieved example. If the
sentence length is L, the average search time
is o L/2. However, in cases where the
position is already prescribed by the syntax
of the language, one may directly access the
right position. In such cases the search time
is considered to be o« 1.

5) Since the number of suffixes is fixed, we
assume fixed costs (K) for all the suffix
operations.

Section 4.1 describes how the computational
cost of each of the adaptation operations is
computed in view of the above assumptions.

26

4.1 Cost of Different Adaptation Operations

The cost of the seven different operations are
estimated in the following way:

Word Deletion: To delete a word from a
retrieved example, first the word is located in the
sentence, and then it is deleted. Thus the average
cost is ¢*L/2 + g;, where ¢ is the constant of
proportionality, and &, is a small positive quantity
reflecting the cost of actual deletion operation
(e.g. adjustment of pointers if sentences are
stored in a linked-list structure of words).

Word Addition: Word addition is done in three
steps. First, the Hindi equivalent of the word to
be added is found in the dictionary. Then the
position (in the sentence) where the new word
has to be added is located. Finally, the actual
addition is done. Average time requirement for a
WA operation is therefore d * D/2 + ¢ * L/2 + ¢,
Here ¢, (> ;) 18s a small number indicating the
cost of adding the new word in the retrieved
translation. Here d is the constant of
proportionality for retrieval from the dictionary;
and ¢ and L are as given above. If the dictionary
is in an external storage then d will be different
(in fact, d >> ¢) from c¢. However, if the
dictionary is 8copied into the RAM of the
machine it may be assumed to be same as c.

Word Replacement: The activities here are
similar to what needs to be done in WA, except
that here no space is required to be created for
the new word. The cost is therefore reduced by
€. Hence the average cost is d* D/2 + ¢ * L/2.

Suffix Deletion: This operation is beneficial when
the root word is same in both the input and the
retrieved English sentences. Here the work
involved is first to identify the right suffix, then
to do the stripping. So the cost is ¢ * (L/2) + 6,
where 0 is a very small quantity reflecting the
cost of identifying the suffix and its stripping.

Suffix Addition : Suffix addition is done in two
steps. First the position of the word where the
suffix has to be added is determined. The
average cost for this operation is c*L/2 (as
explained above). Next the suffix database is
searched for obtaining the appropriate suffix.

The average cost therefore is: K + ¢*(L/2), where
K is as explained in Section 4 above.

Suffix Replacement : In a similar manner, here
the cost is K + ¢ *(L/2) + 0. This operation is
costlier than SA because here on the top of
adding the suffix some extra computational effort
is spent in identifying the suffix to be replaced
and then in its stripping from the word.

For Copy operation no computational cost is
taken into account. In Section 4.2 we now
discuss how cost may be calculated for
adaptation between different sentence structures.

4.2 Cost due to Types of Sentence Structure

For both English and Hindi the structure of
sentences varies with different features, such as,

1. Type of sentence. Whether the sentence is
affirmative, negative, interrogative etc.

2. Tense and Form of the Verb. Since there are
three tenses (i.e. Present, Past and Future)
and four forms (Indefinite, Continuous,
Perfect, and Perfect Continuous), in all one
can have 12 different structures.

3. Variations in Subject and Object. These
variations may happen in many different
ways, such as, Proper Noun, Common Noun
(Singular or Plural), Pronoun, Verb
(Infinitive or Gerund), and Possessive Case .

Similarly, the Voice of the sentence (Active
or Passive), Modals (such as shall, should, may,
might, ought to) impose specific structural types
in Hindi. Systematic study of these patterns helps
in estimating the adaptation costs between them.
Due to lack of space we elaborate variations due
to Kind of Sentence and Tense (and Form) of
Verbs only.

Costs due to Variations in Kind of Sentences

Here we consider four kinds of sentences:
Affirmative (AFF), Interrogative (INT), Negative
(NEG), and Negative-Interrogative (NINT).
Typical sentence structures of these four types
are given in Figure 3.

Ram eats rice.
~ ram chawal khaataa hai.

Ram does not eat rice.

~ ram chawal naheeng khaataa hai.
Does Ram eat rice?

~ kyaa ram chawal khaataa hai?
Does Ram not eat rice?

~ kyaa ram chawal naheeng khaataa hai

Figure 3. Some Typical Sentence Structures

One may notice that In Hindi the negative
and interrogative structures are obtained by
addition of the words “naheeng” and “kyaa”.
Also note that the position of “kyaa” is always at
the beginning of the sentence — hence its addition
or deletion needs no traversing through the
sentence. The costs of these operations are
therefore very negligible. By referring to the
notations given in Section 4, we denote the cost
of WA (for “naheeng™) as k1l = L/2 + &, cost of
WD (for “naheeng”) as k2 =~ L/2 + g, cost of
WA (for “kyaa”) as k3 =g and cost of WD
(of “kyaa’) as k4 = ¢,. Table 1 gives the cost of
all types of variation from input to retrieved
sentences. The expressions are obtained by
deciding upon which of the words are being
added and/or deleted for the adaptation.

Input | AFF NEG INT NINT
Ret’d
AFF 0 k1 k3 k1l +k2
NEG k2 0 K3+ k2 | k3
INT k4 kl+k4 [0 k1
NINT k2 +k4 | k4 k2 0

Table 1. Cost due to Variation in Kind of
Sentences

Cost due to Verb Morphological Variation

Hindi verb morphological variations depend on
four aspects: fense (and form) of the sentence,
gender , number and person of subject. All these
variations affect the adaptation procedure. In
Hindi, these conjugations are realized by using
suffixes attached to the root verbs, and/or by
adding some auxiliary verbs. We call them
"Morpho-Words" (MW). Below we illustrate
how MWs can be used in cost estimation.

27

Input | M1 F1 N1 (N3) M2 F2 M3 F3
Ret’d
M1 0 S +L/2 sitsy +L/2 sitsy+ L2 sitsy +L/2 Sy +L/2 Sitsy
+y +y +y +L/2+y
F1 Sl+L/2 0 S1+sy S1+sy Sy +L/2 S1+sy Sy +L/2
+L/2+y +L/2+y +L/2 +y
N1 (N3) S1t8y S1t8y 0 s, +L/2 st sy + S1+sy S1t8y
+L/2+y +L/2+y L2+y +L2+y | +L2+y
M2 S1t+sy Sitsy Sy +L/2 0 S +L/2 s1+s, Sitsy
+L/2+y +L/2+y +L2+y | +L2+y
F2 S1t+sy Sy +L/2 s1tsy S +L/2 0 s1+s, Sy +L/2
+L/2+y +L/2+y +L2+y
M3 Sy +L/2 Sitsy s1tsy S118; sits, + 0 S +L/2
L2+ | L2y +L/2+y L/2+y
F3 S;ts; sytL/2 s;ts, S1ts; S1ts, s;tL/2 0
+L/2+y +L/2 +y +L/2 +vy +L/2 +y

Table 2. Cost of verb morphology for Present Continuous to Present Continuous

Consider the input sentence “He is eating rice”.
The desired translation is “wah chawal khaa
rahaa hai.” Suppose also that the retrieved
example is. “We are eating rice ~ ham chawal
khaa rahen hai”. The right translation is obtained
by two word replacements in the verb
morphology of the retrieved translation: “rahen”
by “rahaa” and “hain” by “hai”. (The need to
replace the subject ‘ham’ with ‘wah’ is not part
of the present discussion).

Since there are 12 different structures
depending upon the tense and form, in all one
may have rules for all the 12 x 12 many
transformations.

Table 2 explains the costs due to Verb
Morphology considering different possibilities of
subjects in case of Present Continuous to Present
Continuous, where the column and row headers
indicate the person and gender of the subject of
the input and retrieved sentence. For instance,
M1, F2 and N3 represent 1* person masculine,
2" person feminine, 3™ person neuter
respectively. However, the column and row
corresponding to N3 are not required in case of
Hindi as the treatment of 3 and 1% person
neuter gender are same. Hence the column and
row corresponding to N1 will be used for both
N1 and N3. Similar tables can be made for

28

transformations between all the different pairs of

verb morphology.

In general, a transformation from Present
Continuous to Present Continuous requires at
most two Word Replacements:

1. Replacement of the MW of the form
{rahaa, rahen, rahii} by one from the same
group. The average cost (s;) for which is 3/2.

2. Replacement of the MW of the form {hain,
hai, ho, hoon} by one from the same set.
Here the average cost (s;) is 4/2 =2.

Note that if the person and the gender of a
subject in both input and retrieved sentences are
same then the cost of replacement for MW is nil.
In cases where word replacements are required,
the total cost is the sum of the three following
components:

1. The cost of searching the position where the
replacement is carried out. Here the average
cost is proportional to the length of average
Hindi sentence i.e. L/2. Even if two word
replacements are necessary, one search is
sufficient for locating both as the words
occur in consecution.

2. The cost for the morphological
transformation which may be s;, s, or s; + s,
depending upon the case.

3. Some additional cost y, where y is a very
small positive number.

With respect to the example given above the
cost of adaptation due to Verb Morphology is
sits; tL/2 + vy =2 +1.5 +2.5 +y = 5 +y, by
referring to the cell (M3, N1).

4.3 Use of Adaptation Cost as a Measure
of Similarity

The estimated cost of adaptation (with respect to
a particular database and the underlying search
procedure) may be used as an a priori
measurement of similarity for effective retrieval.
The input sentence may be compared with the
example base sentences in terms of mopho-
syntactic tags, their discrepancies may be
measured, and adaptation cost may be estimated
using the formulae given above. The example
base sentence having the minimum cost of
adaptation may then be considered as most
similar to the input sentence. We have applied
this technique on an example base of 1000
sentences and the results are given in the
following section.

5 The Proposed Approach vis-a-vis Some
Similarity Measurement Schemes

We are comparing our scheme with two methods
of similarity measurement given in (Manning
and Schutze, 1999.). These methods are as
follows:

The first method is based on semantic
similarity. Here similarity is measured on the
basis of commonality of words occurring in the
input sentence and each sentence of the database.
The input and each database sentence are
represented in a high-dimensional vector space.
Each dimension of the space corresponds to a
distinct word in the database. The similarity is
then calculated as the dot product of the vectors.
Table 3 gives the results when the proposed
algorithm has been applied to select the best
match for the input sentence: “Sita sings
ghazals" from the given example base of 1000
sentences.

The main drawback of this algorithm is that
the outcome varies significantly on the content
words and the size of the database sentences, and
the occurrence of the words in the sentences.

Example Sentence Semantic Score
Sita sings ghazals. 1.00

He has been singing ghazals 0.175
Sita is singing a melodious song. 0.033
Sita is eating rice 0.033

Sita is going home by car 0.033

Table 3. Semantic Similarity Values

In the second method the measurement is
done on the basis of syntax. This needs all the
sentences to be tagged at morpho-syntactic level.
Here, too, similarity is measured in terms of dot
products of vectors. The vectors are formed
using the morpho-syntactic tags of the
constituent words. When the vector-based
technique was applied for the same input
sentence "Sifa sings ghazals", the sentences
given Table 4 are retrieved as the best five
matches. Note that here similarity of words is
completely ignored, as the main emphasis is laid
on the similarity of tense.

Example sentences Syntactic Score
Sita sings ghazals. 1.000

Sita reads history. 0.999304
He reads history. 0.993120
Babies drink milk 0.975850
She eats mangoes 0.918291

Table 4. Syntactic Similarity Values

Table 5 gives the best five matches when the
retrieval is made by the scheme proposed in the
paper using the same input sentence and the
same example base. Cost here is measured
according to scheme given in Section 4. The
results clearly show the superiority of the
proposed algorithm over the technique discussed
just above.

Example sentence Adaptation cost
Sita sings ghazals. 0

He has been singing ghazals. 9+g,

Sita sang ghazal. 10

Sita is singing melodious song. 6996+2¢,
Sita reads history. 9147.5

Table 5. Retrieval on the basis of cost
of word and suffix operation

29

6 Conclusion

The present work considers English to Hindi
EBMT. Since success of EBMT depends heavily
upon the retrieval scheme, the more similar is the
retrieved example sentence to the input one, the
easier is its adaptation to the present translation
requirement, and consequently generation of the
required translation will be more cost-effective.
However, no significant scheme has so far been
developed to quantify the similarity between two
sentences in a systematic way. The primary
difficulty here is that there is no unique way of
defining similarity. As a consequence, different
approaches for measuring similarity may be
found in literature: word-based metrics
(Nirenburg., 1993), syntax-rule driven metrics
(Sumita and Tsutsumi., 1988), character-based
metrics (Sato., 1992), linear-regression model
(Chatterjee., 2001), as well as some hybrid
methods.

The present work makes an extensive and in
depth study of a retrieval scheme based on the
morphology and syntax of sentences. Various
adaptation operations involving words and
suffixes have been proposed and estimation of
costs for these operations have been formulated.
Since these adaptation techniques involve lexicon
search, the costs have been estimated on the basis
of average search time from the lexicon and total
step counts.

We have applied this technique for English to
Hindi Example Based Machine Translation. Since
Hindi is structurally similar with many other
Indian languages, the same approach may be
extended to different languages of the
subcontinent as well. Experiments on an example
base of 1000 sentence shows that the proposed
technique provides results that are qualitatively
better than some existing techniques.

A limitation of the work done so far is that it
considers only simple sentences. A natural
extension will be to deal with more complicated
sentence structures. We are currently working on
the extension of the algorithm for different types
of sentence structures and also for complex
sentences. A complex sentence consists of one
Main Clause and one or more Subordinate
Clauses. Subordinate clauses may be of three
types: Noun Clause, Adjective Clause and
Adverb Clause (Wren et. al.,, 1989). However,

30

none of parsers that we have checked so far
provides clause information of a sentence. We
are therefore planning to identify clauses on the
basis of connectives (subordinate conjunctions).
There are specific connectives for different types
of clauses. For example, there are 12 connectives
for a noun clause (e.g. who, whom, when, where).
Similarly there are specific connectives for
Adjective clause and Adverbial Clause. The
difficulty here is that the same connective may
have different roles in different sentences. Hence
dealing with complex sentences needs schemes
for identifying the clause types based on the
connectives and the clauses themselves. We are
currently working towards this direction.

References

Chatterjee, N. 2001. A Statistical Approach to
Similarity Measurement for EBMT. Proc.
STRANS-2001, IT Kanpur, 122-131.

Horowitz, E., S. Sahni and S. Rajasekaran. 2000.
Fundamentals of Computer Algorithms,
Galgotia Publications Pvt. Ltd., New Delhi.

Kellogg, Rev. S.H., and B. T. Grahame. 1965. 4
Grammar of the Hindi Language. Routledge
& Kegan Paul Ltd, London.

Manning, C.D. and H. Schutze. 1999.
Foundations of Statistical Natural Language
Processing The MIT Press, MA.

Nirenburg, S. 1993 Two Approaches of
Matching in Example-Based Machine
Translation, Proc. TMI-93, Kyoto, Japan.

Sato, S. 1992, CTM: An Example-Based
Translation Aid System. Proc. Of COLING,
1259-1263.

Sumita, E. and Y. Tsutsumi. 1988. A Translation
Aid System Using Flexible Text Retrieval
Based on Syntax Matching. TRL Research
Report, Tokyo Research Laboratory, IBM.

Wren, P.C., H. Martin and N.D.V.P. Rao. 1989.
High School English Grammar. S.Chand &
Co. Ltd., New Delhi.

Computational Linguistics (CL) in Pakistan: Issues and Proposals

Sarmad Hussain
Center for Research in Urdu Language Processing (CRULP)
National University of Computer and Emerging Sciences
852 B Block, Faisal Town, Lahore, Pakistan

sarmad.hussain@nu.edu.pk

Abstract

Internet Communication Technology has
opened new venues for CL. Because of
this information revolution, research and
development is now viable for many lan-
guages of Pakistan. This paper briefly
presents the current work in CL in Paki-
stan, issues in its development and some
proposals for accelerating the current
pace of work in computational modeling
of Pakistani Languages.

1 Introduction

There are fifty seven languages' spoken in
Pakistan’ (Rahman 2002). English is only under-
stood by about 5% of this population. Therefore,
for a Pakistani to benefit from the IT revolution
(e.g. to give them access to services including e-
governance and e-commerce), solutions must be
provided to this population in local languages.
This paper introduces the work in progress in
computational modeling of local languages spo-
ken in Pakistan and current issues in pursuing
such work. Further, the paper also presents pro-
posals to promote CL in Pakistan.

Most of the research and development work
related to languages has focused on modeling
orthography to develop word processors. These
solutions were developed by private sector in
1980’s, which could not continue this develop-
ment because of losses incurred due to insuffi-
cient enforcement of copyright laws in Pakistan.

2 Current Work

Though limited work has been done, with
growing need, interest in CL is increasing. Work

! Ethnologue estimates sixty-six languages (Grimes 1992)
2 Population of 0.127 billion (1981 census) (Rahman 2002)

is currently being done in the following areas:

e Lexical development and corpus based lexi-

cal data acquisition at CRULP

Grammar Modeling at CRULP

e Machine Translation at Karachi University
and Pakistan Institute of Engineering and
Applied Sciences

e Linguistic research at CRULP and National
University of Modern Languages

e Optical Character Recognition at Ghulam
Ishaq Khan Institute

e Speech Synthesis and Recognition at CRULP

3 Issues in CL

Following challenges are currently faced by
the researchers who are working in computa-
tional linguistics (and related areas) in Pakistan.

3.1 Linguistic Research

With such a rich breeding ground contain-
ing fifty seven not-so-well-studied languages, it
is interesting to note that even up till 1999 “Paki-
stan [did] not have a university department or
institute of higher education and research in lin-
guistics” (Rahman 1999). With growing realiza-
tion, few organizations are now established.
However, much ground in basic research in these
languages needs to be covered. Some original
work is available, but most of it is either old (e.g.
Platts 1909, Shackle 1976, etc.) or not to the level
of detail required for computational modeling.
However, there is some recent work available
(e.g. for Urdu: Butt 1995, Hussain 1997, Moi-
zuddin 1989), but more needs to be done.

As an example, there is still controversy on
existence of Urdu phonemes including /I, m", n",
1"/ (Saleem et al. 2002). Similarly, only recently
have Urdu (phonological) sound change rules
been partially documented (e.g. Zia 2002). With
such basic issues still unsettled, it is difficult to

31

32

develop speech synthesis or recognition applica-
tions. Similarly, work in other areas, including
Morphology, Syntax, Semantics is also limited.
Work in other Pakistan languages is lagging be-
hind Urdu, to the extent that even major Pakistani
dialects of Punjabi (the most spoken language of
Pakistan) have not yet been documented.

3.2 Standardization

Another significant problem faced by re-
searchers is lack of standardization of languages.
Though literature is available on many of these
languages, different views presented have still
not been debated and consolidated. This issue is
highlighted through the following examples.

Script of many languages, e.g. Balti, Bu-
rushaski, Shina, Khowar, etc., does not exist and
is currently being proposed by researchers (Baart
1997, pp. 50-56). This limits ways to process
these languages using computers. Where scripts
exist, there is lack of consensus on the writing
styles. For example, currently Punjabi Rnoon
(nasal retroflex flap) is written in three different
ways. Though this variation may be handled
through fonts, it also puts obstacles in developing
and usage of language processing applications.

Worse problem is whether a character ex-
ists in a language. Character sets of many lan-
guages are not final. As an example, characters
in Urdu vary from fifty-three (Siddiqui & Am-
rohi 1977) down to thirty-eight (e.g. Platts 1911).
Similarly, new combined character set has been
introduced for Kandhari and Yusufzai dialects® of
Pashto, but has only been partially accepted®.
This lack of consensus poses serious impedi-
ments in development of computational lexica
and for other applications as well. There has
been some development recently (e.g. Hussain
and Afzal 2001), but much more work needs to
be done.

Equally significant is the problem of order
of characters in a language. All applications
which depend on sorting and indexing (including
computational lexica) cannot be developed unless
collation sequence has been standardized for a
language. Though data for languages is being
collected and being finalized, standardized colla-

% Spoken in Afghanistan and Pakistan respectively.
Personal communication with Dr. Raj Wali Shah, Chair-
man, Pashto Academy, Peshawar Univ., Dec. 2002.

tion sequences are still not available for most
Pakistani languages.

Many other basic standards required for
computing are not available, which pose prob-
lems in the development of applications. These
include standards for keyboards and fonts for
many languages (Afzal 1999).

3.3 R&D Funding

Though work is being done, progress is slow
because of limited funding available. Much of
the work being done in linguistics and CL is be-
ing funded through foreign support. There is
growing awareness in public’ and private sectors
of importance of this work, but it will perhaps
take some time before adequate amount of funds
are diverted to these areas. For the first time, Rs.
100 Million were allocated for language software
development by Ministry of Science and Tech-
nology in 2001, but most of it lapsed as no pro-
jects were actually awarded.

4 Proposals for Development of CL

Following are few recommendations which
can accelerate the research and development ac-
tivity in computational linguistics in Pakistan.

e Research work in basic linguistics in Paki-
stani language must be started. This can be
achieved by starting university level research
departments and other research organiza-
tions.

o Linguistic research can be further enhanced
if research funding is allocated for Europeans
and Pakistanis to do doctoral and (eventu-
ally) post-doctoral work in linguistic aspects
of not-so-well-studied Pakistani languages.
Collaborations between Pakistan and Euro-
pean organizations for survey related work
should be encouraged through such programs

e Of'the fifty seven languages, Punjabi, Pashto,
Sindhi, Siraiki, Urdu®, Balochi and Hindko
are most spoken languages (in order of
speaking population), and cover almost 96
percent of the population of Pakistan (Rah-

5 Urdu and Regional Languages’ Software Development
Forum (URLSDF) was recently devised by Ministry of Sci-
ence and Technology (see www.tremu.org.pk).

6 Urdu is the lingua franca and used by people speaking
different languages to communicate with each other.

man 2002). Therefore, work should first be
done in these languages.

e Standardization of various aspects of lan-
guages, which have been highlighted, must
be achieved. URLSDEF is currently com-
prised of volunteers, which slows progress.
Dedicated resources and funds should be al-
located to achieve this task

¢ Government should prioritize projects and
should develop a roadmap for their comple-
tion (both in linguistics and CL). Accord-
ingly, government should allocate funding
for these projects to relevant R&D organiza-
tions for development

e Government should provide better copyright
support for private sector investors

e Relevant European organizations (e.g.
EACL, ISCA, EAA, ELRA, ELSNET)
should come forward to help local organiza-
tions do R&D in these areas through collabo-
rative programs, training and funding. For
example, EuroMasters program (by EACL
and ISCA, which is currently limited to
Europe) should be extended to help universi-
ties institute similar programs in Pakistan.
This could be further achieved if relevant
European organizations develop local chap-
ters or regional chapters in South Asia

e Exchange programs between Europe and
South Asia should also be initiated for accel-
erated transfer of technology and expertise
(both in Linguistics and CL)

5 Conclusions

Much ground work needs to be done before
reasonable activity in CL can be triggered in
Pakistan. This may only be achieved if serious
efforts and funding are diverted towards it. Gov-
ernment of Pakistan is a key player which can
make this happen. However, support by Euro-
pean universities, research centers and organiza-
tions can help accelerate this process.

References

M. Afzal. 1999. Urdu Software Industry: Pros-
pects, Problems and Need for Standards. Sci-
ence Vision 5(2). Islamabad, Pakistan.

J.L.G. Baart. 1997. Sounds and Tones of Kalam
Kohistani: With Wordlist and Texts. National

Institute of Pakistan Studies, Quaid-e Azam
University, Islamabad, Pakistan.

M. Butt. 1995. The Structure of Complex Predi-
cates in Urdu. CSLI Publications Stanford,
CA USA.

B. Grimes. (ed.) 1992. Ethnologue: Languages
of Pakistan. 13th Edition. Summer Institute
of Linguistics.

S. Hussain and M.Afzal. 2001. Urdu Computing
Standards: UZT 1.01. Proceedings of the
IEEE International Multi-Topic Conference.
Lahore University of Management Science,
Lahore, Pakistan.

S. Hussain. 1997. Phonetic Correlates of Lexical
Stress in Urdu. Unpublished PhD thesis.
Northwestern University, Evanstion, IL, USA.

M. Moizuddin. 1989. Word Forms in Urdu. Na-
tional Language Authority, Islamabad, Paki-
stan.

J. Platts. 1911. A Dictionary of Urdu, Classical
Hindi and English. Crosby, Lockwood and
Son, London, UK.

J. Platts. 1909. A Grammar of the Hindustani or
Urdu Language. Crosby, Lockwood and Son,
London, UK.

T. Rahman. 1999. Language, Education and
Culture. Oxford University Press, Karachi,
Pakistan.

T. Rahman. 2002. Language Ideology and
Power: Language Learning Among the Mus-
lims of Pakistan and North India. Oxford Uni-
versity Press, Karachi, Pakistan.

M. Saleem, H. Kabir, K. Riaz, M. Rafique, N.
Khalid and R. Shahid. 2002. Urdu Consonan-
tal and Vocalic Sounds. CRULP Annual Stu-
dent Report 2002, CRULP, NUCES, Pakistan.

C. Shackle, 1976. The Siraiki Language of Cen-
tral Pakistan: A Reference Grammar. SOAS,
University of London, London, UK.

A. Siddiqui, and N. Amrohi (eds.). 1977. Urdu
Lughat: Volume 1. Urdu Dictionary Board,
Karachi, Pakistan.

A. Zia, 2002. Assimilation and Dissimilation
Rules in Urdu. CRULP Annual Student Report
2002, CRULP, NUCES, Pakistan.

33

34

Corpora in Minor Languages of India: Some Issues

Mallikarjun B
Central Institute of Indian Languages
Mysore-570 008, India
mallikarjun@ciil.stpmy.soft.net

Abstract

Minor languages hardly attract the
attention of the policy makers anywhere
in the world. But the linguists evince
great interest to study the richness of
languages and try to save the endangered
languages from extinction. Technology
has made it possible to empower all
languages whether they are major or
minor ones. The Corpora of a language
describes how it works and what it can
show about the context in which it is
used. Many developed languages have
abundant corpus with software for
tagging, parsing, etc to use it for all
Natural Language Processing activities.
Keeping in view many of the advantages
the developed languages receive from
corpora creation, analysis - some of the
possible ways to build the corpora in
minor languages of India are discussed
here. The language data and more
technological information is not included
due to paucity of print space, and only
broad issues, linguistic and technological,
relating to corpora creation in minor
Indian languages are elucidated here.
Two minor Indian languages that have
certain clear contrastive features are
taken up to illustrate the issues involved.

1 Introduction

India is a goldmine of languages with 1652
mother tongues belonging to four families of
languages including some unclassified ones

(according to Census of India 1961). The
Constitution of India in its Eighth Schedule, at
first included 15 languages and then added 3
languages to bring the total to 18 languages.
These 18 languages form a select list of
languages for the governments, both Union and
States, to bestow privileges. These are called
major languages, national languages, important
languages, developed languages, etc., depending
on the context in which the matter is discussed.
All other languages are minor languages. These
are marginalized in the process of their
development and empowerment. Due to the
process of globalization, these minor languages
are further marginalized with little or no help
from the State governments. These minor
languages are spoken by a small number of
speakers, and are removed from the list of
‘languages’, and clubbed with other languages or
dialects or speech varieties from one decennial
Census to another decennial Census, thus
changing the linguistic demography of India on
paper, though the linguistic reality is different.
The first act towards ringing their death knell
begins with their elimination while processing
statistical information in the Decennial Census.
These minor languages are, indeed, endangered
in Indian social, educational, and linguistic
contexts. Since they are nowhere near the seats
of power, they hardly attract and become source
for technological research.

2 Status of Corpora in Indian
Languages

When the Department of Electronics, Government
of India, in the previous decade, decided to
create corpora in Indian languages, it chose to

35

focus on the select list of Indian languages, that
is, the languages of the Eighth Schedule. In most
of these languages, corpora of different quantum
of comparable quality were created, and
gradually the corpora thus created were used as a
linguistic resource by some of the scholars for
various natural language processing activities.
However, it should be recorded that the quantum
and coverage of the corpora in these major
languages was not that adequate for wider
research activities. They still need to be
augmented with wider coverage. They are
nowhere near the varieties of corpora in English
and other developed languages that have
enormous data under different registers. In spite
of these deliberate efforts initiated by the
Department of Electronics, some of the major
Indian languages did not succeed in developing
the intended corpora. The corpora developed
were also used only minimally. It is like having
millions of bricks without knowing what to do
with them. Moreover, some of the corpora tools
developed by different research groups for
processing the corpora also lack standardization.
For example, even till date there is no standard
Part-of-speech tag set for the Indian languages.
The tag sets available internationally could have
been modified according to the requirements of
Indian languages.

3 Corpora in Minor Indian
Languages - Importance

Realizing the importance of documentation of
available important information in the
endangered languages, few projects at the
international level have been undertaken such as
DOBES Project covering endangered languages
like- Aweti, Trumai, Kuikuro (all in Brazil),
Wichita (US), Tofa (SU), Salar, Monguor
(China), Teop (Papua New Guinea) and
Iga(Ivory Coast), E-MELD a 5year project for
languages such as Mocovi (Guaicuruan), Ega
(Kwa) and other eight languages, The Avenue
project at Carnegie Mellon Universty, etc.
(LREC 2002)

In India minor languages are found in all the
four language families. However, while the
larger Indo-Aryan and Dravidian language
families have both the so-called major and minor
languages, almost all the languages of the other

36

two families, Munda and Tibeto-Burman
language families, fall within the category of
“minor” languages. Their exclusion will raise
issues of racial discrimination, and question the
very basis of modern Indian Union as a nation
state. Together the minor languages of all
language families comprise more than a hundred
million people in India. Many “minor” linguistic
groups occupy strategically important territorial
space within India, even as they have the
potential to cause socio-economic chaos if they
are ignored and their legitimate participation in
the economic and technological progress of the
country denied. In the socio-cultural and
religious milieu of India, these minor linguistic
groups stand out as different and dynamically
productive groups. Their ethnic and linguistic
identities, although threatened in recent times by
the inroads made by the major languages and by
the inadequate facilities for education through
their mother tongues, have survived for a long
time. The revival movements for the preservation
of ethnic and linguistic identities are very strong
in some of the leading minor linguistic groups.

The richness of linguistic structures of minor
languages calls for special efforts at description
and incorporation in the form of corpora data for
research and preservation, as well as for the
spread of literacy, preparation of textbooks, and
other language development activities. For
example, the vowel system in a lesser-known
minor language such as Yerava or Urali, or the
stop consonant system in Toda in South
Dravidian requires documentation. Tibeto-
Burman and Munda offer features not shared by
the Dravidian and Indo-Aryan languages.
Preparation of corpora in these languages helps
identify the linguistic features of India as a
linguistic, social, and anthropological area, and
help in the process of lending credibility to the
democratic institutions.

I believe that the preparation of corpora not
only records the current speech but also is
preceded by some insightful analysis and
relevant assumptions. These actually have the
potential to spur and guide not only further
research on these minor languages but also help
implement the constitutional guarantee that every
child may have her or his elementary education
through her or his mother tongue. Creating
corpora in minor languages, especially those that

have small or no written literature have certain
critical advantages for linguistic computing.
Experimentation with corpora designs and
standards is more easily done in these languages
because of manageable quantum of data. Costs
for the creation of corpora in these languages
may not be prohibitive due to their quantum.
Collocation constraints and other constraints
imposed on words are more easily identified and
manipulated. Theory-neutral linguistic resources
are better collected and analyzed even as
“peculiar” manipulation of grammatical patterns
as well as the effects of code-shifting and code-
switching could be identified. A variety of
standards for corpora could be illustrated using
natural language resources of the minor
languages.

4 Corpora in Minor Indian
Languages - Realities

A corpus essentially tells us what language is
like, and the main argument in favor of using a
corpus is that it is a more reliable guide to
language use than native speaker intuition is
(Hunston 2002). But access to almost all the
language development facilities is beyond the
reach of the minor languages. Some minor
language groups, both because of their historical
tradition of literacy in their own language or their
appreciation of values of literacy and schooling
through any language medium, have had success
in utilizing language technology for their
preservation and continued use. Tulu, a language
spoken in Karnataka, is a good example of this
situation. But this is not a general rule; it is only
an exception. There are many differences
between issues of development of corpora in
major and minor languages.

4.1 Objectives

Language is a resource of cultural heritage and a
treasure house of indigenous knowledge systems.
The minor languages corpora have many such
specific purposes and uses than major languages
corpora. The basic function still appears to be
archival and helping cross-linguistic comparison
within a language family and across language
families. If written language corpora has greater
utility and application in major languages, the
speech corpora has more significance in minor

languages, since most of them exist in spoken
form and many are yet to be rendered into
written form.

5 Minor Indian Languages — A Sample

The Central Institute of Indian Languages started
the creation of minor languages corpora recently,
to begin with, in a minor language, Maithili. This
language has a literary heritage and is spoken in
Bihar, West Bengal, etc. In addition, this minor
language is a language of power because
influential hymnals and devotionals of certain
Hindu sects are composed in this language and
these have had great impact in the preservation
of its ethnic and linguistic identities. I would like
to explore the modalities of developing the
corpora in minority languages with hardly any
literary heritage such as Kodava, and a tribal
language Yerava. The Kodava is a Dravidian
language mainly from the Coorg district of
Karnataka but its speakers are spread throughout
the state of Karnataka. Yerava is a ftribal
language of the Dravidian family spoken in the
southern part of the Coorg district in Karnataka.
These two languages are chosen as sample from
among the minor languages to discuss corpora
creation for the following reasons:

5.1 Kodava

This is the mother tongue of minority speakers of
Karnataka. As per 1991 census there are 97,011
Kodava speakers. The speakers of this language
constitute a highly literate group and are well
positioned in the socio-economic structure of
Karnataka, as well as in Indian Armed Forces.
They are presently seeking entry into the
privileged club of the Eighth Schedule of the
Constitution. This community traces its lineage
and history to the ruler of the erstwhile princely
state of Coorg in Karnataka. They function as a
pressure group and it is likely that they may be
able to get some linguistic concessions soon.

It has very limited quantity of literature,
written mainly using the Kannada script. Also it
is used in domains such as newspaper and radio.
One or two feature films have also been
produced in Kodava. Linguistic research in it
began in 17th century and 6 grammars of
different quality are published (Balakrishna R
1977).

37

5.2 Yerava

This is the mother tongue of a tribe called
“Yerava”. According to the 1971 census there
were 13689 speakers and the next censuses did
not list them as an independent entity. It has no
pressure group. The Yerava community is
largely illiterate. It does not have its own script
nor has it adopted a script from another language
to represent its speech. It has no written
literature. Only folk literature exists. Due to the
language shift, the mother tongue speakers are
shifting to Kannada. The literature and
knowledge of its oral tradition does not percolate
from generation to generation. The number of
speakers too is dwindling from decade to decade
as reflected in the statistical figures of the Census
of India. It can be said that it branched off as an
independent language or speech sometime during
17th Century. Linguistic research commenced
only in 1980. One grammar is published.
(Mallikarjun 1993).

5.3 Kodava and Yerava

They have maintained very interesting and
contrasting inter-relationships through the history.
Kodavas are normally the landowning masters,
now rich with coffee estates, and the Yeravas
have been always landless workers, often bonded
to the Kodava households for their living. Yeravas
were sold as slaves in public auction in the
nineteenth century for a pittance. Schools opened
for educating the Yerava children in the past had
to be closed for want of children attending these
schools. Kodavas portray themselves with a royal
and warrior lineage, and have been a very
progressive community with highest community
consciousness and identity. On the other hand,
Yeravas look upon themselves only as a
community despised by the plains people and
other communities surrounding them, and
helplessly exploited by the traders and
government officials alike. Neither the dignity of
labor nor the dignity of life that communities
around them enjoy seems to be in their reach. We
see this contrasting picture throughout India
among the minor language groups. It can be said
that these two languages, Kodava and Yerava, as
far as corpora development in minor languages of
India is concerned, are representative of the
ground linguistic reality in India.

38

6 Corpora in Minor Indian
Languages - Modalities

The three major technical components involved
in developing the minor Indian languages
corpora are: (1) Input, (2) Storage, and (3)
Retrieval of language data.

6.1 Input

The corpora creation in major Indian languages
adopted certain technical specifications during its
development. They are: A statistically viable
formula to make the data representative of the
language concerned, keying the Data using Leap
Office (a word processor), and storing the data in
ISCII format.

6.1.1 Script

The issues relating to linguistic, statistical, and
technical matters that need to be tackled in
creating the corpora of minor languages are
different from those of the major languages
because a major problem is the script, rather lack
of a native script. However, this weakness could
be turned into true strength if the government
and research agencies would agree to use the
Roman script for corpora creation. But the
language policies adopted by the State and Union
governments may not really support such a
position. Script plays a very important role in
corpora development. Even among the majority
languages, the scripts for word processing have
been developed only in the past decade. Earlier,
for example, Kannada data of a major language
was entered in the transliterated Roman script.
Even now also, Indian language scripts are not
compatible with some software. In such cases,
dependence on the Roman script still continues.
The introduction of the UNICODE symbols in
the new millennium is a boon in script
representation. Since this could be used at the
global level, the Indian languages that are
covered by the UNICODE should use this code
so that it will be beneficial to them in the long
run. On the other hand, the UNICODE itself may
not be truly adequate for the representation of the
intricate Indian linguistic sounds and their
representation. The minor languages lack
standardization in language usage, spelling, etc.,
and this also should be taken care of. In the

specific cases of Kodava and Yerava, under
discussion here, the use of the Kannada script,
the script used in the adjacent and surrounding
dominant language, may be used. Kodava, as
already stated, does not have its own script and it
uses the Kannada script for its textual
representation. Since Yerava does not possess
any written document, no script has been
followed. All knowledge is available only in oral
form. So, the materiak available in the folk
media have to be transcribed into Kannada script,
because if a language does not possess its own
script, the script normally used to represent that
language would be the script of the region. In
this case it happens to be the Kannada script.

6.2 Word Processors

By choosing a standard word processor in
Kannada such as Akshara, Baraha or Leap
Office, etc., the data could be input word by
word in the case of Kodava language.
Documents in book form can be scanned and
stored in OCR format as and when the
technology is available. Here also the ISCII
converter software can be used for processing the
data. In the case of Yerava, transcribed data has
to be stored in audiocassettes into machine-
readable format before it is processed.

6.3 Data

In the case of languages like the ones discussed
in the present study, there is no need to do
sampling since the data available itself will limit
the quantum. Hence, all the written texts
available in a language like Kodava can be
stored. In addition, for lexical data collection in
the corpora, words of specific semantic fields,
nomenclature (e.g. Animals, Fruits, Plants, Body
parts, Kinship terms, Numerals, Idioms, etc) may
be included with exact translation. However,
there are a few problems: (1) It becomes difficult
to render a language that has no script of its own
in a script of another language because the sound
system represented by the script of another
language may not be adequate or faithful to the
sound system of this language. For example, the
high central unrounded vowel and mid central
unrounded vowels have both long and short
counterparts in Kodava but have no equivalent
letter to represent them in the Kannada script.

This important phonological distinctive feature
of Kodava is lost while representing it using the
Kannada script. (2) The software used for keying
the texts may not accept the specific combination
of characters in Kodava since it is designed to
accept the script combinations of Kannada
language. Even in the case of Maithili language
cited earlier, the data keying is done in
Devanagari script. The keyboard layout designed
mainly keeping Hindi in mind fails to accept all
the characters and their combinations of Maithili.
Hence, the technologies developed for major
languages are yet to be accommodative of minor
languages of their region. If possible, the
solution has to be sought from Unicode.

6.4 Tools

Among the Corpus processing tools,
Morphological Analyzers, Parts of Speech(POS)
tagging tools, Semantics and pragmatics, and
Disambiguation are discussed here.

6.4.1 Morphological Analyzer

Most important tool is the morphological
analyzer. The main characteristics of the
morphological analyzer are the following: (1) It
covers nominal and verbal inflection fully (2) It
covers some derivational phenomena (3) Its
lexicon. Morphological Inflections are tested for
both nominal and verbal categories in both
Kodava and Yerava. The noun inflections used
quite often in these languages are based on which
letter occurs soon after the word and also which
word will follow the inflected word. Questions
such as the following need to be raised and
answered. What are the typical derivational
phenomena in these languages? Nominalization
is derived from the verb, agentivizers, or
adjective. For example, the Yerava word, payipu
(hunger), is a nominalization derived from the
verb payi (to become hungry). So what are the
common derivational endings (for example, -pu,
-i, -vu, -e, -ati in Yerava)? Morphological
analyzer may be noun analyzer and verb
analyzer. Nouns could be singular, plural, with
case suffixes, gender, number, post positions,
etc. The noun may be simple or compound. To
the stem of the noun and verb, the inflections are
added as an additional suffix with or without a ‘-
‘marker. The analyzer should handle both. Other

39

way is to list out all possible derivational endings
in a separate file. Files for the root words of
nouns, and verbs may be prepared along with it.
The Tibeto-Burman minor languages pose
certain special problems compared with the
structural arrangements found in the Indo-Aryan
and Dravidian languages. The languages
belonging to the Munda family specialize in
verbal focus. The Morphological Analyzers
designed for the minor languages of India, thus,
should be sensitive enough to take care of these
special features. Lexicon is the total number of
words in the database, which is a sort of
machine-readable dictionary. These have to be
developed from the scratch. Using this lexicon,
the tagged words will be automatically extracted.
However, the automatic extraction of lexical
items from a machine-readable dictionary is not
yet possible because in Kodava and Yerava we
do not have any machine-readable corpora/
dictionary. Following are the few linguistic
points of the target languages, while developing
the lexicon for the corpora. Some of the
linguistic features of Kodagu and Yerava to
illustrate are:

Phonology: The central vowels present in
Kodagu /i/ and /e/ are absent in Yerava. The

affricate / C/present in Yerava is not found in

Kodagu. The fricatives /s/,/s/,/$/ and /h/ found
in Kodagu are absent in Yerava. The nasal [n] is
phonemic in Kodagu and is allophone in Yerava.

Morphology:
Table-1

Cases Yerava Kodagu
Nominative _ o/ -e _ g
Accusative -e -a
Dative -gu/-ku -ki
Instrumental | -li -oNDi#/-oNDi
Sociative -kuDa/-jote -oDe
Locative -li -li/-alli
Ablative -indu -inji
Genetive -a -ra/~-da
Purposive -a:yi (cu) -a:yti

Separate files are required for tense (that occur as
inflections) and pronouns in both the languages
in the lexicon. The above mentioned linguistics
features are very important in creating a lexicon.

40

6.4.2 Structural Tagging Tools

Part-of-speech tagging, also called grammatical
tagging, is the commonest form of corpora
tagging. There exist many corpus annotation
tools for English such as SARA, BNCWeb,
WordSmith, etc. The first form of annotation to
be developed by UCREL at Lancaster and the
POS tagging software for English text, CLAWS
(the Constituent Likelihood Automatic Word-
tagging System) is taken as the module for the
present study. If the same abbreviations are used,
it will be helpful for the future networking
system. Not all the tags are useful for the present
sample. Some modifications are necessary in the
Indian language environment. For example, the
prepositions in the Table have to be replaced
with post-positions. Normally no articles are
found in Indian languages. In the case of verb
tagging modification is necessary. If this is the
case in major Indian languages, the minor
languages have still more limitations that show
up when working with them. And also, corpora
development is still in a developing stage for
Indian languages and no standard modules are
available in the Information Technology arena.
Depending on the need, they are being developed
based on the word representatives, which will not
work with minor languages. Based on the
modified tagging tool for Indian languages,
standard software could be developed and used
for automatic tagging. However in order to get
the accurate result in developing the corpora
modules, manual tagging is to be done for
Kodava and Yerava.

6.4.3 Semantics and Pragmatics

Some similar sounding words may render
different meanings. For example: In yerava the
word ‘-ati’ has three meanings such as ‘to
sweep’, ‘wind blow’ and ‘bottom’ for which
meaning has to be taken depending upon the
previous or succeeding word. In such cases it is
really a challenging factor to the morphological
analyzer and demands a semantic tool also.
Channell (2000) makes the point very strongly
that many instances of pragmatic meaning are
beyond the reach of intuition. For example bappe
in Kodava is “I am coming” but when it is used
in the context of leave taking, it means, “I am
leaving.” Cultural nuances in the context of leave

taking do not allow one to use the word “pope”
(going or leaving) because it would only mean
that the person is saying the ultimate good-bye to
this world! This applies to the usage conventions
in many Indo-Aryan and Dravidian languages. It
is possible to judge the meaning of such words
only with the knowledge of the -culture
represented by a language.

6.4.4 Disambiguation

Ambiguities are seen in three senses - Word
sense, Pronoun sense and Structural sense. Word
sense ambiguities are words having multiple
meanings that will be found in all the languages.
With regard to the second one, pronominal and
adjectival anaphora are also ambiguities. In
English, disambiguation tools have been
developed. After the inception of a few lexical
databases such as WordNet, EuroNet, etc.,
researchers seem to have overcome the
ambiguity problem to certain extent. In the case
of Indian languages, however, in the absence of
such a sensitive tool, one has to work manually
in order to cross over disambiguity even in the
case of major languages. Minor languages need
better linguistic analysis to arrive at tangible and
usable disambiguation procedures.

7 Storage

Since Kannada script is used for writing Kodava,
the format used for storing the data of Kannada
can be used for storing the data of Kodava also.
This is a great advantage, assuming that Kannada
computing will be up-to-date and progressive.

The data can be stored in ISCII format in case of
textual data. In case of the data or the knowledge
that exists in the oral tradition, archiving them in
speech corpora is essential. For major Indian

languages like Malayalam, Hindi, etc., speech
corpora have been developed. Same technical

methods may be incorporated with needed
modifications especially in the case of tribal
languages wherein no knowledge is documented
in textual form.

8 Retrieval

Since Kannada script is used, here also all the
retrieval facilities created for Kannada corpora

could be utilized. The sorting and indexing is
done according to Kannada alphabetical order.
Some more indexing facilities such as Key Word
in Context and Key Word out of Context, and
search facility by required word, word frequency
count and many more retrieval functions are in
the process for Kannada corpora.

9. Conclusion

India abounds in many endangered languages,
which would soon die if no proper and timely
steps were taken to sustain their use and growth.
Technology can actually help maintain a
language. Preparing corpora in minor languages
and using them for word processing and other
computing purposes will help these minor
languages not only to retain their identity but
also to function effectively in this age. The
corpora may be used for the creation of lexical
resources such as dictionary, language teaching
materials, grammars, etc. The rule “educate the
rural i their mother tongue” will also have some
fruitful solution. Archiving the tribal and minor
language data will be an asset to any nation and
will contribute to an understanding of traditional
knowledge. It helps also in understanding the
environment and its preservation, because the
linguistic resources of these minor languages are
a direct reflection of their dependence and inter-
dependence on the environment. Traditional and
alternative medicine and forms of living are
highlighted through such corpora. Moreover,
preparation of corpora in minor languages poses
new challenges to the computing scientist in that
he or she is now forced to innovate in novel ways
to accommodate and adequately describe the
distinctive features of these minor languages.
This challenge will help the growth of the
computing field itself. Comparison of corpora
studies - within a family of languages, across the
families of languages and at the international
level will be helpful in bringing out a standard
module of developing corpora for the future
generation. Technology should immediately take
into account the concerns of minority languages.
Especially, major language technologies of the
region should accommodate the needs of the
minor languages too.

41

References

R. Balakrishnan. 1977. A Grammar of Kodagu.

Annamali University. Annamalai Nagar. India.

Douglas Biber et al. 1998.Corpus Linguistics:

Investigating Language Structure and Use.
Cambridge University Press. Cambridge. UK.

Channel. 2000. ‘Corpus-based Analysis of
Evaluative Lexis’ in Hunston and Thompson
(eds.). OUP.Oxford.pp.38-55.

Susan Hunston. 2002. Corpora in Applied Linguistics.

B

Cambridge University press. Cambridge. UK.

Mallikarjun.1993. A Descriptive Grammar of

Yerava.. Central Institute of Indian Languages.
Mysore.

LREC 2002.Proceedings of the International LREC

42

Workshop on resources and tools in field
linguistics, Las Palmas, 26-27 May 2002.

A Lightweight Stemmer for Hindi

Ananthakrishnan Ramanathan

National Centre for Software Technology

Rain Tree Marg, Sector 7, CBD Belapur
Navi Mumbai 400614, India
anand@ncst.ernet.in

Abstract

Stemming is an operation that conflates
morphologically similar terms into a
single term without doing complete
morphological analysis. Stemming is
used in information retrieval systems to
improve performance. Additionally, this
operation reduces the number of terms
in the information retrieval system, thus
decreasing the size of the index files.
This paper presents a lightweight stem-
mer for Hindi, which conflates terms
by suffix removal. The proposed stem-
mer is both computationally inexpensive
and domain independent. The paper dis-
cusses the systematic manner in which
the suffix list was developed, and pro-
vides the linguistic rationale behind in-
cluding various suffixes in the list. Simi-
lar techniques can be used to build stem-
mers for other Indian languages such
as Marathi, Gujarati, and Punjabi. The
stemmer has been evaluated by comput-
ing understemming and overstemming
figures for a corpus of documents. The
results are favourable and indicate that
the proposed stemmer can be used effec-
tively in IR systems.

1 Introduction

Stemming is an operation that relates morpholog-
ical variants of a word. The term ‘conflation’ is
used to denote the act of mapping variants of a

Durgesh D Rao
DR Systems
S-27, Lane 1, Sector 9, CBD Belapur
Navi Mumbai 400614, India
drsystems@vsnl.net

word to a single term or ‘stem’. Stemming is
used in Information Retrieval systems (Frakes and
Baeza-Yates, 1992; Korphage, 1997) to improve
performance. For example, when a user enters
the query word stemming, he most likely wants
to retrieve documents containing the terms stem-
mer and stemmed as well. Thus, using a stemmer
improves recall, i.e., the number of documents re-
trieved in response to a query. Also, since many
terms are mapped to one, stemming serves to de-
crease the size of the index files in the IR system.

Many stemming algorithms have been pro-
posed, and there have been many experimen-
tal evaluations of these (Frakes and Baeza-Yates,
1992; Hull and Grefenstette, 1996). But, no work
on stemming has been reported for Indian lan-
guages. In this paper, we present a lightweight
stemmer for Hindi, which conflates terms by strip-
ping off word endings from a suffix list on a
‘longest match’ basis. The key advantages of this
stemmer are: it is computationally inexpensive,
and it is domain independent. We have evalu-
ated the stemmer by computing understemming
and overstemming statistics for a corpus of doc-
uments.

The paper is organised as follows: The next sec-
tion looks at the different approaches to stemming
possible, and related work. Section 3 discusses the
stemmer that is proposed by this paper. Section 4
presents the results of evaluation. The last two sec-
tions contain some discussion and directions for
future work.

43

2 Approaches to Stemming

One approach to stemming (Frakes and Baeza-
Yates, 1992) is to store all possible index terms
and their stems in a table, and stem terms via table
lookup. Though this is accurate, and efficient in
terms of speed, such data is usually not available.
Even if they were, such an approach would restrict
the stemmer to the words in the table, and render
it domain dependent.

Other dynamic approaches that use statistical
measures to conflate terms have been proposed.
Two such approaches are successor variety stem-
mers and ngram stemmers. Successor variety
stemmers (Hafer and Weiss, 1974) identify mor-
pheme boundaries based on the distribution of
morphemes in a large body of text. N-gram
stemmers (Adamson and Boreham, 1974) conflate
terms based on the number of n-grams that are
shared by the terms.

Affix-removal stemmers perform stemming by
removing word prefixes and suffixes. These stem-
mers iteratively remove the longest possible string
of characters from a word according to a set of
rules. Some affix-removal stemmers also trans-
form the resultant stem in some cases. (Porter,
1980) and (Paice, 1974) are popular iterative
longest match stemmers.

The stemmer proposed in this paper strips off
word suffixes from a suffix list on a longest match
basis. Our stemmer, though, is not iterative, which
makes it a lightweight program. In the next sec-
tion, we look at how the morphological features of
Hindi allow such a simple suffix removal program
to be used as a stemmer.

3 A Lightweight Stemmer for Hindi

Hindi is a (relatively) free word-order and highly
inflectional language. In English, which is more
fixed in its word order, the relations between the
various components of the sentence are shown
largely by their relative positions. In Hindi, these
relations are shown by using postpositions, and
accordingly inflecting nouns to express case in-
formation, and inflecting verbs to reflect gender,
number, and person information. This is illus-
trated in Figure 1.

Hindi has been represented using an ASCII

44

i. ‘ladake ladakiyoM se naParawa karawe
hEM’

Gloss: boys_nom girls_acc hate-do-pres-m3p
Translation: Boys hate girls

ii. ‘ladakoM se ladakiyAMh naParawa karawl
hEM’

Gloss: boys_acc girls_nom hate-do-pres-f3p
Translation: Girls hate boys

Example (ii) can also be expressed as:

iii. ‘ladakiyAMh ladakoM se naParawa karawl
hEM’

Gloss: girls_nom boys_acc hate-do-pres-f3p
Translation: Girls hate boys

Figure 1: Inflections in Hindi — Examples

transliteration scheme to facilitate use of com-
monly available text processing tools. The ap-
pendix shows the transliteration scheme that was
used.

Though Hindi is inflectionally a rich language,
the rules governing inflections are fairly simple
and few in number. Most inflected forms of a word
can be reduced to a common stem by one suffix
removal operation. The noun, adjective, and verb
inflections are discussed below with a few exam-
ples.

3.1 Noun Inflections (McGregor, 1977)

Hindi nouns have two cases: the direct case and
the oblique case. The direct case denotes sentence
subjects or direct objects; the oblique occurs when
the noun is followed by a postposition. All nouns
are either masculine or feminine; Hindi does not
possess a neuter gender. Nouns are inflected based
on the case, the number, and the gender. Below,
we explore the inflections possible for the two gen-
ders, for singular and plural nouns, for the direct
and oblique cases.

a) For masculine nouns, the following rules
govern most inflections.

(i) Ending in A

Singular Direct
Singular Oblique

Plural Direct
Plural Oblique

ladakA (boy)
ladake

(A becomes ¢)
ladake
ladakoM

(e becomes oM)

In some exceptional cases, the plural ending
does not change, and the plural oblique ends in
AoM.

E.g. For the singular direct rAjA (king), the sin-
gular oblique and the plural are the same, and the
plural oblique is rAjAoM

(i1) Other endings

Singular Direct xina (day)
Singular Oblique xina
Plural Direct xina
Plural Oblique xinoM

(a becomes oM)

(iii) Ending in AMh
These are inflected as in rule (i), except that the
endings are nasalised.

E.g. The singular direct kuAMh (well) has
oblique kueMh, and the plural direct kueMh has
oblique kuoMh.

(iv) Masculines ending in / and U shorten these
vowels before the oblique plural ending, and mas-
culines in final / also use a y before the ending.
E.g. Axaml (man) has plural oblique AxamiyoM,
and hindU (Hindu) has plural oblique hinduoM.

(v) Vocatives
In the singular, these are expressed by using the
oblique, and in the plural, a final o is used instead
of the oM that is used for the oblique. E.g. ladakA
becomes ladake, and in the plural, ladake becomes
ladako.

Thus, the following suffix deletions (longest
possible match) are required to reduce inflected
forms of masculine nouns to a common stem:
aAilulUeoAM eM oM AMh iyoM uAM uoM
ueM AeM AoM

b) The rules for inflecting feminine nouns are:

(i) ending in

Singular Direct ladakl (girl)
Singular Oblique ladakl
Plural Direct ladakiyAMh

(1 becomes iyAMh)
Plural Oblique ladakiyoM

(I becomes oM)
(ii) Feminines ending in i, are inflected as in (i).
E.g. swiWi (position).
(iii) Ending in iyA

Singular Direct cidiyA (bird)

Singular Oblique cidiyA
Plural Direct cidiyAMh

(A becomes AMh)
Plural Oblique cidiyoM

(A becomes oM)
(iv) Other endings

Singular Direct havA (air)
Singular Oblique havA
Plural Direct havAeM
(eM suffixed)
Plural Oblique havAoM
(oM suffixed)

(v) Feminine vocatives are formed in the same
way as masculines.

Thus, the only additional suffix required to ac-
count for feminine nouns is iyAMh.

3.2 Adjective Inflections (McGregor, 1977)

Adjectives whose direct singular masculine form
ends in A or AM agree with the noun in gender,
number, and case. Other adjectives do not vary.
E.g. The singular direct badA becomes bade in
all other masculine cases, and badl in all feminine
cases.

Thus, no new suffixes are added for adjectives.

3.3 Verb Inflections

Hindi verbs are inflected depending on the gen-
der, number, person, tense, aspect, negation, and
voice. A complete list of verb inflection rules can
be found in (Rao, 1996). A couple of entries from
this list are shown in Figure 2.

The first entry says that if the tense-aspect
agreement is present simple, and the gender-
number-person agreement is masculine 1 st per-
son, the root is inflected as root+wA hUM.

45

Note that the vowel a at the end of roots is re-
moved, and hence awA is added to the suffix list
instead of wA.

The full list of suffixes for verbs was generated
by working through the entire list in a similar way.

Since the suffix list for verbs includes Al, awA
and anl, the following suffixes had to be added to
the list to handle nouns with these endings:
AiyAM, AiyoM, AiyAMh, awAeM, awAoM,
anAeM, anAoM

T A G N | P | Inflection
Pres | Simp | Mas | Sing | 1 | +wA hUM
Pres | Simp | Mas | Sing +we hO

Figure 2: Verb Inflection Rules — Sample Entries

3.4 The Stemmer

The complete suffix list is shown in Figure 3. The
stemmer is implemented by simply removing from
each word the longest possible suffix from this list.

A AeM awA Ane egA
i AoM awl UMgA egl
1 iyAM IM UMgl AegA
u iyoM awIM AUMgA Aegl
U AiyAM awe AUMgl AyA
e AiyoM AwA eMge Ae
o AMh Awl eMgl Al
eM iyAMh AwIM AeMge AIM
oM AiyAMh Awe AeMgl ie
AM awAeM anA oge Ao
UAM awAoM anl ogl Aie
ueM anAeM ane Aoge akara
uoM anAoM AnA Aogl Akara

Figure 3: Suffix List

4 Evaluation

Parameters that can be used for evaluating stem-
mers are: retrieval effectiveness achieved using
the stemmer, the stemmer’s compression perfor-
mance, and the correctness of the stems produced
by it.

46

Correctness of a stem does not imply linguis-
tic correctness, in the sense that the stem need
not be the morphological root. For example, the
morphological root of the word computing is com-
pute, whereas a stemmer could remove the suffix
ing and leave the stem comput. This would not be
considered incorrect if the morphological variants
of compute, such as computing, computed, com-
putes, are all mapped to the same stem - comput.
Thus, a stemmer can be viewed as an efficient ap-
proximation of a morphological analyser (Bharati
et al., 1995). A stemmer is said to be correct if - a)
words that are morphological variants are actually
conflated to a single stem, and b) the words con-
flated to a single stem are indeed morphological
variants.

“Overstemming” occurs when words that are
not morphological variants are conflated. For ex-
ample, in English, if the words compile and com-
pute are both stemmed to comp, it is a case of
overstemming. Another example of overstemming
would be wander and wand being conflated to
wand. The error here is that the ending er of wan-
der is considered a suffix, whereas it is actually
part of the stem.

“Understemming” occurs when words that are
indeed morphological variants are not conflated.
An example of understemming, in English, would
be: compile being stemmed to comp, and compil-
ing, to compil.

We have evaluated our stemmer by computing
the number of understemming and overstemming
errors for a corpus of documents. The corpus used
for evaluation was a collection of documents from
different sections of an online Hindi news mag-
azine. Documents were chosen from varied do-
mains such as Films, Health, Business, Sports, and
Politics. The collection contained 35977 unique
words.

For each unique word in the corpus, we ob-
tained the root using a freely available morpho-
logical analyser (Morph, 2001). This program has
a reported coverage of 88%. The words conflated
by the morphological analyser were considered as
variants.

The understemming and overstemming percent-
ages were calculated using the following formu-
lae:

Variants Case Stem
BAlbahana Direct BAlbahan
(Brothers and Sisters)
BAIbahanOM Oblique
PlEta Direct PIE?
(Transliteration of “Flat™)
PIEtoM Oblique
GusapETie Direct GusapET
(Infiltrators)
GusapETiyoM Oblique

Figure 4: A sample of variants that were not con-
flated by the morphological analyser

Number of unique words 35977
Morphological variants 7750
Words understemmed 363

(error: 4.68%)

Words conflated
by the stemmer 13710
1898

(error: 13.84%)

Words overstemmed

Figure 5: Evaluation Results

% understemming error = (Number of variants
not conflated by the stemmer x 100) + (Total
number of morphological variants)

% overstemming error = (Number of nonvari-
ants conflated by the stemmer x 100) + (Total
number of words conflated by the stemmer)

The number of non-variants could not be deter-
mined using the morphological analyser because
there were many words conflated by the stemmer
that were not part of the morphological analyser’s
lexicon. So this list of words was manually ver-
ified. Many of these words were rare, domain-
specific words, or even non-Hindi words. Figure
4 contains a representative sample of variants that
were conflated by the stemmer, but not by the mor-
phological analyser.

The understemming and overstemming error
percentages were found to be 4.68 and 13.84 re-
spectively. The detailed evaluation results are tab-
ulated in Figure 5.

5 Discussion

The stemmer proposed in this paper largely han-
dles inflectional morphology. It does not account
for most of the derivational morphology of Hindi;
that is, it does not conflate terms that belong to dif-
ferent word categories. A morphological analyser,
on the other hand, would conflate such terms also.
It is our contention that for categorization and in-
formation retrieval tasks reducing derivationally
related terms to the same stem would lead to over-
conflation in some cases, thus balancing out the
performance. For example, it is not entirely clear
whether a query for baccA (child) should retrieve
documents containing the word bacapana (child-
hood).

Though the stemmer was developed with the in-
tent of dealing with inflectional morphology alone,
there are a few suffixes such as awA and Al whose
removal causes some derivationally related words
to be conflated as well. Examples of such confla-
tions are: acCA (good) and acCAI (goodness), and
Barawlya (Indian) and BarawlyawA (Indianness).

6 Directions for Future Work

The proposed stemmer needs to be further eval-
vated with Hindi information retrieval systems.
Such statistical evaluation will suggest the best
tradeoff between understemming and overstem-
ming that can be achieved by dropping or adding
a few suffixes in the list.

A more thorough error analysis is required to
ascertain what improvement is possible by includ-
ing iterative rules, and whether such rules will sub-
stantially increase the computational cost.

Most West and North Indian languages
(Marathi, Gujarathi, Punjabi etc.) are similar to
Hindi in morphology. It would be interesting to
see whether similar techniques can be used to
develop stemmers for these languages.

Acknowledgements

The initial work for this project was done at
a workshop organised at the AU-KBC Research
Centre, Chennai. We would like to thank the lead
faculty, Dr. Srinivas Bangalore of AT&T Labs-
Research, who motivated this study and provided

47

valuable insights and guidance during the work-
shop. We also thank Mr. Sasikumar, Mr. Vivek
Mehta, Mr. Jayprasad Hegde, and other staff at
the KBCS division of the National Centre for Soft-
ware Technology for useful feedback and encour-
agement.

References

G. Adamson and J. Boreham. 1974. The use of an
association measure based on character structure to
identify semantically related pairs of words and doc-
ument titles. Information Storage and Retrieval,
10(1):253-260.

Akshar Bharati, V. Chaitanya, and R. Sangal. 1995.
Natural Language Processing: A Paninian Perspec-
tive. Prentice Hall of India, New Delhi, India.

W.B. Frakes and R. Baeza-Yates. 1992. Information
Retrieval: Data Structures Algorithms. Prentice
Hall, Englewood Cliffs, New Jersey, USA.

M. Hafer and S. Weiss. 1974. Word segmentation by
letter successor varieties. Information Storage and
Retrieval, 10(1):371-385.

D.A. Hull and G. Grefenstette, 1996. A Detailed Anal-
ysis of English Stemming Algorithms. Rank XE-
ROX, citeseer.nj.nec.com/hull96detailed.html.

R.R. Korphage. 1997. Information Storage and Re-
trieval. Wiley Computer Publishing, USA.

R.S. McGregor. 1977. Outline of Hindi Grammar.
Oxford University Press, Delhi, India.

Morph, 2001. Hindi Morphological Analyser. Lan-
guage Technologies Research Centre, IIIT, Hyder-
abad, http://www.iiit.net/ltrc/morph/.

C. Paice. 1974. Another stemmer. ACM SIGIR Forum,
24(3):56-61.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130-137.

D. Rao. 1996. Natural Language Generation for En-
glish to Hindi Human Aided Machine Translation of
News Stories. Master’s Thesis, Indian Institute of
Technology, Mumbai, India.

48

Appendix

L

ne g
od A
—g g

e Gg
TN

L |

W

il

= &

=g

o

W

o4

= g

oo

= o D= Q
o O M H Mh

b= A
E HH
< H
o o
&
&

=l |

-

i
Z4

El
n

w0

o |
B m

< a

Tz
-

uw
5 R h

Hindi Transliteration Scheme

Finite State Morphological Processing of Oriya Verbal Forms

Kalyani R. Shabadi
Resource Center for Indian Language Technology Solutions
Department of Management Studies
Indian Institute of Science
Bangalore - 560 012, INDIA.

kalyani@mgmt.iisc.ernet.in

Abstract

This paper discusses the morphological
processing of verbal forms in Oriya in a
deterministic Finite State Automaton. In
a syntactically head-final and morpho-
logically agglutinative language like
Oriya, Agreement distinguishes finite
verbal forms from non-finite verbal
forms. Oriya has ‘phrasal’ or ‘constitu-
ent’ negation, where tense, aspect etc.
impose restrictions on NEG marking.
Negation can be marked by various NEG
morphemes in various positions of the
verbal form, but is marked only once.
That is, the occurrence of a NEG mor-
pheme restricts the occurrence of any
other NEG marker in the verbal form.
Such multiple positional slots for the
NEG morpheme with respect to tense, as-
pect poses constraint for the processing of
the string by FSA. The FSA being a uni-
directional machine, cannot backtrack,
and thus, cannot account for such mutual
exclusiveness of the items if all the three
NEG items are available in a single chart.
So, we propose different types of proc-
essing for the different positional slots of
NEG morphemes.

1 Introduction

Morphological analysis of words is a basic tool
for automatic language processing, and indispen-
sable when dealing with agglutinative languages
like Oriya. In this context, some applications, like
spelling correction, do not need more than the

segmentation of each word into its different
component morphemes along with their mor-
phological information. However, there are other
applications such as lemmatization, tagging,
phrase recognition, and determination of clause
boundaries, which need an additional morpho-
syntactic parsing of the whole word. This work
proposes a model for designing a morphological
analyzer for Oriya verbal forms, which can pro-
vide lexical, morphological and syntactic infor-
mation for each lexical unit in the analyzed
verbal form. It draws out a finite-state machine
that accepts valid sequences of morphemes in a
verbal form and rejects invalid ones. We can use
the FSA to solve the problem of morphological
recognition; determining whether an input string
of morphemes makes up a legitimate Oriya word
or not. We do this by taking the FSAs and plug-
ging in each verbal form into the FSA. We do
this via two-level morphology (TLM). TLM rep-
resents a word as a correspondence between a
lexical level, which represents a simple concate-
nation of morphemes making up a word, and the
surface level, which represents the actual spelling
of the final word. Morphological parsing is im-
plemented by building mapping rules that map
morpheme sequences like na-kar-i ‘not having
done’ on the surface level into morpheme and
feature sequences like Neg +Root verb +CM at
the lexical level.

Finite and nonfinite verbal forms in Oriya have
their own ways for being marked for negation.
Negation can be marked by bound inflection on
the verb, or can surface as an auxiliary verb. Ne-
gation can be marked by various NEG mor-
phemes in various positions of the verbal form,
but is marked only once. That is, the occurrence
of a NEG morpheme restricts the occurrence of

49

any other NEG marker in the verbal form. NEG
can be marked at the beginning, middle or at the
end of a finite verbal form, by the morphemes
na-, naahan, and —ni/ naahin, respectively; while
in non-finite verbal forms, the NEG affix na oc-
curs invariably in a position immediately pre-
ceding the verbal root. Such multiple positional
slots for the NEG morpheme with respect to
tense, aspect pose constraint for the processing of
the string by a deterministic Finite State
Automaton (FSA). The FSA being a unidirec-
tional machine, cannot backtrack, and thus, can-
not account for such mutual exclusiveness of the
items if all the three NEG items are available in a
single chart, and may over-generate. So, to ac-
count for this problem, we propose different
types of processing for the different positional
slots of NEG morphemes.

The remainder of this paper is organized as
follows. Section 2 gives a brief description of the
Oriya verbal forms. Section 3 and section 4
discuss Telic Affirmative affixes and Negation,
respectively. Section 5 describes the architecture
for morphological processing, specifies the phe-
nomena covered by the analyzer, explains its de-
sign criteria, and presents the processing details.
Finally, the paper ends with some concluding
remarks.

2 Oriya verbal forms

Oriya is a syntactically head-final and morpho-
logically agglutinative language. A number of
morphemes carrying different grammatical func-
tions get affixed to the verbal root to make a ver-
bal form. The major inflectional subsystems that
cluster around the verb are: tense, aspect, agree-
ment markers, negation markers, auxiliary mor-
pheme etc. Oriya verbal forms typically contain a
sequence of morphemes followed by a verbal
root, as in (1)-(2).

(1) (mun) khaa-u-th-il-i
I eat -ASPprog—AUX-
Tensepast_Agrlst sg
‘T was eating’
(2) kar-i-paar-u-na-th-il-aa
Root -CM-Modal -Aspyro.g—Neg-
Aux-Tensepase ~Agrsrg sqg
‘S/he was not able to do.’

50

Agreement distinguishes finite verbal forms
from non-finite verbal forms in Oriya, although
tense has extended functions in both finite as well
as nonfinite constructions. Participials (PRTP),
gerundives (GER), conditionals (COND), infini-
tivals, telic affirmative affixes (Tel Aff) and
conjunctive morphemes (CM), which lack
agreement features are realized as non-finite ver-
bal forms in Oriya. So, the classification of ver-
bal forms in the language can be shown as
follows (Sahoo, 2001):

Vform
—

nonfinite finite

conditional
infinitival
Tel Aff

conjunctive
gerundive
participial

Figure 1. The classification of verbal forms in
Oriya

2.1 Nonfinite verbal Forms

The nonfinite verbal forms are realized by the
suffixation of morphemes like the conjunctive
morpheme -i, gerundive —ib-aa, participial —aa,
ib-aa, il-aa, i/u-th-ib-aa conditional —ile, or in-
finitival -ib-aa-ku to the verbal root.

The Conjunctive morpheme —i
The conjunctive morpheme —i occurs in a posi-
tion immediately following the verb root, as in
3):
(3) na-kar-i
NEG-RoOOt -cM
‘Wot having done’

This affix ‘i’ can be compared with ‘tvaa(ya)’, or
(t)ya / (f)yaa suffixes in Sanskrit, which were
used to form gerundives. These suffixes were
also sometimes referred to as conjunctive partici-
ples (Butt and Labhiri., 1998).

Gerundive morpheme -ibaa

A gerundive verbal form in Oriya is realized as in
(4), the verbal root being suffixed to the mor-
pheme -ibaa.

(4) mun taara bahi paDh-ibaa
I his book read-cer
pasanda kareni
like do-1°* sg-nEG
‘I don’t like his reading
books .’

The Participial morpheme -aa

The participial morpheme is realized as -aa.
Usually, it occurs at the final position of the ver-
bal form. It can be attached to the bare verbal
root as in (5).

(5) taankara bahipaDh-aa
his book read-PRTP
‘His reading books’

In the case of future participial and past parti-
cipial (as in (6) and (7), respectively), the parti-
cipial morpheme occurs in a position
immediately following the Tense morpheme.

(6) bilaku ne-b-aa bhaata
farm-pp take-rur-prRTP Trice
‘The rice to be taken to

the farm’

(7)kah-il-aa kathaa
speak-pasT-prRTP wWOTds
suN-ile heba-naa

listen-conp be-rur-37d S9-prr
‘One should listen what
s/he is spoken to.’

The relative- participial -ending thibaa, which
is derived from the root thaa (Sanskrit sthaa), is
used periphrastically with the PERF or PROG
aspectual form of a verb, e.g.

(8) bah-i-jaa-u-th-ib-aa
flow-cM-go-PROG-AUX-FUT-PRTP
nadi
river
‘The flowing river’

(9) mun de-i-th-ib-aa Tankaa
I give-PERF-AUX-FUT-PRTP moOney
‘The money that I had
given you’

The Conditional affix -ile (or —le)

U'PRT = particle

The morpheme -ile (or —le) functions as a condi-
tional marker. It is suffixed to the bare verbal

root.
(10) tume nakhaa-ile
you NEG-eat -coND
mun bi Kkhaaibini
I too eat-rur-1°° sg-nEG

‘I also won’t eat if you
don’t eat.’

The Infinitival morpheme —ibaaku
In Oriya, the infinitival form is realized by the
verbal ending —ibaaku. E.g.

(11) pinku ghoDaa
Pinku horse
ChaDh-ibaaku bhalapaae
ride-1Inr like-3"¢ sg
‘Pinku likes to ride
horse.’

2.2 Finite verbal forms

In a finite verbal form, the realization of the ver-
bal root, Tense, and Agr is obligatory, while the
realization of Asp, Aux, Modal or CM is op-
tional. The sequence of items in a finite verbal
form can be shown as follows (Sahoo, 2001):
(12) Root-(CM)-(Modal)-(Asp)-(Aux)-Tense-Agr
Nayak (1987) also has proposed the same se-
quence of items but for CM and modal. The mor-
phemes that occur in a finite verbal form can be
listed as follows: there are two Asp morphemes:
u (prog) and i (perf); three Aux morphemes: achh
(pres), th (past and fut), and thaa (hyp); one mo-
dal morpheme: paar, one conjunctive morpheme:
i. The Tense/Mood morphemes are realized as i/
(past), ib (fut) and ant (hyp). The present tense
morpheme is not lexically realized (Nayak, 1987;
Sahoo, 2001). Agr morphemes are marked for
person, number and honorificity. In a finite
clause, the realization of Aux is dependent on the
realization of the Asp morpheme, in the sense
that, the Aux morpheme cannot occur in the ab-
sence of the Asp morpheme, but the Asp mor-
pheme can occur in the absence of an Aux
morpheme (in a nonfinite construction). Simi-
larly, the Modal morpheme is dependent on the
CM, but the reverse is not true.

51

3 The telic affirmative affixes: -/Vi and -
Na

The telic affirmative affixes -Na and -Ni contrib-
ute towards aspectual features of a verbal form.
These morphemes indicate a strong sense of
completion of the event, and thus, carry a subset
of the features of the perfective aspectual mor-
pheme i. They occur in the final position of the
verbal form.

(13) se gharaku
he house-acc

chaali-jibaNi

walk - go-rur 3"9%sg-Tel Aff
‘He might have gone home.’
(14) utara dei-Na raajaa
reply give-rperr king
baahaari-Na gale
out-Tel Aff go-east 3™ sg
‘The king replied and went out’

In the above examples, the morphemes -Ni,
and -Na function as telicizers. Ni occurs in fi-
nite clauses while Na occurs in non-finite
clauses. Vi does not occur in a NEG construction,
while Na can occur in NEG constructions.

The distribution of these morphemes can be
shown as follows:

(15) a. Ni - [Fi“}

Neg - b. Na - [Fin }

Neg £

4 Negation

Oriya has ‘phrasal’ or ‘constituent’ negation,
where tense, aspect etc. impose restrictions on
NEG marking. Oriya has NEG affixes as well as
NEG verbs.

4.1 The Negative verb

In Oriya, negation can surface as an auxiliary
verb, that is, the negative marker has some of the
usual properties of a verb, such as (tense)’, Agr.
The Oriya negative auxiliaries, naahin and nuhai
/ nuhen seem to be derived from Sanskrit naasti
and na bhavati, respectively. They correspond
to the Oriya copular auxiliaries achh and aT.
Like achh and aT, they occur in finite construc-
tions only and have regular conjugations in the

% The negative auxiliaries appear in present tense only.

52

present tense. Each of them has a separate con-
jugation and is not used for the other.

naahin ‘not to be’, or ‘not to remain’ is the
negative co-relate of the copular auxiliary achhi
‘to be’, or ‘to remain’, and thus behaves the
similar way as achhi. Like achhi, it can be used
as a copular auxiliary (like a main verb) as well
as an auxiliary affix. Consider the following:

(16)aaji se Jjuga naahin
today that age bey-3"° sg
ki se raajaa naahaanti
pRT that king beyse37°Sg [sion)
‘Today that time is not

there, nor that king.’

se kheL-u-naahin
he play-proc-bems 3¢ sg
‘He is not playing’.

(17)

In (16), naahin and naahaanti are used as inde-
pendent verbs, while in (17) naahin functions as
an auxiliary affix.

nuhen (short for nuhai from na+huai) is solely
a full verb (as opposed to a bound morpheme).
That is, it can be used only as an independent
copula. It is the negative co-relate of the equa-
tive copula verb aTe or aTai. When the predicate
is an adjective and denotes something habitual,
usually nuhen is used. E.g.

(18) mun andha nuhen
I blind beyy 1°° sg
‘I am not blind.’

4.2 NEG affixes

In Oriya, negation can be marked by bound in-
flection on the verb. The NEG morpheme has
various morphological realizations in various
positions of the verbal form. In finite construc-
tions, negation can be marked at the beginning,
middle or at the end of the verbal form, by the
morphemes na-, naahan and —ni/ naahin3, re-
spectively. na is used in finite as well as in non-
finite constructions, while the other two NEG
markers are used in finite constructions only.

3 i is the contracted form of naahin.

4.2.1 NEG marking in nonfinite verbal forms

In a nonfinite construction, the NEG morpheme
occurs being prefixed to the verbal root. It can-
not occur in any other position of the verbal
form. E.g.

(19) se nakhaai chaaligalaa
he ~Eg-eat-ovm walk-cm-
go-pasT-3 sg

‘He went away without eating.’

4.2.2 NEG marking in finite verbal forms

In finite constructions, the NEG marker can oc-
cur in various positions of the verbal form.

NEG in the initial position:
NEG morpheme can occur being prefixed to the
verbal root, e.g.

(20) se na-khaa-i-paar-e
s/he nEc-eat-cvM-modal-
AGR3rq sg
‘S/he may not eat.’

NEG can occur immediately preceding the
Aux:

(21)se jaa-i-na-th-il-aa
he go-asPpers-NEG-AUX-
TENSEpast ~AGR3rd sg
‘He had not gone.’

NEG at the place of Aux:

As we discussed earlier, the NEG auxiliary
occurs in the same positional slot as that of the
Aux morpheme. Being the NEG-correlate of the
copular auxiliary morpheme ach#h, it can be used
in PRES tense only. As we discussed above, this
NEG marker naahin is the co-relate of the aux-
affix (not aux copula), and thus, is realized as an
affix. E.g.

(22) tume khaaunaahan
you eat -ASP-NEG-AGR;ng sg
‘You are not eating.’

NEG at the final position of the verbal form:
The NEG morpheme at the final position is real-
ized as ni/naahin. E.g.

(23)
a.semaane khaanti-ni/naahin
they eat -AGR3rq p1—NEG
‘They do not eat.’

b. se khaae-ni/naahin
he eat-aGR3rq sg -NEG
‘He does not eat.’

Note that although it resembles the NEG Aux
naahin, it 1s different from that. The NEG Aux
realizes the Agr features which is not found in
the case of the NEG affix. Ni and the NEG
marker ni are mutually exclusive and occur in the
same positional slot in the construction.

Summarizing, in nonfinite verbal forms the
NEG marker -na occurs invariably prefixed to
the verbal root, while in finite verbal forms, NEG
is marked in three different ways.

The co-occurrence restrictions of the three
NEG markers in finite verbal forms can be listed
as follows:

(24)
1) na being prefixed to the verbal root occurs

only in present tense, and the construction

has an epistemic modality interpretation.
i1)) NEG Aux naahan occurs only in the present

tense; and the NEG morpheme, being prefixed

to the Aux morpheme [ra+Aux morpheme],
occurs in all the other tenses.

iil) ni/naahin does not co-occur with Asp-Aux
morphemes.

There is a rich structure in these morphological
sequences, and in this paper we will model it by
using a deterministic finite-state automaton.
Such a morphological analyzer has to consider
three main aspects, as discussed by Ritchie et
al.(1992), Sproat (1992):

(25) 1) Morphographemics (also called morpho

phonology).
This term covers orthographic variations
that occur when linking morphemes.

ii) Morphotactics.
Specification of which morphemes can or
cannot combine with each other to form
valid words.

ii1) Feature-combination.
Specification of how these morphemes can
be grouped and how their morphosyntactic
features can be combined.

53

As a consequence of the rich morphology of
Oriya, we control morphotactic phenomena, as
much as possible, in the morphological segmen-
tation phase. Alternatively, a model with minimal
morphotactic treatment as in (Ritchie et al,
1992.) would produce too many possible analy-
ses after segmentation, which will be rejected in
a second phase. The morphological analyzer cre-
ated by (Ritchie et al.) does not adopt finite state
mechanisms to control morphotactic phenomena.
Their two-level implementation incorporates a
straightforward morphotactics, reducing the
number of sublexicons to the indispensable (pre-
fixes, lemmas and suffixes). This approximation
would be highly inefficient for agglutinative lan-
guages like Oriya, as it would create many non-
sensical interpretations that should be rejected by
the system. Therefore, we separate sequential
morphotactics (i.e., which sequences of mor-
phemes can or cannot combine with each other to
form valid words), which will be recognized by
means of continuation classes, and non-
sequential morphotactics like long-distance de-
pendencies that will be controlled by the word-
grammar.

In the following section, we will survey the
kinds of morphological knowledge that needs to
be represented to produce a well-formed verbal
form in Oriya. For this purpose, we choose a
'Finite State Automaton' for the computation of
verbal forms.

5. A Deterministic Finite State Automaton

Since we cannot list every word in the language,
computational lexicons are structured as a list of
stems and affixes with a representation of the
morphotactics. One way to model morphotactics
is the finite-state automaton. We use a determi-
nistic FSA to solve the problem of morphological
recognition. It will determine whether an input
string of morphemes makes up a legitimate Oriya
verbal form or not. Such identification of se-
quences has a number of practical applications
like spell checker, machine translation etc.

5.1 The Machinery

A (deterministic) Finite State Automaton (FSA)
is a device that receives a string of symbols as
input, reads the string one symbol at a time from
left to right, and after reading the last symbol

54

halts and indicates either acceptance or rejection
of the input. The automaton performs computa-
tion by reacting on a class of inputs (on strings or
sequences of symbols). The concept of a state is
the central notion of an automaton. A state of an
automaton is analogous to the arrangement of
bits in the memory banks and registers of an ac-
tual computer. Here, we consider a state as a
characteristic of an automaton which changes
during the course of a computation and which
serves to determine the relationship between in-
puts and outputs. For our automaton, the memory
consists simply of the states themselves. The
computations of an FSA are directed by a ‘pro-
gram’, which is a finite state of instructions for
changing from state to state as the automaton
reads input symbols. Given an input, the compu-
tation begins in a designated state, the initial
state. After reading the input, the automaton ei-
ther accepts or rejects it after some finite amount
of computation.

In a more formal way, a deterministic finite state
automaton can be defined as follows (Jurafsky
and Martin., 2000; Roche and Schabes., 1997).

A (deterministic) finite-state automaton is a
quintuple (Q, Y, qo F, &) where

- Q is a finite set of N states qo, q;. ... , qn

- Y is a finite input alphabet of symbols

- qo € Q is the initial state

- F c Q, the set of final states

-9(q,1) is the transition function or transition ma-
trix between states. Given a state q € Q and an
input symbol i € Y, 8(q,i) returns a new state q’
€ Q. dis thus a relation from QxY. to Q.

Thus, if the automaton is in a state q € Q and the
symbol read from the input is a, then d (q,a)
uniquely determines the state to which the
automaton passes. This property entails high
run-time efficiency, since the time it takes to rec-
ognize a string is linearly proportional to its
length.

5.2 The FSA for Oriya

This section discusses how the FSA can be con-
ceived as applying to Oriya verbal forms. For
finite and nonfinite constructions, we illustrate
the process separately.

The automaton is represented as a directed
graph: a finite set of vertices (nodes), together

with a set of directed links between pairs of ver-
tices called arcs. Each node corresponds to a
state. States are represented as circles with name
tags in them. Arcs are represented by arrows
going from one state to another state. The final
states are represented by two concentric circles.

Figure 2. The FSA for non-finite negative verbal
forms in Oriya

——
— Ry T “ay
Lt i .
e T R O
P4 -l T ol A S)
) Tmd Cwd Lar LUIRED WH
T - L (T
L.__L__,"' Fhma, - T - J I_:kﬂ"__!l:'

Figure 3.1 The FSA for ﬁn_ipte verbal forms, with
one possible version of Negation

#___ﬁ_ﬂL_h__\. g S
S Py
‘__,-M'-'-.\ “u gy g, M L
L M Sam R A
- LA T e B B e
e? ol (=2 (w3 L B L B 'EELE'
T “U[.u_"';"\.ﬁ - .q’.':f\m T,
"-h.,__h = e N il
n. Fon i vt

Figure 3.2 The FSA for ﬁmte verbal forms, the
second possible variant with Negation

Tress
AEP e
I — --\"H
4 "y R
o P M’-IL w |
N N T R N, 'ﬂ*-’}
= R W ol i Vil .:r'_ .--u,,.@» ‘];-
":L-:' (‘-—‘;I—-'I Hom 3 w2 __L-'-“f.'_,—-’
-.-L.____H_ o ne 'j .:'u ':D,
e T i ._Ifl(.- o

Figure 3.3 The FSA for ﬁnlte verbal forms, the
third possible variant with Negation

The machine starts at the initial state, runs
through a sequence of states by computing a
morpheme in each transition, and ends in the fi-
nal state. The path moves from the initial point
on the left to the final point on the right, pro-

ceeding in the direction of arrows. Once the ar-
row moves one step, there is no backward
movement (Of course, recursion of an item can
be shown by using closed loops). Each state
through which the speaker passes represents the
grammatical restrictions that limit the choice of
the next morpheme. The resulting FSA is deter-
ministic in the sense that given an input symbol
and a current state, a unique next state is deter-
mined.

It starts at the initial state (qo), checks the next
morpheme of the input. If it matches the symbol
on an arc leaving the current state, then it crosses
that arc, and moves to the next state, and thus,
advances one symbol in the input. Such a proc-
ess gets iterated until the machine reaches the
final state, successfully recognizing all the mor-
phemes in the input string. But if the machine
gets some input that does not match an arc, then
it gets stuck there and never gets to the final
state. This is considered as the FSA/machine
rejecting or failing to accept an input.

For nonfinite constructions (cf. Figure 2), the
FSA starts at the initial state (qo). From qq, it can
choose the Root state directly or Root via the
Neg state, depending on whether it is an affirma-
tive or negative construction. From the Root
state, it has various options to move to the next
state: it can move to the CM final state, particip-
ial aa state, conditional ile state, conjunctive
morpheme (CM) non-final state, Asp state, or
Tense state, out of which the first three states are
final states while the last three states are non-
final states. From the CM non-final state, it can
choose either Modal state or Tel Aff state (Na),
which is a final state too. From the Modal state it
chooses Asp state. This Asp state can be a final
or a non-final state. If it is a final state, then it
stops there, while in the case of a non-final state,
it can traverse further. From the non-final Asp
state, it can choose Aux state, and from Aux
state, it moves to the Tense state. From the
Tense state it can move to the participial state,
which is a final state. Likewise, the FSA proc-
esses the verbal forms until it reaches the final
state.

Now, we can test how a non-finite verbal form
in the language be processed by this machine.
Take a concrete example like (3) na-kar-i 'mot
having done'. This negative verbal form can be
processed as follows.

55

It has 3 states. State O is the initial state and state
3 is the final state. It also has 3 transitions.

Q=1{q0, 91,92, g3}

Y. = {na, kar, i}
do= the initial state
F={qs}

d(q.i) can be defined by the transition table as
follows:

Input
State Na kar [
0 1 0 0
1 0 2 0
2 0 0 3
3: 0O 0 0

Table 1. The state transition table for the FSA for
na-kar-i

In the transition table, state3 is marked with a
colon to indicate that it is a final state. @ indi-
cates an illegal or missing transition. It can be
read as follows: “if we are in state 0 and we see
the input na, we must go to the state 1. If we are
in state 0 and we see the input kar or i, we fail.”

Similarly, the FSA computes the verbal forms
in a finite construction. As we discussed earlier,
in a finite construction, the NEG morpheme can
occur in three possible positions and the occur-
rence of a NEG morpheme restricts the occur-
rence of any other NEG marker in the verbal
form. But such mutual exclusiveness of the
items creates problem for a deterministic FSA, as
it cannot backtrack to account for it, if all the
three NEG positions are available in a single
chart, and may over generate. So, to avoid this,
we have 3 charts for finite constructions (cf. Fig-
ure 3.1, 3.2 and 3.3), each showing a different
position of the NEG morpheme in a verbal form.

6. Conclusion

An efficient finite-state morphological analyser
has been described. We specify the co-
occurrence restrictions of the NEG morphemes in
a verbal form and use the FSA to solve the prob-
lem of morphological recognition, determining
whether an input string of morphemes makes up
a legitimate Oriya verbal form or not. Such
identification of sequences have a number of
practical applications like spell checker, machine
translation, etc. The morphological analyzer will
help us to build a computational lexicon struc-

56

tured as a list of stems and affixes with a repre-
sentation of the morphotactics and also can be
used for designing a morphosyntactic analysis for
each word in unrestricted Oriya texts. The de-
sign of the deterministic FSA we propose is new
for Oriya, as far as we know. We think that our
design could be interesting for the treatment of
other agglutinative languages too.

Due to the constraint of space, in this paper,
we have not considered the processing of com-
plex verbal forms (i.e. N-V sequences, V-v se-
quences, N-V-v sequences), reduplicated verbal
forms (full-stem reduplication), and causative
verbal forms. We leave this for further research.

Acknowledgement

I acknowledge my sincere thanks to the anony-
mous reviewers of this paper for their comments
and suggestions.

References

Butt, Miriam & Aditi Lahiri. 1998. The status of light
verbs in historical change. Ms. Universitdt Kon-
stanz.

Jurafsky, Daniel. & James H. Martin. 2000. Speech
and Language Processing: An Introduction to
Natural Language Processing, Computational Lin-
guistics, and Speech Recognition. New Jersey:
Prentice Hall.

Nayak, Rath 1987. Non-finite clauses in Oriya. Doc-
toral dissertation, CIEFL, Hyderabad.

Ritchie Graeme, Stephen G. Pulman, Alan W. Black,
Graham. J.Russel. 1992. Computational Morphol-
ogy: Practical Mechanisms for the English Lexi-
con. ACL-MIT Series on Natural Language
Processing, MIT Press.

Roche, Emmanuel & Yves Schabes (eds.). 1997. Fi-
nite State Language Processing. The MIT Press.

Sahoo, Kalyanamalini 2001. Oriya Verb Morphology
and Complex Verb Constructions. Ph.D disserta-
tion. Norwegian University of Science and Tech-
nology, Trondheim, Norway.

Sproat Richard 1992. Morphology and Computation.
ACL-MIT Press series in Natural Language Proc-
essing.

South Asian Languages in Multilingual TTS-Related Database

Ksenia Shalonova
HP Labs
Filton Rd, Stoke Gifford,
Bristol BS34 8QZ U.K.

ksenia_shalonova@hplb.hpl.hp.com

Abstract

In this paper we overview possible problems
to be overcome in building TTS systems for
different languages, in particular for the lan-
guages of South Asia. We do this by an
analysis of both script and language features
(presented in the Multilingual TTS-Related
Database), and observe that all languages (not
just in South Asia) have a limited number of
these features. We briefly describe possible
TTS problems in accordance with the de-
scribed script and language categories (sev-
eral examples from South Asian languages
are provided). By attributing scores to the fea-
tures, we can rank the languages in order of
difficulty. On this basis, Bengali is one of the
easiest languages and Pashto is one of the
most difficult.

1 Introduction

Most TTS engines nowadays are mainly developed
and tested for commercially profitable languages like
English, French, German, Spanish, Japanese, Chinese
and etc. Although there are a number of commercial
companies and research laboratories that aim to base
their TTS technologies on language-independent en-
gines (Dutoit, 1997; Multilingual Text-to-Speech Syn-
thesis, 1998) it seems important to obtain a formalised
representation of TTS problems and their solutions for
all possible languages that may require a commercial
TTS development. Currently such a structured repre-
sentation of languages in application to TTS develop-
ment contains 105 languages. As the criterion we have
chosen languages, in which official newspapers are

Roger Tucker
HP Labs
Filton Rd, Stoke Gifford,
Bristol BS34 8QZ U.K.

roger.tucker@iee.org

published (see section 2 — Multilingual TTS-related
linguistic database).

As all languages have a limited number both
of linguistic and script features, there are a limited
number of possible TTS problems. Their solutions can
be obtained by means of re-using TTS components
from one language into another one. In order to create
a TTS system for a particular language it is best to
understand from the beginning the language-
dependent and language-independent TTS problems
that have to be solved during TTS development. To
avoid unnecessary effort in the development cycle it is
useful to predict most of possible problems/solutions
from the start. That is why it seems extremely impor-
tant to work on Multilingual Transfer — re-use of
modules from existing languages and also to develop
techniques based on (semi-) automatic tools in order
to solve the problems in an integrated way.

The current language set in the Multilingual
TTS-Related Database includes major South Asian
languages such as Assamese, Bengali, Gujarati, Hindi,
Kannada, Kashmiri, Malayalam, Manipuri, Marathi,
Nepali, Oriya, Punjabi, Pashta, Tibetan, Sindhi, Sin-
hala, Tamil, Telugu, Urdu - i.e. the official languages
spoken in Bangladesh, Bhutan, India, Maldives, Ne-
pal, Pakistan and Sri Lanka. From the TTS develop-
ment point of view these languages combine a various
number of TTS problems and technologies as they
differ much both in linguistic characteristics and
scripts. The language difference leads to different ef-
fort needed to create a TTS system that can be illus-
trated by means of our TTS-complexity language
scoring system (see section 3 — Evaluation of lan-
guage complexity in application to TTS develop-
ment cycle).

57

2 Multilingual TTS-Related Database

2.1 Language Definition from the TTS
Development Angle

TTS systems convert a limited number of graphemes
into an unlimited number of speech realisations. At
the same time the generation of speech realisations
(grapheme-to-sound conversion rules) is based on a
limited set of features. All world languages seem to
have a limited number of such features to be taken
into account during TTS development. These features
can be subdivided into 2 main categories.

1. Linguistic features that are considered
phonological/phonetic, morphological and
syntactic/prosodic language peculiarities. For
a number of languages some information
about these linguistic levels is now available
from the Rosetta Project.

2. Script features. There are 33 scripts in which
newspapers are published (Nakanishi, 1998).

Thus, from the TTS development point of view we
consider any particular language to be equivalent to
the formalised representation of phonological, mor-
phological and syntactic level' plus script charac-
teristics.

Both the script and pure linguistic features for 105
languages are formalised in the Multilingual TTS-
Related Database.

2.2 The Aim of the Multi-Lingual TTS
Related Database

The main purpose of the Multi-lingual TTS-Related
DB is to supply the following information.

1. The list of TTS problems and their possible
solutions for a particular language/group of
languages, for particular scripts, for languages
spoken in particular countries etc. The search
criteria for possible TTS problems can be
composed in a query. It is also believed that
on the basis of the current DB in future it will
be possible for each language to prioritise the
tasks to be fulfilled during the TTS develop-
ment cycle.

2. Technologies that can be used in multilingual
transfer, i.e. languages with similar TTS de-
velopment problems and their solutions. On

! Semantic and discourse levels are not covered in this
paper although it is an important subject for the inves-
tigation.

58

the basis of the structural representation of

graphological/phonological, = morphological

and syntactical/prosodic levels for the exam-

ined languages it seems possible to obtain 2

types of information to be used in multilingual

transfer:

e groups of language features and NLP
techniques that can be at once applied for
speech synthesis of several languages.
This information can be used for adapting
one TTS engine for different languages,
and, therefore, for multilingual TTS trans-
fer. For example, differentiation in
GRAPHEME_TO_PHONEME
_CONVERTER of stressed/unstressed and
pre-stressed/post-stressed vowels in case
of vowel reduction; implementation of a
finite state automaton in MORPHO-
LOGICAL_DECOMPOSITION for
highly inflective (Slavic, Baltic) and ag-
glutinative (Turkish, Finish, Dravidian)
languages; using of one algorithm to solve
the problem of "consonantal" alphabets
(Arabic, Hebrew), where the marking of
vowels is optional etc.

e Jlanguage universals — language features
and NLP techniques to be applied for
speech synthesis independently of lan-
guage system, e.g. nasalization of vowels
after nasals, algorithms for e-mails/URL
processing etc’.

2.3 The Structure of the Multi-Lingual
TTS Related Database

The database includes 3 related tables with the follow-
ing fields.

I. LANGUAGES

General information

LANG_NAME - the official name of the language’
(other alternative names are given in the brackets).
LANGUAGE_HIERARCHY - the family and
(sub)groups to which a language belongs.

2 It is important to notice that a great deal of language-
independent rules are connected with pho-
netic/acoustic regularities, e.g. realisation of longer
phonetic components in a position before a phrase
boundary; realisation of higher FO values after a
voiceless consonant than after a voiced one; nasaliza-
tion of vowels after nasal consonants etc.

? The Ethnologue (2000) catalogue was taken as the
reference one.

NUMBER_OF _SPEAKERS* — number of speakers of
a language.

COUNTRY - a list of countries where the language is
spoken.

STATE - states or other geographical units within a
country where the language is spoken.

Phonetic characteristics

TONES - is filled in for the tone languages (2 main
types are included into the default value list: pitch-
accented or tonal languages).

LEXICAL_STRESS -

e Type of the lexical stress. Three main
types are included into the default value
list: lexical, fixed and quantity-sensitive.
For the last type of stress, where the posi-
tion of primary stress is influenced by a
syllable weight, the information about the
identification of a heavy syllable is in-
cluded. The main source of information
for different stress types is the typological
database — StressTyp developed at the
University of Leiden (Goedemans et al.,
1996).

e Another important feature to be introduced
into this field is the acoustic realisation of
stress, that for a great number of languages
is very poorly described in phonetic litera-
ture”.

SECONDARY_STRESS OR_RHYTHM: rules for
secondary or rhythm stress assignment. In most Euro-
pean languages not-primary (or secondary) stress can
occur in clitics and compound words. Another type of
not-primary stress is rhythm, which is sensitive to the
place of the main stress (e.g. in Garawa, Seri etc).
INTONATION_PATTERNS — the number and de-
scription of intonation patterns.’®
OTHER_PHONETIC_CHARACTERISTICS - pho-
netic phenomena not described in the previous fields,
e.g. vowel reduction, palatalization, vowel harmony
etc.

* Due to obvious reasons the number of speakers may
differ from one literature source to another. We have
chosen one source item as the reference one (Dalby,
1999).

> Acoustic correlates of stress can be: pitch change,
temporal structure and intensity. Changes in temporal
structure (duration decreasing) may cause reduced
vowels in unstressed syllables.

6 As obtaining data for this kind of linguistic feature
normally requires deep phonetic-acoustic research,
full information is expected to be available only for
certain languages — mainly for all European lan-
guages, some Asian languages — Japanese and Chi-
nese.

MORPHO-SYNTACTIC_ CHARACTERISTICS -
Two main morphological types are distinguished: ana-
Iytical and synthetic languages, where synthetic is
subdivided into agglutinative and inflective.
MORPHOLOGICAL_CHARACTERISTICS (word-
formation) — information about word-formation is
included (affixation, reduplication etc.).
PROPER_SYNTACTIC_ CHARACTERISTICS -
word order (fixed; free; grammatically significant).’
OTHER_CHARACTERISTICS - language peculiari-
ties not included into previous fields.
LITERATURE_LANG - the literature sources found
for a particular language®.

II. SCRIPTS

General information

SCRIPT_NAME — name of the script
SCRIPT_TYPE — type of the script (alphabetic, al-
phabetic-syllabic, consonantal, ideographic).

CAPITALISATION - specific rules for capitalisation,
e.g. no capital letters at all or capital letters used for
all nouns (as in German).
GRAPHEME_TO_PHONEME
CORRESPONDENCE - the correspondence between
graphical or transliteration and phoneme levels: direct
(e.g. Finnish, Spanish), direct with certain exceptions
(e.g. Russian), not direct (e.g. English), not direct with
optional vowel marking (e.g. Arabic). It is necessary
to notice that G2P correspondence within one script
can differ from language to language, e.g. in Latin and
Cyrillic scripts. For such languages G2P correspon-

dence is described in the field
OTHER_CHARACTERISTICS in the table "Lan-
guages".

SYMBOLS _FOR_LOAN_WORDS - whether the

script contains symbols used only in loan words.
SYMBOLS_FOR_STRESS - whether the script con-
tains a special mark for lexical stress.
SYMBOLS_FOR_TONES - whether the script con-
tains a special mark for tones.
PUNCTUATION_MARKS - description of punctua-
tion marks (where they differ from those used in most
European countries).

SPACES_BETWEEN_WORDS — whether the words
are separated by spaces.

HOMOGRAPHS - whether homographs exist in a
particular script.

7 It is important to point out that there is a close con-
nection between the syntactic characteristics and the
realisations of different intonation patterns.

¥ This field is important for languages either with few
sources or with sources containing contradictory in-
formation.

59

COMMENTS_TO_THE FIELDS — contains remarks
(explanations) for the script peculiarities described in
previous fields.
OTHER_PECULIAR_CHARACTERISTICS - con-
tains script information another than that presented in
the main fields, e.g. differentiation of initial, middle
final and isolated graphemes in Arabic script.
LITERATURE_SCRIPTS - the literature sources
found for a particular script. The main reference mate-
rial is taken from (Daniels and Bright., 1996; Naka-

III. TTS PROBLEMS

Below we present the set of the TTS modules
with the corresponding script and language features to
be taken into account.

The field values in the Database Table "TTS
problems" contain the information about ways for
TTS modules to be developed (or different problems
to be overcome).

nishi, 1998).

Fields in the table TTS problems
(correspond to TTS modules)

Fields from the table Languages
that may serve as cues for solving
corresponding TTS problems

Fields from the table Scripts
that may serve as cues for
corresponding TTS problems

SENTENCE_EXTRACTION

PUNCTUATION_MARKS;
CAPITALISATION;
SPACES_BETWEEN_WORDS

TOKENISATION (Word extraction)

PUNCTUATION_MARKS;
CAPITALISATION;
SPACES_BETWEEN_WORDS

CLITICALISATION SPACES_BETWEEN_WORDS
PROPER_NAMES _ CAPITALISATION
PROCESSING

ACRONYM_ CAPITALISATION
PROCESSING

ABBREVIATION_ PUNCTUATION_MARKS;
PROCESSING CAPITALISATION;

SPACES_BETWEEN_WORDS;
OTHER_CHARACTERISTICS

SPECIAL_SYMBOLS
_PROCESSING

OTHER_CHARACTERISTICS

E-MAILS /URLs_PROCESSING

OTHER_CHARACTERISTICS

DIGITS_PROCESSING

MORPHO-SYNTACTIC_
CHARACTERISTICS

OTHER_CHARACTERISTICS

LOAN_WORDS_PROCESSING

SYMBOLS_FOR_
LOAN_WORDS

STRESS (TONE) ASSIGNMENT

LEXICAL STRESS;
SECONDARY_STRESS _
OR_RHYTHM;
MORPHO-SYNTACTIC _
CHARACTERISTICS;
MORPHOLOGICAL
CHARACTERISTICS

SYMBOLS_FOR_STRESS;
SYMBOLS_FOR_TONES

MORPHOLOGICAL_
DECOMPOSITION

MORPHO-SYNTACTIC _
CHARACTERISTICS;
MORPHOLOGICAL
CHARACTERISTICS
LEXICAL STRESS;
OTHER_CHARACTERISTICS

HOMOGRAPH_
DISAMBIGUATION

MORPHO-SYNTACTIC _
CHARACTERISTICS;
LEXICAL_STRESS

HOMOGRAPHS

PHRASING

MORPHO-SYNTACTIC _

PUNCTUATION_MARKS;

CHARACTERISTICS; CAPITALISATION;
PROPER_SYNTACTIC_ SPACES_BETWEEN_WORDS;
CHARACTERISTICS; OTHER_PECULIAR _
INTONATION_PATTERNS CHARACTERISTICS
G2P_CONVERTION MORPHO-SYNTACTIC _ GRAPHEME_TO_PHONEME _
CHARACTERISTICS; CORRESPONDENCE
MORPHOLOGICAL
CHARACTERISTICS

LEXICAL_ STRESS;
OTHER_PHONETIC_
CHARACTERISTICS

LITERATURE_TTS

60

The DB is organised in such a way that each
script can be used for several language and each lan-
guage at the same time can be written in several
scripts — relation many-to-many between the tables
"Languages" and "Scripts" (see Appendix A)’.

The database structure allows for different que-
ries using any desired parameters. We plan to make
the database available on the Web. Example of the
current Database form representation is given in Fig-
ure 1.

and language peculiarities to be used in required TTS
development stages'”.

All script and language features in the Multilin-
gual TTS-Related Database were scored in terms of
the complexity of the first two stages of TTS devel-
opment.

I -
LR e = e |-:-un:-r-u--r-rm-
[T T P T e r I S -
R j Carran b e bk
e T | ity ke il 5]
:.F..:-.-.-n-. [Fn--.-.l..-.—u...-. -] N T o T p
% pacan,_beisry meoniy F-I' -I Hroaar: F." .I :‘f‘f'“""“is-‘wi Diionc! Limvanin
g e
|| Ly wams | L [Cauawry Saww | Tomes | Lenical svess | Secan

ArrauEme

FOEL peralirasis i sadsm dalec ol

bty Primped Ses Toaher - Thas s 11 D00 e s pp Towwp_lemgiigs G YLLAEAC LAHGLUAGE
b pedan sgimanee ESORE s (= B LALERTT Y -SERE ITWE. Hewy spniie - clo FF
[Y | T sl |
16w
i | | dimg_ e | Fikg_nawe | Gpulesce etiactam | Tebwisssden | Chiwalbatiea | Fiigesi Bamvar
B Terga Mg pE e Akl Rl S e Db e e g hwues ol cey e 1 Towalsksd b ol deg

Figure 1. The form representation of the Multilingual TTS-Related Database (languages written in Bengali
script).

This representation is based on the main form
"Scripts" and two sub-forms: "Languages" and
"TTS_problems"

3 Evaluation of Language Complexity
in Application to TTS Development
Cycle

Evaluation of the complexity score in the TTS devel-
opment cycle can be considered subjective to a certain
extent (as well as evaluation of the performance of the
TTS system as a whole). Two main parameters are
normally used for TTS evaluation: intelligibility and
naturalness. We tried to formalise these parameters in
terms of required structural knowledge about script

? One language can be written in 2 scripts and there-
fore have two different types of TTS problems and
their solutions, e.g. Malay can be written both in Ara-
bic and Latin.

1. Creating a basic intelligible system

Basic intelligible system normally comprises the
following modules: sentence extraction (including
differentiation of main intonation patterns — questions
and statements); tokenisation (word extraction);
stress/tone assignment; morphological analysis and
POS tagging. The last module is required for creating
the basic system if only morphological-syntactic char-
acteristics in a particular language are needed for ob-
taining a correct phoneme sequence.

2. Creating a fully intelligible system

Full intelligible system comprises: text normaliza-
tion (acronyms processing, abbreviations processing,
special symbols processing, digits processing, e-
mail/URL processing); loan words processing; proper
names processing and phrasing.

10" Language-independent parameters such as voice-
quality, signal processing tools etc. are not taken into
account in this score system.

61

3. Creating a natural sounding system

The main parameters responsible for naturalness
are the following: proper Intonation patterns (pitch
variation in the limits of an utterance) including mi-
cro-prosody; accurate vowel/consonant durations and
spectral sound characteristics.

In this paper we present a tentative scoring sys-
tem for evaluation of TTS-related language complex-
1ty.

Table 1 contains such information including five
South Asian languages, written in Italic.

A difficulty in TTS development for South Asian
languages arises from the contradictory information
about the place of lexical stress for automatic stress
assignment (but in all cases, most of references indi-
cate either fixed or quantity-based stress that is easy to
predict automatically in comparison to free stress).
There are several South Asian languages using tones
that can be either predicted on the basis of rules (Pun-
jabi) or can be indicated only on the basis of a lexicon
(Manipuri, Tibetan). Major problems are caused by
the languages with "complex" writing systems, such
as the Arabic script (used for Pashto and Urdu) with
optional vowel symbols and the Tibetan script with no
spaces between words (these two languages have high
complexity scores in Table 1). In order to solve the
problems with such scripts machine learning tech-
niques both for vowel insertion and for word extrac-
tion (Hackett and Douglas., 2000) have been

developed.
Language | Intelligibility | Intelligibility
(Basic) (Full)
Pashto 9.5 12.5
Arabic 8.5 11.5
(Classical)
Russian 6 9
Thai 6 9
Tibetan 6 8.5
English 3 6
Hindi 3 5
Punjabi 2 45
Bengali 2 3.5

Table 1. Examples of the TTS-related complexity
scoring for several languages (including 5 South
Asian languages).

Below we present the main complex (from the TTS

development point of view) script and language fea-
tures for five South Asian languages.

62

Bengali:

SCRIPT FEATURES: No capitalisation

LANGUAGE FEATURES: grapheme-to-phoneme
correspondence direct with certain exceptions (e.g. not
rule-based pronunciation variants of the inherent
vowel);

Hindi:

SCRIPT FEATURES: No capitalisation

LANGUAGE FEATURES: direct G2P correspon-
dence with exceptions (e.g. not rule-based shwa-
deletion);

Pashto:

SCRIPT FEATURES: No capitalisation; optional
vowels

LANGUAGE FEATURES: Free stress; highly inflec-
tive morphology;

Punjabi:

SCRIPT FEATURES: No capitalisation

(Punjabi uses tones, but in contrast to Tibetan, symbol
combinations can serve as cues for automatic tone
assignment)

LANGUAGE FEATURES: rule-based stress assign-
ment;

Tibetan:

SCRIPT FEATURES:

No capitalisation; no cues for tones; no spaces be-
tween words; no punctuation marks.

4 Conclusions and Further Work

On the basis of the developed Multi-Lingual Database
it seems possible to make some conclusions about the
TTS development for different South Asian lan-
guages. Most Indian languages (all Dravidian - Kan-
nada, Malayalam, Tamil, Telugu; Indo-Aryan — Hindi,
Nepali, Oriya etc.) are not difficult from the TTS de-
velopment point of view — they use alphabetic-syllabic
alphabet with direct (or almost direct) grapheme-to-
sound correspondence and are characterised with rela-
tively simple language characteristics (from the TTS
development point of view).

The next stage of the current work is to test both
available and new TTS techniques on several South
Asian languages.

References

Dalby, Andrew. 1999. Dictionary of Languages (The
definitive Reference to More than 400 Languages).
Bloomsbury.

Daniels, Peter and William Bright. 1996. The World’s
Writing Systems. Oxford University Press.

Dutoit, Thierry. 1997. An Introduction to Text-to-
Speech Synthesis. Kluwer Academic Publishers,
Dordrecht.

Ethnologue (Volume 1). Languages of the World.
2000. SIL International, Dallas.

Goedemans, Rob, Harry van der Hulst and Ellis
Visch. 1996. Stress Pattern of the World (Part 1).
Holland Academic Graphics, The Hague.

Hackett, Paul and Douglas W. Oard. Comparison of
Word-Based and Syllable-Based Retrieval for Ti-
betan. Proceedings of the 5-th international work-
shop on Information retrieval with Asian

languages, November 2000.
Multilingual Text-to-Speech Synthesis. The Bell Labs
Approach. 1998. Editor R.Sproat. Kluwer Aca-
demic Publishers.
Nakanishi, Akira. 1998. Writing Systems of the World.
Charles E. Tuttle Company.
http://www.rosettaproject.org:8080/live - The Rosetta
Project database.

63

A. Appendix A. Relationships between the Tables in the Multilingual TTS-Related Da-
tabase

=:2 Relationships

u D
: Saipt_name
Lang_hierarchy Script_bype
Mumber_of_speakers Capitalisation
Counkry Score {Capitalisation)
State Grapheme_to_phoneme_correspondence
Tones

Score (Grapheme_ko_phoneme_correspondence)
Symbols_for_loan_words

Score (3vmbols_for_loan_words)
Symbals_for_stress

Score (Symbaols_For_stress)
Symbols_Far_tones

Score (3ymbols_for_tones)
Punckuation_marks

Score (Punckuation_marks)
Spaces_between_words

Score (Spaces_between_words)
Homographes

Score (Homographs)
Other_characteristics

Score (Other_charackeriskics)
Comments ko the fields
Likerature_scripts

Scare_SUM

Score (Tones)

Lexical_stress

Score (Lexical_stress)
Secondary_stress_or_rhythm

Score (Secondary_stress_or_rheethm)
Intanation_patterns
Other_phonetic_characteristics

Score (Other_phonetic_charackeristics)
Maorpho-syntactic characteristics

Score (Morpho-syntactic characteristics)
Morphological characteristics (word Formation)
Score (Morphological characteriskics)
Proper_syntactic_charackeriskics

Score (Proper_syntactic_characteristics)
Other_characteristics

Score (Other _characteriskics)
Literature_lang

Score_SUM

TTS_probl
sl
Lang_narme

Script_name
Sentence_extraction
Tokenisation

Cliticalisation
Propet_Mame_processing
Bcronyms_processing
Abbreviations_processing
Special_Symbols_processing
E-mailsjlIRLs_processing
Digiks_processing
Loan_wards_processing
Stress_assignment
Marphological_decomposition
Homograph_disambiguation
Phrasing

G2P_conversion
Literature_TTS

64

Context Sensitive Pattern Based Segmentation: A Thai Challenge

Petr Sojka and David Antos
Faculty of Informatics, Masaryk University in Brno, Botanickd 68a, 602 00 Brno, Czech Republic

sojka@informatics.muni.cz

Abstract

A Thai written text is a string of sym-
bols without explicit word boundary
markup. A method for a develop-
ment of a segmentation tool from a cor-
pus of already segmented text is de-
scribed. The methodology is based on
the technology of competing patterns. A
new UNICODE pattern generation pro-
gram, OPATGEN, is used for the learn-
ing phase. We have shown feasibil-
ity of our methodology by generating
patterns for Thai segmentation from al-
ready segmented text of the Thai cor-
pus ORCHID: the segmentation algo-
rithm quickly reaches F-score of 93%.
Finally, we enumerate possible new ap-
plications based on the pattern tech-
nique, and conclude with the suggestion
of a general Pattern Translation Process.
The technology is general and can be
used for any other segmentation tasks
as phonetic, morphologic segmentation,
word hyphenation, sentence segmenta-
tion and text topic segmentation for any
language.

1 Motivation and Problem Description

Many natural language processing applications
need to cut strings of letters, words or sentences
into segments: phonetic, morphologic segmenta-
tion, word hyphenation, word phrase and sentence

xantos@informatics.muni.cz

segmentation may serve as examples of this seg-
mentation task. In Thai, Japanese, Korean and
Chinese languages, where there are no explicit
word boundaries in written texts, performing char-
acter stream segmentation is a crucial first step in
the natural language processing of written texts.
An elegant way of solving of this task is to learn
the segmentation from already segmented corpus
by a supervised machine learning technique.

1.1 Thai Segmentation Problem

A Thai paragraph is a string of symbols (44 con-
sonants, 28 vowels). There are neither explicit syl-
lable, word and sentence boundaries, nor punctu-
ation in Thai text streams. For lexical, semantic
analysis or typesetting, crucial first step is to find
syllable, word and sentence boundaries. The Thai
typesetting engine has to be able to segment the
text in order to break lines automatically, too. Sim-
ilarly, tools are needed to insert the <wbr> HTML
tag automatically for the web browser rendering
engine. A good word segmentation is a prerequi-
site for any Thai text processing including Part-of-
Speech (POS) tagging (Murata et al., 2002).

1.2 Existing Approaches to Thai
Segmentation

There is a program SWATH (Smart Word
Analysis for THai) with three implemented
dictionary based algorithms (longest match-
ing, maximal matching, bigram model). It
is used by the Thai Wordbreak Insertion ser-
vice http://ntl.nectec.or.th/services/
www/thaiwordbreak.html at NECTEC, the

65

Thai National Electronics and Computer Tech-
nology Center. These methods have limited
performance because of problems with han-
dling of unknown words. There are other
approaches based on the probabilistic language
modelling (Sornlertlamvanich, 1998; Sukhahuta
and Smith, 2001) or logically combined neural
networks (Ma et al., 1996).

Mamoru and Satoshi (2001) reported that their
Thai syllable recognizer, in which knowledge
rules based on heuristics derived from the analysis
of unsuccessful cases were adapted, gave a ratio of
segmentation of 93.9% in terms of sentences for
the input of Thai text. The Thai text used was Kot
Mai Tra Sarm Duang (Law of Three Seals), and
had 20,631 sentences (Jaruskulchai, 1998, Chap-
ter 3).

Feature based approach using RIPPER and
Winnow learning algorithms is described in (Mek-
navin et al.,, 1997). Aroonmanakun (2002) re-
cently reported approach based on trigram model
of syllables and syllable merging, with very
high precision and recall. His Thai word seg-
mentation online service on http://wuw.arts.
chula.ac.th/"ling/wordseg/ is performed
using maximum collocation approach.

All these attempts show the need and impor-
tance of highly efficient and quality solution of
Thai word segmentation problem.

2 Patterns

Patterns are used to recognise “points of interest”
(segment boundaries) in data. The pattern is a sub-
word of a given word set and the information of the
points of interest is written between its symbols.

There are two possible values for this informa-
tion. One value indicates the point of interest is
here, the other indicates the point of interest is not
here. Natural numbers are the typical representa-
tion of that knowledge; odd for yes, even for no.
So we have covering and inhibiting patterns. Spe-
cial symbols are often used, for example a dot for
the word boundary. Patterns are as short as pos-
sible to store the information: context of variable
length is modelled by this approach.

66

2.1 Competing Patterns

More formally, let us have an alphabet X. Patterns
are words over the free monoid (X, -, &) where &
is the empty word, and - (centered dot) is opera-
tion of concatenation. Let (A, <) be a partially
ordered system, < be a lattice order (every fi-
nite non-empty subset of A has lower and upper
bound). Let . be a distinguished symbol (dot) in
¥ = ¥ U {.} that denotes the beginning and the
end of word: begin of word marker and end of
word marker. Classifying patterns are the words
over X' U A such that the dot symbol is allowed at
the beginning or end of patterns only.

Let P be a set of patterns over X' U A (compet-
ing patterns, pattern base). Let w = wjw, ... w,
be a word to classify with P. Classification
classify(w, P) = aywiaw ... w,a, of w with re-
spect to P is computed from the pattern base P by
the following competition. All patterns whose pro-
jection to X match substring of w are collected. q;
is the supremum of all values between characters
w; and w; | in matched patterns. classify(w, P) is
also called winning pattern. Winning pattern holds
the definitive information (hyphenation, segmen-
tation) about w with respect to the pattern base P.
There can be several pattern bases for the same w
that “compete” as well.

2.2 Example

An example of competing patterns used for hy-
phenation of English words is shown in Fig-
ure 1 on the facing page. In this example the
ordered system (A, <) used is for classification
of candidates for hyphenation border is IN (nat-
ural numbers). There are five pattern levels
used in the example —Level 1...Level 5. There
were eight patterns that matched the input (1na,
1tio,...). Patterns in odd levels are covering,
in an even levels inhibiting. Inhibiting patterns
specify the exceptions with respect to the knowl-
edge acquired in lower levels. Winner pattern is
.h0y3pOh0e2n5a4t2i0o0n.: one sees that e.g.
pattern h e nba t wins over n2a t, thus possi-
ble segmentations are hy-phen—-ation.
Competing pattern sets can be used on all levels
of natural language processing—covering struc-
tures used in morphology, their exploration is seen

hyphenation

Level 1 in a

Level 1 1t i o
Level 2 n2a t
Level 2 2i o
Level 2 h e2n

Level 3 .h y3p h

Level 4 hen a4
Level 5 h e nba t

.hOy3pOhOe2n5a4t2i0o0n.
hyphen-ation

Figure 1: Competing patterns and pattern levels
for segmentation of English word hyphenation.

on both syntax (parsing) and semantic (word sense
discrimination) levels.

For the detailed definitions and more examples
see (Liang, 1983; Sojka, 2000).

2.3 Comparison with Finite-State
Approaches

Competing patterns technology can be viewed as
one of finite-state approaches, with their pros and
cons. Competing patterns extend the power of
Finite-State Transducers (FST) similarly as adding
the complement operator with respect to X. Ide-
ally, instead of storing full FST, we make pat-
terns that embody the same information in even
more compact manner. Collecting patterns match-
ing given word can be done in linear time, using
trie data structure for pattern storage.

It has been shown that decomposition of
the problem by using local grammars (Gross,
1997) or building cascades of Finite-State Ma-
chines (Hobbs et al., 1997) is a tractable, but very
time-consuming task. Supervised learning meth-
ods for the induction of patterns from segmented
text are needed.

2.4 Pattern Generation—PATGEN and
OPATGEN Programs

Liang (1983) wrote a pattern generation program
PATGEN for generation of hyphenation patterns
from the list of already hyphenated words. The
method for generation of patterns is not only inde-
pendent of language for which (hyphenation) pat-
terns are generated, but of an application domain,

too. PATGEN has been used for the preparation
of quality hyphenation patterns for several dozens
of languages (Sojka and Sevetek, 1995). A new
enriched (UNICODE) version of PATGEN called
OPATGEN, has been developed at Masaryk Uni-
versity Brno (Anto§ and Sojka, 2001). The pro-
gram opens new possibilities for pattern genera-
tion and new applications. The only thing that
must be done to create patterns is to map the
problem in mind to the alphabet used by OPAT-
GEN (UNICODE). OPATGEN is based on separate
PATLIB (Anto§, 2002) library, so even making a
new special purpose frontend for a new applica-
tion should be straightforward.

3 Thai Texts in ORCHID Corpus

There is a freely available corpus of already seg-
mented Thai texts called ORCHID (Sornlertlam-
vanich et al., 1997). Parts of speech are tagged,
too, using bootstrapping technique, manual edit-
ing and proofreading. There are 9,967 paragraphs
in the corpus (6 MB in TIS-620 encoding).

Even native Thai speakers do not agree
on the definition of the main notion—Thai
word (Jaruskulchai, 1998) (problems appear
whether a “compound word” should be consid-
ered as single entity or not). We have based
our machine learning experiments purely on the
data available in the ORCHID corpus, showing the
power of the machine learning technique. We can-
not comment on the quality of the corpus tagging,
as we are not Thai native speakers.

The corpus consists of articles. Every article
has headers containing meta-information, usually
in Thai and English, followed by the text, consist-
ing of paragraphs. Paragraphs are numbered and
tagged with #Pn marks. Paragraphs contain sen-
tences. The sentences are tagged with #n. Each
sentence appears twice, first untagged. The sec-
ond occurrence is tagged with part-of-speech tags.
Each word is followed by the tag, eg., /VACT for
active verb.

3.1 Corpus Preprocessing

In order to create patterns recognizing Thai word
boundaries we had to pre-process the corpus. We
used a simple Perl script. The word boundaries
are marked in the second occurrences of sentences

67

in the corpus. Therefore we cut out only the
marked parts. The “points of interest” should be
denoted with ‘-’ sign for OPATGEN. We substi-
tuted all the part-of-speech tags with the minus
signs. There are also text entities marked with sin-
gle angle bracket tags, e.g., <space>. All of them
act as word separators in the corpus and we also
substituted them with our word boundary mark.
That is also what we did with numbers, we silently
removed them as there is no reason to encounter
them into patterns. When applying patterns, num-
bers are trivially word boundaries.

Finally, we joined the whole paragraphs up. The
places between sentences are also word bound-
aries. We decided not to join larger portions of
the text (like several paragraphs or even articles)
as we did not want the words OPATGEN had to
deal with to be longer than hundreds of symbols.
It would slow the pattern generation down and we
would add only a bit of information, only the word
boundaries that appear between words finishing
and starting a paragraph. The preprocessed start-
ing paragraphs from ORCHID (input for OPAT-
GEN) look like this:

—mi—ﬂszﬁu—mq-‘immi—ﬂ%”h—ﬁ—
lasamsifouasiiamn-sidnnsefind-uas-
ADNIILABT-ThUTs M o-LaN-

Tu-ii-daman-featssgu-tu-

-an3-

AN -F AT IIMI-NIENIIINONEAT-
waluladuasmswdeu-

sz lne-16-f-ms-Usunldou-
Tassase-lu-mysimu-aegia-ges-
Ussma-nn-lsene-inuasnsn-lilg-
AU UsEnagaa NI T-IN-BaTu-
Tu-my-duiumsiie-ussg-Yaguszasd-
vﬁ’ﬂndn-as-é’im-mﬁﬂ—ﬂaﬁ’ﬂﬁugm—wmﬂ—
Usems-lu-ms-iu-dhise-was-1iu-y1u-
du-my-wannalulad-ai- 14 lu-ms-uda-
199-MAYAATNNITH-NTENTINING AN
waluladuasmswdesnu-Sa-1d-ltanwdrda-
l-ddu-ge-lu-ms-Wam-gaamnssu-
Bannsefind-was-aenfinnes-a-

68

'
o o

QAEMNIIN-T-Ag-T-umnn-ii-ddfey-1n-
lu-magaamnyss Tasfu-Tafofiugiu-
wa-dmilsenau-i-d iy -1e9-ms-Han-
HANTANGAEUNTTH-UND-N -

4 Methodology

An important question is what kind of evaluation
measures is most appropriate to compare the seg-
mentation proposed by automated tools with the
correct segmentations in the test set. A widely
used evaluation scheme is the PARSEVAL scheme,
based on the notions of precision and recall.

4.1 Evaluation Measures

Definition of the measures for our application is as
follows:
found well

Precision = (D)
found well 4+ # bad

found well
found well + # missed

Recall =

Segment is correct if both the start and the end
of the segment is correctly predicted.

The precision and recall scores are combined
into a single measure, known as the F-score (Man-
ning and Schiitze, 1999):

2 x Precision x Recall
F-score = — (3)
Precision + Recall

Another possibilities of an evaluation metric for
segmentation are P, metric (Beeferman et al.,
1997; Beeferman et al.,, 1999) or WindowD-
iff (Pevzner and Hearst, 2002). We do not use
them, as they are appropriate for topic text seg-
mentation, where small errors in positions of seg-
ment cuts are acceptable.

4.2 Experiments

We have divided the corpus into training set
(3/5) and test set (2/5) and used the training
set (6,000 paragraphs) for pattern generation.
Ideally, we strive for smallest patterns solving
the task with the highest F-score as possible. As
general procedure how to achieve this goal is
not known, parameters for the generation have
been chosen after some trial and error (one has

Table 1: Results of Thai segmentation patterns generation (6,000 paragraphs from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1-5 161 97.98 4.87 +12907 130
2 2-6 111 96.83 0.69 + 2091 156
3 3-11 131 99.58 0.82 + 2578 204
4 4-12 411 97.83 0.03 + 685 217
5 9-19 131 99.58 0.15 + 1689 270
6 1020 111 99.56 0.04 + 119 274

to find good-working thresholds for adding new
patterns). Using the knowledge about threshold
parameters used for the generation of hyphenation
patterns we have quickly reached 100% precision
(patterns were able to cover segmentation in
training set without errors).

Parameters used for pattern generation are
shown in Table 1 on page 6. In the second col-
umn, there are lengths of pattern candidates. A
generation process can be parametrised by several
parameters whose tuning strategies are beyond the
scope of this paper; see (Sojka and Sevecek, 1995;
Sojka, 1995) for details. Setting of the thresholds
could be tuned so that virtually all hyphenation
points are covered.

As there are quite long words in Thai (10 to
20-syllable word is not an exception), to achieve
100% precision, we may possibly need patterns
as long as 20 characters to model long distance
dependencies. This increases the time of pattern
generation, but not above achievable level (it took
half a day on Pentium 4 class PC).

The ‘param’ column contains the pattern choos-
ing the rule weights. The percentages show the be-
haviour of the patterns on the corpus during gen-
eration. Finally, there is the number of patterns
added in particular level and pattern size in kilo-
bytes (coded in UTF-8 encoding). It is seen that
most of the work is done by short patterns.

Next, we increased the training set to
8,000 paragraphs. Results are shown in Ta-
ble 2 on the following page. Both precision and
recall slightly increase with bigger training sets.

The behaviour of the patterns on data they were
generated from does not show how they act on
previously unseen data (generalization abilities).
Therefore we tested performance on the test set

(3,967 paragraphs). The obtained recall is above
90%. With the bigger training corpus we do get
better performace measures as shown in Table 3 on
the next page. From the main results given in this
table follows that the the ORCHID Corpus is quite
small for our task: given the bigger training corpus
one would have even better performance.

Resulting 19424 patterns look like this:
.olm .plme .prelp .s1f .s2mo .slmp
stlin x1p xly .nln .nly .nlu
MINY3 MISHHU .MIWMUITZUUS
mawasnlisunsnsa .msfu4 .msin
.fﬂiSﬁﬂ‘]&H .MganwuUS .ﬂ"li"é]E]ﬂLlfmJLLyaSS
MIBBNMNILASWAUIS .MISITN .Naun3
.ﬂm35ﬂi§3~lﬂ15‘lﬂﬂﬂ1ﬂ. AMLNTINMTSUIMS.
AMENTTUMINUIINITE AMEHSMNS
AME3IT AL 5AUNTINNTN 130 .A1ln
Aln ula .Q'I‘Uolj c

To sum up the properties of pattern technique,
even with small data like ORCHID Corpus we have
got 1:20 compression of the information stored
and hidden there. The patterns can be trained to
100% precision on the training data and making
essentially no error (one can always add the pat-
tern for the whole paragraph). One can balance
tradeoff between recall and precision measured on
testing data. Moreover, the application of patterns
is very efficient. Speed of the segmentation is lin-
ear wrt. the length of the word we apply them
on: in our case with length of the paragraph. It
makes them one of the first choices in cases where
processing speed is important. The speed of the
segmentation using developed Thai patterns is at
the range of 10,000 wps (words per second) on a
Pentium 4 class PC. Memory consumption using
compact digital trie implementation used in TEX
for this performance is much below 0.3 MB.

69

Table 2: Results of Thai segmentation patterns generation (8,000 paragraphs from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1-5 161 97.92 4.86 +15443 161
2 2-6 111 96.53 0.65 + 2596 196
3 3-11 131 99.57 0.79 + 3448 267
4 4-12 411 97.87 0.03 + 953 286
5 9-19 131 99.68 0.12 + 2468 364
6 1020 111 99.67 0.04 + 129 368

Table 3: Precision, recall, and F-score on unseen text.

trained on # paragraphs good bad missed precision recall F-score
4,000 139788 11231 15529 92.56% 90.00% 91.26
6,000 98243 7951 9432 9251% 91.24% 91.87
8,000 46361 3358 3703 93.25% 92.60% 92.92

The generation process may be optimized with
respect to the resulting pattern size; the trade-
off among size, covering ratio, and error is ad-
justable. Nevertheless good patterns may be small
in size and therefore applicable for handhelds, mo-
bile phones and other small equipment. There is
no reason for SMS’s to have awfully broken words
on the display of a cellular phone.

Creating patterns is possible due to availability
of large tagged corpora. Technique of compet-
ing pattern generation might be useful for corpora
builders as well. Thresholds set for pattern gener-
ation can be tuned up in such a way that highly
improbable (bad?) segmentation points are not
learned. This way, pattern generation process may
serve as filter selecting possible errors in input cor-
pus tagging. These errors are a traditional night-
mare for anybody who deals with large experimen-
tal data. Creating patterns for a phenomenon ap-
pearing in the corpus thus may help to clean the
errors when the error list reported by the generator
is checked manually. The size of the error list may
be tuned by the number of levels and by the setting
the thresholds appropriately.

5 Data-Driven Approach Based on
Competing Patterns

Let us comment on the technology of competing
patterns from different points of view. The appli-
cation of the techniques of bootstrapping and strat-

70

ification (Sojka, 1995; Sojka, 1999) made it even
more attractive.

5.1 Pattern Translation Processes

A process based on competing patterns that adds
markup to the string of symbols is called Pat-
tern Translation Process (PTP) (Antos and Sojka,
2001). In the terminology of automata theory, it
is special type of finite state transducer. With this
finite state approach (Roche and Schabes, 1997),
quite powerfull engines could be designed, with
exceptional speed: time complexity of the PTP im-
plementation based on digital tries is linear with
respect to the input length (length of input sen-
tence). Putting PTP’s in a cascade, we still stay
in linear time. In addition to PATLIB, there are
quite efficient digital trie publicly available imple-
mentations as JUDY (Silverstein, 2002). Such PTP
implementations are very memory efficient.

Although many natural language special pur-
pose tools are being developed, their implemen-
tation using competing patterns technology with
bootstrapping, stratification and pattern genera-
tion techniques (Sojka and Sevecek, 1995; Sojka,
1995; Sojka, 1999) is possible. We believe that
in addition to the one of hardest problems—Thai
segmentation—many other NLP problems can be
solved by our competing pattern data-driven ap-
proach. Let us add couple of notes about applica-
tions in the Computer Typesetting area.

5.2 Applications in Computer Typesetting

A good list of tough problems in the area of the
computer typesetting, most of which are tractable
by OPATGEN, is presented in (Haralambous and
Plaice, 2001). A new typesetting system €2 (Har-
alambous and Plaice, 1997), gradually developed
from the well known TgX typesetting system, is
designed to be able to typeset text in all languages
of the world. To solve typesetting problems that
are not supported by the €2 engine itself external
special purpose programs outside of €2 are invoked
as so called external OTP’s (2 Translation Pro-
cesses).

When we analyze most of the problems and
application of computer typesetting described
in (Haralambous and Plaice, 2001), we see that
most of them could be formulated as string rewrit-
ing of regular languages with varying context
length. They can be seen as translation processes
that typically add information to a token (character
or word) stream.

In the typesetting engine application, the main
idea is the usage of pattern recognition in the mid-
dle of the digestive process of a typesetting en-
gine. A cascade of PTP’s is able to efficiently
solve the hardest problems known sofar, in linear
time, given the sets of competing patterns.

6 Conclusion and Future Work

We have shown the feasibility of technology of
competing patterns to tackle the Thai word seg-
mentation problem.

To evaluate next steps of the technology—
bootstrapping and stratification techniques—we
are looking for (native Thai) partners to pursue
further research. Improving consistency of tag-
ging of the corpus will even improve the system
performance. Application for Thai sentence seg-
mentation problem (Charoenpronsawat and Sorn-
lertlamvanich, 2001) is straighforward, too, but a
bigger corpus is needed for learning.

Having a tagged corpus freely available, one
may try easier task of not only word segmentation,
but syllable segmentation. This may be needed for
typesetting engine to use, due to long Thai words.
Most promising approach thus seems to be using
competing patterns for syllable segmentation, and

then parse the text upwards, merging syllables into
words and words into sentences.

Another general questions remain open. How
to set the OPATGEN parameters to get space-
minimal, level-minimal, highest-precision, high-
est recall patterns given the data? We are still look-
ing for rigorous theory for setting the parameters
of the patern generation process. We also think of
an automated pattern generation, performing the
parameter setting using an expert system or statis-
tical methods.

We also spend some effort on developing bet-
ter generation strategies. Implicit strategy used by
OPATGEN is basically brute-force testing of all
reasonable pattern candidates. It is not straight-
forward how to optimize the process, but using
bigram or trigram statistics of wordlist is an idea
worth trying.

Choice of best fitting data structure for patterns
needs further investigation, even though keeping
the set of patterns is a general dictionary problem,
studied for years by computer scientists. There are
other approaches than those used in TgX, PATGEN
and OPATGEN, namely packed dynamic tries LC-
tries (Nilsson and Karlsson, 1999) and new digi-
tal trie library implementations like JUDY (Silver-
stein, 2002).

Acknowledgement

Support of the grant CEZ:J07/98:143300003 is ac-
knowledged.

References

David Anto$ and Petr Sojka. 2001. Pattern Generation
Revisited. In Simon Pepping, editor, Proceedings of
the 161 European TgX Conference, Kerkrade, 2001,
pages 7-17, Kerkrade, The Netherlands, Sep. NTG.

David AntoS. 2002. PATLIB, Pattern Manipulation
Library. http://www.fi.muni.cz/“xantos/
patlib/.

Wirote Aroonmanakun. 2002. Collocation and Thai
Word Segmentation. In Proceedings of SNLP-
Oriental COCOSDA 2002, pages 68—75.

Douglas Beeferman, Adam Berger, and John Lafferty.
1997. Text segmentation using exponential models.
In Proceedings of the 2nd Conference on Empiri-
cal Methods in Natural Language Processing, pages
35-46, Providence, RI.

71

Douglas Beeferman, Adam Berger, and John Lafferty.
1999. Statistical Models of Text Segmentation. Ma-
chine Learning, 34(1-3):177-210.

Paisarn Charoenpronsawat and Virach Sornlertlam-
vanich. 2001. Automatic Sentence Break Dis-
ambiguation for Thai. In Proceedings of ICCPOL
2001, pages 231-235, May.

Maurice Gross. 1997. The Construction of Local
Grammars. (Roche and Schabes, 1997), pages 329—
354,

Patrick Hanks, editor. 1998. The New Oxford Dictio-
nary of English. Oxford University Press, Oxford.

Yannis Haralambous and John Plaice. 1997. Methods
for Processing Languages with Omega. In Proceed-
ings of the Second International Symposium on Mul-
tilingual Information Processing, Tsukuba, Japan.
available as http://genepi.louis-jean.com/
omega/tsukuba-methods97.pdf.

Yannis Haralambous and John Plaice. 2001. Traite-
ment automatique des langues et composition sous
Omega. Cahiers GUTenberg, (39-40):139-166,
May.

Jerry R. Hobbs, Douglas Appelt, John Bear, David Is-
rael, Megumi Kameyama, Mark Stickel, and Mabry
Tyson. 1997. FASTUS: A Cascaded Finite-State
Transducer for Extracting Information from Natural-
Language Text. (Roche and Schabes, 1997), pages
383-406.

Chuleerat Jaruskulchai. 1998. Automatic Indexing for
Thai Text Retrieval. Ph.D. thesis, School of Engi-
neering and Applied Science, George Washington
University, August.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by
Com-put-er. Ph.D. thesis, Department of Computer
Science, Stanford University, August.

Qing Ma, Hitoshi Isahara, and Hiromi Ozaku. 1996.
Automatic part-of-speech tagging of thai corpus
neural networks. In Lecture Notes in Computer Sci-
ence 1112, pages 275-280. Springer-Verlag.

Shibayama Mamoru and Hoshino Satoshi. 2001. Thai
Morphological Analyses Based on the Syllable For-
mation Rules. Journal of Information Procesing,
15(04-007).

Christopher D. Manning and Hinrich Schiitze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press.

Surapant Meknavin, Paisarn Charoenpornsawat, and
Boonserm Kijsirikul. 1997. Feature-based Thai
Word Segmentation. In Proceedings of the Nat-
ural Language Processing Pacific Rim Symposium
(NLPRS 1997), pages 41-46.

72

Masaki Murata, Qing Ma, and Hitoshi Isahara. 2002.
Comparision of Three Machine-Learning Methods
for Thai Part-of-Speech Tagging. ACM Transac-
tions on Asian Language Information Processing,
1(2):145-158.

Stefan Nilsson and Gunnar Karlsson. 1999. IP-
Address Lookup Using LC-Tries. [EEE Journal
on Selected Areas in Communications, 17(6):1083—
1092.

Lev Pevzner and Marti A. Hearst. 2002. A Cri-
tique and Improvement of an Evaluation Metric
for Text Segmentation. Computational Linguistics,
28(1):19-36.

Emmanuel Roche and Yves Schabes. 1997. Finite-
State Language Processing. MIT Press.

Alan Silverstein. 2002. Judy IV Shop Man-
ual. http://judy.sourceforge.net/
application/shop_interm.pdf.

Petr Sojka and Pavel Seve¢ek. 1995. Hyphenation in
TEX—Quo Vadis? TUGboat, 16(3):280-289.

Petr Sojka. 1995. Notes on Compound Word Hyphen-
ation in TgX. TUGboat, 16(3):290-297.

Petr Sojka. 1999. Hyphenation on Demand. TUGboat,
20(3):241-247.

Petr Sojka. 2000. Competing Patterns for Language
Engineering. In Petr Sojka, Ivan Kopecek, and
Karel Pala, editors, Proceedings of the Third Inter-
national Workshop on Text, Speech and Dialogue—
TSD 2000, Lecture Notes in Artificial Intelligence
LNCS/LNAI 1902, pages 157-162, Brno, Czech
Republic, Sep. Springer-Verlag.

Virach Sornlertlamvanich, Thatsanee Charoenporn,
and Hitoshi Isahara. 1997. ORCHID: Thai Part-
Of-Speech Tagged Corpus. Technical Report TR-
NECTEC-1997-001, Thai National Electronics and
Computer Technology Center, December. http:
//www.links.nectec.or.th/.

Virach Sornlertlamvanich. 1998. Probabilistic Lan-
guage Modeling for Generalized LR Parsing. Ph.D.
thesis, Department of Computer Science, Tokyo In-
stitute of Technology, September.

Rattasit Sukhahuta and Dan Smith. 2001. Information
Extraction Strategies for Thai Documents. Interna-

tional Journal of Computer Processing of Oriental
Languages (IJCPOL), 14(2):153-172.

Author Index

ANTOS, DAVIA terreereereeiineceeteeressencctecsecssenciocsecsasssssccsecsssssssssssacccsssas 65

Baker, Paul ceveieeeriiieeerienerieneeeennneecesnncssnseccscssccssensesssnssssssenscsssnsans 1
BUtt, MITIAIN ¢eeterieeeeeeeseeccsesncescoccsssssscsccsssessssssssaccssssasscsassssnsssssssessses 9
Chatterjee, Niladri veveeeeereeeeiesesrsesienrsescascossssssscscssssssssssssssesstessessessons 23
(€071 IO 15
(€101 0] 72T D 1ST<) o S 23
Hardie, ANAIEW veeeeeeeeeeeeeneceeeceessssacscesccscssssscaecscesssssssssscossstsssnsseccccssns 1

Hussain, Sarmad ..ceeeeeeeeeeeeeeeeeeeccesenccerencceesnssscsssnccesencsscssessscssssssennses 31
Jayaram, B.D. tcceeciiiiieiiinteintiinieiatiinstssntsniatscnscsntscnsssnsescnsssnsssensonss 1

King, Tracy HOIIOWAY «eveereereencenesescaarierienientonrcesconssensonscsconcsnscssssnssanss 9
Mallikarjun, B. «eieeieeiiiniinreneciersrsensenssscenssosssnssescenssnscosssescossssssensonses 35
Maxwell IIL, JONN T. cecneeeeiineeeeereeeeerenccerencceesnncecssenccesceessconnsssonscassennses 9
MCENETY, TONY teuureensrecnscecscecascenscscassenscscasssrassenscssssssmssssssssessossassensons 1
Mital, Manav R, ceeeeieieeeieeienieeieneeresecterseccecsencieseenssssenssscsnssssonnsssssnnsee 15
MUKEIJEE, A. teueennriarsenrenssescessssscsscsssssssessnmscsnssssssssensasssensonsossssnsssnces 15
| 2E:111 - WA 11 F: 1Y R PP 15
Ramanathan, AnanthakriSHNan .eeeeeeeeceeeeseeeceecceecessesccteccccsssansseccccssessnnes 43
JXETOI D111 5-(] 1 D TN 43
Shabadi, Kalyani R...ccceeereeriinreirciniinrseriiniiriescinienrissescessssscesssnssnssens 49
Shalonova, KSENIA «eveeieeeeeeeaeeeeeaseeccesnccerencccesnnescassncsasnssscssnssscsssssssns 57
Sharma, D. eeeeeeeeeeeeeeecreccectesnaccccccessssssssseccccsssssssecsssssssssscescssssssansans 15

ShukKla, P. seieeireiierieriercencentsnstesssessesssnsursssessesssnssescosssssssssssssessrassssens 15
S0JKa, Petr ceveuieireinieeeincinrsissiacsessessessosssnssessessossossconcosssssssnssnssensasns 65
TUCKET, ROZET teuviierieriinrincentsnsinesnssescsessessacesesssessessessonssnsconcsnsssnnsens 57

VIKIAM, K. ceeeeiieeeeeereceecasenecreccacessssscscccasesssssscscsccsssssssscsscesssnnssassses 15

73

