Hexa- and octanuclear iron(III) salicylaldoxime clusters \dagger

Kevin Mason, ${ }^{a}$ Ian A. Gass, ${ }^{a}$ Fraser J. White, ${ }^{a}$ Giannis S. Papaefstathiou, ${ }^{b}$ Euan K. Brechin*a ${ }^{\boldsymbol{a}}$ and Peter A. Tasker* ${ }^{*}$

Received 16th November 2010, Accepted 17th January 2011
DOI: 10.1039/c0dt01593h

The syntheses, structures and magnetic properties of six iron complexes stabilised with the derivatised salicylaldoxime ligands Me -saoH H_{2} (2-hydroxyethanone oxime) and Et-saoH H_{2} (2-hydroxypropiophenone oxime) are discussed. The four hexanuclear and two octanuclear complexes of formulae
$\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{sao})_{6} \mathrm{Br}_{4}(\mathrm{py})_{4}\right] \cdot 2 \mathrm{Et} 2 \mathrm{O} \cdot \mathrm{MeOH}(1 \cdot 2 \mathrm{Et} 2 \mathrm{O} \cdot \mathrm{MeOH}),\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{3.85}\left(\mathrm{~N}_{3}\right)_{4.15}(\mathrm{Me}-\right.$ sao $\left.)_{6}(\text { py })_{2}\right](2),\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\mathrm{Me}-\mathrm{sao})_{2}(\mathrm{OMe})_{4} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right](3),\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\mathrm{Et}-\right.$ sao $\left.)_{2}(\mathrm{OMe})_{4} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH}\left(4 \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH}\right),\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{Me}-\mathrm{sao})_{4}\left(\mathrm{SO}_{4}\right)_{2}-\right.$ $\left.(\mathrm{OMe})_{4}(\mathrm{MeOH})_{2}\right](5)$ and $\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{Et} \text {-sao })_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OMe})_{4}(\mathrm{MeOH})_{2}\right](6)$ all are built from a series of edge-sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{1++}$ tetrahedra. Complexes 1 and $\mathbf{2}$ display a new μ_{4}-coordination mode of the oxime ligand and join a small group of Fe -phenolic oxime complexes with nuclearity greater than six.

Introduction

Polymetallic clusters of iron are being synthesised and studied for a host of reasons. In bioinorganic chemistry, for example, they have been employed as models for iron-containing enzymes such as methane monooxygenase and hemerythrin which both contain diiron cores, whilst the formation of larger oxy-hydroxy stabilised molecules can give insight into the formation and function of Ferritin, a protein containing up to $\sim 4500 \mathrm{Fe}$ centres that stores and regulates iron in living organisms. ${ }^{1-3}$ The presence of five unpaired electrons in high spin Fe^{3+} ions also makes them attractive for making magnetically interesting complexes, and the triangular $\left[\mathrm{Fe}_{3} \mathrm{O}\right]^{7+}$ and tetrahedral $\left[\mathrm{Fe}_{4} \mathrm{O}\right]^{10+}$ building blocks common to the cores of many polymetallic Fe^{3+} cluster compounds can lead to fascinating frustration effects. ${ }^{4}$ Geometric frustration is at the origin of a variety of phenomena such as spin glass behaviour or the appearance of unusual jumps and plateaus in the fielddependence of the magnetisation observed in antiferromagnetic $\left[\mathrm{Fe}_{3}\right]$ triangles, $\left[\mathrm{Fe}_{13}\right]$ Keggin ions and $\left[\mathrm{Fe}_{30}\right]$ icosidodecahedra properties reminiscent of those observed in extended frustrated lattices such as the Kagomé lattice. ${ }^{5-7}$ An added effect of spin frustration is the presence of degenerate or low-lying excited spin states, a property that can be exploited in low-temperature magnetic refrigeration, ${ }^{8}$ with clusters such as $\left[\mathrm{Fe}_{14}\right]$ displaying an enhanced magnetocaloric effect. ${ }^{9,10}$

[^0]Salicylaldoxime ligands (Fig. 1) have been studied extensively for their use in extractive hydrometallurgy, showing great selectivity for Cu^{2+} and accounting for approximately 25% of the world's copper production. ${ }^{11-13}$ Our research into Fe -salicylaldoximate complexes is fuelled not only by an interest in their magnetic properties, but also due to their role as anti-corrosives in protective coatings, where phenolic oximes have been used to treat lightly oxidised Fe surfaces. ${ }^{14}$ It is postulated that the corrosion inhibition is due to the formation of polynuclear complexes on the surface and thus an extensive knowledge of the coordination chemistry of such ligands with Fe would tell us more about possible modes-of-action of the corrosion inhibition ability of the ligands. Herein we report the syntheses, structures and magnetic behaviour of four hexa- and two octametallic iron complexes built with the derivatised salicylaldoxime ligands $\mathrm{Me}-\mathrm{saoH}_{2}$ (2hydroxyethanone oxime) and Et-saoH2 (2-hydroxypropiophenone oxime).

Fig. 1 General structure of the (derivatised) salicylaldoxime ligands. $\mathrm{Me}-\mathrm{saoH}_{2}, \mathrm{R}^{1}=\mathrm{Me}$ and $\mathrm{R}^{2}, \mathrm{R}^{3}=\mathrm{H}$; Et-saoH $\mathrm{R}^{1}=\mathrm{Et}$ and R^{2} and $\mathrm{R}^{3}=\mathrm{H}$.

Experimental

Syntheses

All manipulations were performed under aerobic conditions using chemicals as received, unless otherwise stated. 2-Hydroxyethanone oxime (Me - saOH_{2}) and 2-hydroxypropiophenone oxime (EtsaoH_{2}) were synthesised via the reaction of the appropriate ketone with hydroxylamine and sodium acetate in EtOH , as described in the literature. ${ }^{15}$ Complex 5 has been reported previously ${ }^{16}$ but is included here to aid discussion.

$\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{sao})_{6} \mathrm{Br}_{4}(\mathrm{py})_{4}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH}$ (1.2Et $\left.\mathbf{t}_{2} \mathrm{O} \cdot \mathrm{MeOH}\right)$

$\mathrm{FeBr}_{3}(148 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Me}-\mathrm{saoH}_{2}(226.5 \mathrm{mg}, 1.50 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(25 \mathrm{ml})$ in the presence of pyridine (2 ml). The dark red solution was stirred for 2 h , filtered and then diffused with $\mathrm{Et}_{2} \mathrm{O}$, producing X -ray quality crystals of $\mathbf{1}$ after 1 week, in approximately 20% yield. Elemental analysis found (calc. $\%$) for $\mathrm{C}_{81} \mathrm{H}_{98} \mathrm{Br}_{4} \mathrm{Fe}_{8} \mathrm{~N}_{10} \mathrm{O}_{21}: \mathrm{C} 41.73$ (42.04), H 4.16 (4.27), N 5.97 (6.05).

$\left[\mathrm{Fe}_{8} \mathrm{O}_{\mathbf{2}}(\mathbf{O M e})_{3.85}\left(\mathbf{N}_{3}\right)_{4.15}(\mathrm{Me}-\mathrm{sao})_{6}(\mathbf{p y})_{2}\right]$ (2)

$\mathrm{FeF}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(167 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{Me}-\mathrm{saoH}_{2}(151 \mathrm{mg}$, 1.00 mmol) were dissolved in a mixture of $\mathrm{MeOH}(25 \mathrm{ml})$ and pyridine (2 ml) and stirred for $5 \mathrm{~min} . \mathrm{NaN}_{3}(130 \mathrm{mg}, 2.00 \mathrm{mmol})$ was then added and the dark red solution was stirred for a further 120 min . The solution was filtered and left to evaporate slowly, producing X-ray quality crystals of $\mathbf{2}$ after 3 days in approximately 20% yield. Elemental analysis found (calc. \%) for $\mathrm{C}_{72} \mathrm{H}_{73} \mathrm{Fe}_{8} \mathrm{~N}_{23} \mathrm{O}_{18}$: C 43.14 (43.34), H 3.42 (3.69), N 16.02 (16.15).

$\left[\mathrm{Fe}_{6} \mathrm{O}_{\mathbf{2}}(\mathrm{OMe})_{4}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\mathrm{Me}-\mathrm{sao})_{2} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right]$ (3)

$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(270 \mathrm{mg}, 1.00 \mathrm{mmol})$, Me-saoH ${ }_{2}(151 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{NaO}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}(189 \mathrm{mg}, 1.00 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(25 \mathrm{ml})$ in the presence of pyridine $(2 \mathrm{ml})$. The dark red solution was stirred for 2 h , filtered and then diffused with $\mathrm{Et}_{2} \mathrm{O}$, producing X-ray quality crystals of $\mathbf{3}$ after 1 week. The yield was approximately 30%. Elemental analysis found (calc.\%) for $\mathrm{C}_{61} \mathrm{H}_{61} \mathrm{Cl}_{2} \mathrm{Fe}_{6} \mathrm{~N}_{8} \mathrm{O}_{28}$: C 40.94 (41.26), H 3.05 (3.49), N 6.26 (6.37).

$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\text { Et-sao })_{2} \mathrm{Cl}_{2}\left(\mathrm{py}_{2}\right)_{2}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH}$ (4.2Et $\left.{ }_{2} \mathrm{O} \cdot \mathrm{MeOH}\right)$

The synthesis was identical to that of compound 3 using Et$\mathrm{saoH}_{2}(165 \mathrm{mg}, 1.00 \mathrm{mmol})$ instead of Me-saoH2. The yield was approximately 30%. Elemental analysis found (calc.\%) for $\mathrm{C}_{69} \mathrm{H}_{80} \mathrm{Cl}_{2} \mathrm{Fe}_{6} \mathrm{~N}_{8} \mathrm{O}_{29}: \mathrm{C} 43.45$ (43.82), H 4.04 (4.26), N 5.77 (5.92).

$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{saO})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathbf{M e O H})_{2}\right](\mathbf{5})$

$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(508 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{Me}-\mathrm{saoH}_{2}(151 \mathrm{mg}$, 1.00 mmol) were dissolved in a solution of $\mathrm{MeOH}(30 \mathrm{ml})$ in the presence of NEt_{3} ($404 \mathrm{mg}, 4 \mathrm{mmol}$). The solution was stirred for 1 h and then diffused with $\mathrm{Et}_{2} \mathrm{O}$, producing X-ray quality crystals after 3 days. The yield was approximately 30%. Elemental analysis found (calc.\%) for $\mathrm{C}_{50} \mathrm{H}_{80} \mathrm{Fe}_{6} \mathrm{~N}_{6} \mathrm{O}_{24} \mathrm{~S}_{2}$: C 38.96 (38.78), H 5.10 (5.21), N 5.38 (5.43).

$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{\mathbf{2}}(\mathrm{OMe})_{4}(\mathrm{Et}-\mathrm{saO})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{MeOH})_{2}\right](\mathbf{6})$

The synthesis was identical to 5 using Et-saoH H_{2} (165 mg , 1.00 mmol) instead of $\mathrm{Me}-\mathrm{saoH}_{2}$. The yield was approximately 30%. Elemental analysis found (calc. $\%$) for $\mathrm{C}_{54} \mathrm{H}_{88} \mathrm{Fe}_{6} \mathrm{~N}_{6} \mathrm{O}_{24} \mathrm{~S}_{2}$: C 40.38 (40.42), H 5.24 (5.53), N 5.20 (5.24).

Physical measurements

Elemental analyses (C, H, N) were performed by the EaStCHEM microanalysis service. Variable temperature magnetic susceptibility measurements were made on powdered polycrystalline samples restrained in eicosane using a Quantum Design MPMS-XL SQUID magnetometer equipped with a 7 T magnet. Diamagnetic corrections were applied using Pascal's constants.

Single crystal X-ray crystallography was performed using a Bruker Smart Apex CCD diffractometer equipped with an Oxford Cryosystems LT device, using Mo radiation. Data collection parameters and structure solution and refinement details are listed in Table 1. Full details can be found in the CIF files provided in the supporting information (CCDC 794871-7947875). \dagger

Results and Discussion

Synthesis

Reacting FeBr_{3} with Me-sao H_{2} in a $1: 3$ ratio in a MeOH -pyridine solution yields the octanuclear complex $\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\right.$ sao) $\left.{ }_{6} \mathrm{Br}_{4}(\mathrm{py})_{4}\right]$ (1), which has a metallic skeleton of two edgesharing $\left[\mathrm{Fe}_{4} \mathrm{O}\right]$ tetrahedra, edge-capped by two additional Fe^{3+} ions. The oxime ligand displays a μ_{4}-coordination mode - the first time this has been observed. We can replace the terminal bromide ligands with terminal azides by simply introducing NaN_{3} into the reaction mixture. This also has the effect of partially substituting a μ-methoxide bridge with an end-on μ-azide bridge affording the complex $\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{3.85}\left(\mathrm{~N}_{3}\right)_{4.15}(\mathrm{Me}-\mathrm{sao})_{6}(\mathrm{py})_{2}\right]$ (2). Further attempts to fully substitute the μ-methoxide bridges have proved unsuccessful, even when employing a large excess of NaN_{3}. Attempts to repeat these reactions with other iron halide salts have failed thus far. It is interesting to note that (in Fe^{3+} chemistry) only two examples of end-on bridging azides appear in the CCDC database - and both display ferromagnetic exchange coupling between the Fe^{3+} centres. ${ }^{17,18}$

Introducing carboxylates (in the form of $\mathrm{Na}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)$) to the reaction of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Me}-\mathrm{saoH}_{2}$ in a $1: 1: 1$ ratio in a $\mathrm{MeOH}-$ py solution leads to the related but lower nuclearity hexanuclear complex $\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4} \mathrm{Cl}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\mathrm{Me}-\right.$ sao $\left.)_{2}(\mathrm{py})_{2}\right]$ (3). The core again consists of two edge-sharing tetrahedra but the replacement of the μ_{4}-bridging oximes with μ-bridging carboxylates prevents the addition of two additional edge-capping Fe^{3+} ions. Repeating the same reaction with Et -sao H_{2} instead of $\mathrm{Me}-\mathrm{saoH} \mathrm{H}_{2}$ simply gives the analogous compound, $\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}\left(\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}\right)_{4}(\mathrm{Et} \text {-sao })_{2} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right]$ (4). Despite many attempts, we failed to isolate compounds with carboxylates other than $4-\mathrm{NO}_{2}$-benzoate. It is unclear why this should be so, but we presume it to be due to the steric bulk of the 4-substituent and/or the stabilising inter-molecular interactions propagated between neighbouring NO_{2} groups (vide infra).

The introduction of co-ligands, such as carboxylates, thus appears to favour the formation of smaller clusters and

Table 1 Crystallographic details for complexes 1-4, 6

	1.2Et $\mathrm{t}_{2} \mathrm{O} \cdot \mathrm{MeOH}$	2	3	4.2Et ${ }_{2} \mathrm{O} \cdot \mathrm{MeOH}$	6
M/g mol- ${ }^{-1}$	2314.13	1985.63	1760.34	1891.41	1604.52
Crystal system	Hexagonal	Monoclinic	Triclinic	Monoclinic	Orthorhombic
Space group	$R \overline{3}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$	P21/c	Pbca
a / \AA	42.1099(11)	11.9923(4)	16.1705(4)	13.5512(19)	20.4582(4)
b/Å	42.1099(11)	28.0040(10)	27.5304(7)	29.198(4)	14.4149(3)
c / \AA	13.8971(4)	13.3217(5)	29.7123(8)	21.050(3)	22.6752(4)
$\alpha /{ }^{\circ}$	90	90	114.5420(10)	90	90
$\beta 1^{\circ}$	90	114.382(2)	90.8730(10)	101.368(6)	90
$\gamma /{ }^{\circ}$	120	90	93.4590(10)	90	90
V / \AA^{3}	21341.4(10)	4074.8(3)	11998.6(5)	8165(2)	6687.0(2)
T/K	150	150	100	100	150
Z	9	2	6	4	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.621	1.618	1.462	1.539	1.594
Crystal shape and colour	Black plate	Black plate	Black block	Black plate	Black block
Crystal size/mm	$0.31 \times 0.19 \times 0.07$	$0.43 \times 0.28 \times 0.12$	$0.44 \times 0.44 \times 0.26$	$0.28 \times 0.25 \times 0.08$	$0.26 \times 0.24 \times 0.15$
μ / mm^{-1}	2.943	1.463	1.205	1.187	1.410
Unique data	12493	8336	48626	15647	5902
Unique data, ($I>2 \sigma(F)$)	7412	6650	31507	9754	5602
$R_{\text {int }}$	0.0560	0.0536	0.0531	0.0830	0.0689
$R 1^{a}, w R 2^{b}$	0.0466, 0.1181	0.0424, 0.1012	0.0508, 0.1284	0.0701, 0.2073	0.0826, 0.1547
Goodness of fit	0.929	1.034	1.002	1.111	1.362

$\left.{ }^{a} R 1\right) \sum\left(\mathrm{j} F_{\mathrm{o}} \mathrm{j}-\mathrm{j} F_{\mathrm{c}} \mathrm{j}\right) / \sum\left(\mathrm{j} F_{\mathrm{o}} \mathrm{j}\right)$ for observed reflections. $\left.{ }^{b} w R 2\right)\left\{\sum\left[w\left(F_{o}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \sum\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$ for all data.
μ-coordination of the phenolic oxime. This is corroborated when sulfate anions are introduced to the reaction mixture. The reaction of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with Me-saoH ${ }_{2}$ or Et -saoH H_{2} in the presence of NEt_{3} in MeOH produces the hexanuclear complexes $\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{Me}-\mathrm{sao})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OMe})_{4}(\mathrm{MeOH})_{2}\right]$ (5) and $\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{Et}-\mathrm{sao})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{OMe})_{4}(\mathrm{MeOH})_{2}\right]$ (6). The metallic core of both (analogous) molecules again comprises two edgesharing $\left[\mathrm{Fe}_{4} \mathrm{O}\right]$ tetrahedra but on this occasion each tripodal $\mathrm{SO}_{4}{ }^{2-}$ anion caps one of the triangular faces of the tetrahedron, preventing further growth.

Description of structures

Complex 1 crystallises in the trigonal space group $R \overline{3}$ with nine molecules in the unit cell (Fig. 2). The metallic skeleton consists of two edge-sharing tetrahedra ($\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{Fe}^{\prime}-\mathrm{Fe} 3$ and symmetry equivalent, s.e.) with the $\mathrm{Fe} 1 \cdots \mathrm{Fe} 3$ (and s.e) vertices capped by another Fe^{3+} ion (Fe 4). The shared edge of the tetrahedra is defined by $\mathrm{Fe} 2-\mathrm{Fe} 2^{\prime}$. Each $\left[\mathrm{Fe}^{\mathrm{III}}{ }_{4}\right]$ tetrahedron houses a central $\mu_{4}-\mathrm{O}^{2-}$ ion (O123 and symmetry equivalent), with the bonding along the edges consisting of a combination of single O -atom bridges from $\mu-\mathrm{OMe}^{-}$ions and double $\mathrm{N}-\mathrm{O}$ atom bridges from Me-sao ${ }^{2-}$ ligands. The latter display three different bonding modes: $\eta^{2}: \eta^{1}: \eta^{2}: \mu_{4}, \eta^{1}: \eta^{1}: \eta^{2}: \mu_{3}$ and $\eta^{1}: \eta^{1}: \eta^{1}: \mu$. The $\mu-\mathrm{Me}-\mathrm{sao}^{2-}$ ligands bridge $\mathrm{Fe} 2^{\prime}-\mathrm{Fe} 3$ (and s.e.) through the NO oximic group; the $\mu_{3}-$ $\mathrm{Me}-\mathrm{sao}^{2-}$ ligands bridge $\mathrm{Fe} 1-\mathrm{Fe} 4$ and $\mathrm{Fe} 3-\mathrm{Fe} 4$ through the two atom $\mathrm{N}-\mathrm{O}$ bridge and $\mathrm{Fe} 1-\mathrm{Fe} 3$ through the μ-oximic O -atom; and the $\mu_{4}-\mathrm{Me}-\mathrm{sao}^{2-}$ ligand - seen here for the first time - bridges $\mathrm{Fe} 1, \mathrm{Fe} 4$ and Fe 4 through the NO double atom bridge and Fe 1 and Fe 2 through the phenolic O -atom. This tetranucleating motif for the salicylaldoxime may provide an explanation for how such ligands attach to lightly corroded iron surfaces when they are used as anti-corrosives. ${ }^{14}$

There are two symmetry inequivalent OMe^{-}ions: one bridges the edge-capping peripheral Fe^{3+} ion (Fe 4) to the central tetra-

Fig. 2 The molecular structure of 1 (top) and its metallic core (bottom). Colour code: $\mathrm{Fe}=$ olive green; $\mathrm{O}=$ red; $\mathrm{N}=$ dark blue; $\mathrm{C}=$ gold; $\mathrm{Br}=$ light blue.
hedron (Fe 3), and the other bridges across one edge of the central tetrahedron ($\mathrm{Fe} 1-\mathrm{Fe} 2$ and s.e). Each Fe^{3+} ion is in a distorted octahedral geometry (cis, 74.3(1)-107.1(1) ${ }^{\circ}$; trans, 156.4(1)$\left.177.12(7)^{\circ}\right)$ with $\mathrm{FeO}_{5} \mathrm{~N}(\mathrm{Fe} 2, \mathrm{Fe} 3), \mathrm{FeO}_{5} \mathrm{Br}(\mathrm{Fe} 1)$ and $\mathrm{FeO}_{3} \mathrm{~N}_{2} \mathrm{Br}$ (Fe 4) coordination spheres. The remaining coordination sites on $\mathrm{Fe} 1, \mathrm{Fe} 3$ and Fe 4 are filled with a combination of terminally bonded Br^{-}ions and/or pyridine molecules.

In the crystal, the molecules interact through two complementary $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions [C5E-H5E $\cdots \pi(\mathrm{C} 1 \mathrm{~A}, \mathrm{C} 2 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}$,

C4A, C5A, C6A), C \cdots centroid $3.543 \AA, \mathrm{C}-\mathrm{H} \cdots$ centroid 124°] to form one-dimensional (1D) chains running along the c-axis (Fig. 3). Despite the absence of any other inter-molecular hydrogen bonds or $\pi \cdots \pi$ interactions [the closest inter-molecular contacts being between the phenyl ring of the $\mu_{4}-\mathrm{Me}-\mathrm{sao}^{2-}$ ligand and a neighbouring pyridine molecule ($\mathrm{C} \cdots \mathrm{C}, 3.321(7) \AA$) and between methyl and phenyl groups on opposing μ_{3}-Me-sao ${ }^{2-}$ ligands ($\mathrm{C} \cdots \mathrm{C}, 3.362(5) \AA$)], when viewed down the c-axis the chains of 1 pack in groups of three around the three-fold screw axes (either left or right handed) imposed by the rhombohedral lattice to create large hexagonal cavities approximately $11 \AA$ in diameter (Fig. 3).

Fig. 3 The 1D chains of $\mathbf{1}$ along the c-axis formed through $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (top). Packing diagram of the chains of $\mathbf{1}$ (in red, blue and green) around the left handed (yellow arrow) and right handed (cyan) three-fold screw axes, emphasizing the hexagonal cavities (bottom).

Complex 2 crystallises in the monoclinic space group $P 2_{1} / \mathrm{c}$ with two molecules in the unit cell. The molecule differs only slightly from 1. Besides the small changes in bond lengths and angles, the obvious differences are the replacement of the terminal bromide ions with terminally bonded azide ligands and the partial replacement of a $\mu-\mathrm{OMe}^{-}$bridge with an end-on $\mu-\mathrm{N}_{3}^{-}$bridge (15% on $\mathrm{Fe} 1-\mathrm{Fe} 2$). This is an interesting observation since the introduction of end-on bridging azides to Fe^{3+} cluster chemistry is likely to produce molecules exhibiting ferromagnetic nearest neighbour exchange. ${ }^{17,18}$ All Fe^{3+} ions have distorted octahedral geometries with cis angles in the range 74.09(9)-107.78(9) ${ }^{\circ}$ and trans angles in the range $156.75(9)-179.4(1)^{\circ}$. There are no intermolecular hydrogen bonds in the extended lattice with the closest contacts being between the phenyl ring of the $\mu_{4}-\mathrm{Me}^{-\mathrm{sao}^{2-}}$ ligand and a neighbouring pyridine molecule ($\mathrm{C} \cdots$ C $3.370(5) \AA$).

Complex 3 (Fig. 4) crystallises in the triclinic space group $P \overline{1}$ with three molecules in the asymmetric unit and two asymmetric units in the unit cell. The metallic core consists of two edge-sharing ($\mathrm{Fe} 3-\mathrm{Fe} 4$) tetrahedra ($\mathrm{Fe} 1, \mathrm{Fe} 3, \mathrm{Fe} 4, \mathrm{Fe} 5$ and Fe 2 , Fe 3 , Fe 4 , Fe), each housing a central $\mu_{4}-\mathrm{O}^{2-}$ ion (O134, O234). The two tetrahedral subunits are joined together by the two $\eta^{1}: \eta^{1}: \eta^{2}: \mu_{3}-\mathrm{Me}-$

Fig. 4 The molecular structure of $\mathbf{3}$ (top) and its metallic core (bottom). Colour code: $\mathrm{Fe}=$ olive green; $\mathrm{O}=$ red; $\mathrm{N}=$ blue; $\mathrm{C}=$ gold; $\mathrm{Cl}=$ bright green.
sao^{2-} ligands bridging $\mathrm{Fe} 1-\mathrm{Fe} 2$ through their oximic NO moieties. The μ-oximic O -atom of one then bridges $\mathrm{Fe} 1-\mathrm{Fe} 4$ while the other bridges $\mathrm{Fe} 2-\mathrm{Fe} 3$. The four $\mu-\mathrm{O}_{2} \mathrm{CPh}-4-\mathrm{NO}_{2}$ and four $\mu-\mathrm{OMe}^{-}$ ligands bridge the remaining vertices, the carboxylates bridging $\mathrm{Fe} 2-\mathrm{Fe} 3, \mathrm{Fe} 3-\mathrm{Fe} 5, \mathrm{Fe} 4-\mathrm{Fe} 5$ and $\mathrm{Fe} 4-\mathrm{Fe} 6$ in their familiar syn, syn, μ-mode and the μ - OMe^{-}bridging $\mathrm{Fe} 1-\mathrm{Fe} 5, \mathrm{Fe} 2-\mathrm{Fe} 3, \mathrm{Fe} 3-$ Fe 5 and $\mathrm{Fe} 4-\mathrm{Fe} 6$. The two remaining coordination sites on Fe 5 and Fe6 are both occupied with one pyridine molecule and one halide ligand. Each Fe^{3+} ion is a distorted octahedral geometry (cis, 77.9(1)-103.9(1) ${ }^{\circ}$; trans, 157.6(1)-177.7(1) ${ }^{\circ}$) with $\mathrm{FeO}_{6}(\mathrm{Fe} 3$, $\mathrm{Fe} 4), \mathrm{FeO}_{5} \mathrm{~N}(\mathrm{Fe} 1, \mathrm{Fe} 2)$ and $\mathrm{FeO}_{4} \mathrm{NCl}(\mathrm{Fe} 5, \mathrm{Fe} 6)$ coordination spheres. In the crystal there are a number of inter-molecular interactions propagated through neighbouring $4-\mathrm{NO}_{2}$ groups of the carboxylates ($\mathrm{O} \cdots \mathrm{O}, 3.011(4)-3.184(4) \AA$), as well as between the chloride ions and neighbouring pyridine molecules $(\mathrm{Cl} \cdots \mathrm{C}$, $3.400(6) \AA$).

Complex 4 crystallises in monoclinic $P 2_{1} / \mathrm{c}$ space group with four molecules in the unit cell. $\mathbf{4}$ differs from $\mathbf{3}$ only in the identity of the phenolic oxime, Et-sao ${ }^{2-}$ replacing $\mathrm{Me}-\mathrm{sao}^{2-}$ and the intramolecular bond lengths and angles are very similar in both compounds. In the crystal lattice there are inter-molecular hydrogen bonds between the $4-\mathrm{NO}_{2}$ group of carboxylate ligands and MeOH solvent molecules ($\mathrm{O} \cdots \mathrm{C}, 3.00(1) \AA$), with the shortest contact between neighbouring cluster molecules ($3.40(1) \AA$) being between C -atoms on the phenyl rings of adjacent carboxylate and Me-sao ${ }^{2-}$ ligands.

Complex 6 (Fig. 5) crystallises in the orthorhombic space group Pbca with four molecules in the unit cell. Its structure is analogous to that of 5 (but containing Et-sao ${ }^{2-}$ rather than Me-sao^{2-}), which we have reported in a previous paper. ${ }^{16} \mathbf{6}$ is another

Fig. 5 The molecular structure of $\mathbf{6}$ (top) and its metallic core (bottom). Colour code: $\mathrm{Fe}=$ olive green; $\mathrm{O}=$ red; $\mathrm{N}=$ blue; $\mathrm{C}=$ gold; $\mathrm{S}=$ yellow.
example of an $\left[\mathrm{Fe}^{\mathrm{III}}{ }_{6}\right]$ cluster whose metallic core describes two edge sharing tetrahedra. The common edge is $\mathrm{Fe} 1-\mathrm{Fel}^{\prime}$ with an inversion centre at its midpoint. The tetrahedra are built upon two central $\mu_{4}-\mathrm{O}^{2-}$ ions (O123 and s.e.) and connected via four μ -OMe^{-}ions (O1A, O14 and s.e.) creating a $\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}\right]^{10+}$ core similar to that observed in $\mathbf{3}$ and $\mathbf{4}$. The $\eta^{1}: \eta^{1}: \eta^{1}: \mu_{3}-\mathrm{SO}_{4}{ }^{2-}$ ligands cap the $\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{Fe} 3$ (and s.e.) triangular face of a tetrahedron, whilst the four $\eta^{1}: \eta^{1}: \eta^{1}: \mu-\mathrm{Me}$-sao ${ }^{2-}$ ligands bridge the $\mathrm{Fe} 1-\mathrm{Fe} 2$ and $\mathrm{Fe} 1-\mathrm{Fe} 3$ (and s.e.) edges. The remaining coordination sites on Fe 1 and Fel^{\prime} are filled by terminal MeOH molecules. The Fe^{3+} ions have $\mathrm{FeO}_{6}(\mathrm{Fe} 1)$ or $\mathrm{FeO}_{5} \mathrm{~N}$ coordination spheres and lie in distorted octahedral geometries with cis angles in the range 76.9(2)-108.1(2) ${ }^{\circ}$ and trans angles in the range 152.6(2)-175.4(2) ${ }^{\circ}$. An examination of the extended lattice reveals short contacts between the $\mathrm{NEt}_{4}{ }^{+}$cation and the $\mathrm{SO}_{4}{ }^{2-}(\mathrm{N} \cdots \mathrm{O}, 2.82(1) \AA)$, with the closest distances between neighbouring clusters being between the phenyl ring of the Et-sao ${ }^{2-}$ ligand and a $\mathrm{SO}_{4}{ }^{2-} \mathrm{O}$-atom ($\mathrm{C} \cdots \mathrm{O}$, $3.412(8) \AA$). There are also intra-molecular H -bonds present between a terminally bonded MeOH molecule and an oximic O-atom ($\mathrm{O} \cdots \mathrm{O}, 2.737(6) \AA$). A scheme depicting the observed bridging modes of the R -sao ${ }^{2-}$ ligands is given in Fig. 6.

Fig. 6 The coordination modes of the phenolic oximes in complexes 1-6. Colour code: $\mathrm{Fe}=$ olive green; $\mathrm{O}=$ red; $\mathrm{N}=$ blue; $\mathrm{C}=$ gold.

Discussion

There are now a number of $\mathrm{Fe}^{3+} / \mathrm{R}$ - saoH_{2} clusters in the literature (Table 2). ${ }^{14,16,19-26}$ They range in size ($\leq\left[\mathrm{Fe}_{12}\right]$) and structure, but there are undoubtedly some pervading themes. The body of published work in this area (Table 2) clearly shows that, akin to $\mathrm{Mn}^{3+} / \mathrm{R}$-saoH2 chemistry, the $\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangle is the most frequently encountered building block. ${ }^{26}$ The related tetrahedral subunit $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ is the next most common, and this has no counterpart in Mn^{3+} chemistry. The variance in size of the $\left[\mathrm{Fe}_{\mathrm{x}}\right]$ cluster can be attributed to a number of factors, including the presence or absence of co-ligand (here carboxylates and sulfates) and the steric bulk of the ketoxime group. This is another area in which we see a difference in comparison with the Mn^{3+} chemistry, where all of the above have little or no effect upon the products of the reaction. ${ }^{27-29}$ The addition of (relatively large) bridging coligands tends to favour smaller nuclearity clusters (they edgeand face-cap preventing further growth) and encourages the μ bridging mode of the phenolic oxime. In the absence of such coligands higher order bridging modes of R -sao ${ }^{2-}$ are seen (and higher nuclearity clusters as a consequence) and in complexes $\mathbf{1}$ and 2 the μ_{4}-bridging mode is seen for the very first time. The bridging modes depicted in Fig. 5 thus offer some insight into possible ligand bonding modes on lightly corroded iron surfaces when salicylaldoximes are used as anti-corrosives. ${ }^{14}$

Variations in the bulk of the ketoxime group can also change the topology of the cluster greatly in Fe^{3+} chemistry, ${ }^{26}$ whereas in Mn^{3+} chemistry the $\left[\mathrm{M}_{3} \mathrm{O}(\mathrm{R} \text {-sao })_{3}\right]^{+}$unit is almost always retained and the only differences observed appear to be in the twisting of the $\mathrm{Mn}-\mathrm{N}-\mathrm{O}-\mathrm{Mn}$ torsion angles. ${ }^{27}$ For example, both complex $\mathbf{1}$ and $\left[\mathrm{Fe}_{3} \mathrm{O}(\mathrm{OMe})(\mathrm{Ph}-\mathrm{sao})_{2} \mathrm{Br}_{2}(\mathrm{py})_{3}\right] \cdot \mathrm{Et}_{2} \mathrm{O}^{26}$ are made by reacting FeBr_{3} with the appropriate R - saoH_{2} pro-ligand in a MeOH -pyridine solvent mix. The bulky $\mathrm{Ph}-\mathrm{sao}^{2-}$ ligand restricts the size of the cluster to an $\left[\mathrm{Fe}_{3}\right]$ triangle, but the $\mathrm{Me}-\mathrm{sao}^{2-}$ ligand allows the growth of an octametallic cluster, $\left[\mathrm{Fe}_{8}\right]$.

When employing carboxylates in $\mathrm{Fe}^{3+} / \mathrm{R}$ - saoH_{2} chemistry one might expect the structures to resemble the basic Fe^{3+} carboxylates of general formula $\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{6} \mathrm{~L}_{3}\right]^{+}(\mathrm{L}=$ solvent $)$ in which $\mu_{2 / 3}$-bridging R -sao ${ }^{2-}$ ligands simply replace the μ-bridging carboxylates. Indeed this is true in $\left[\mathrm{Fe}_{6}\right]$ clusters where the $\left[\mathrm{Fe}_{3}\left(\mu_{3}-\right.\right.$ $\mathrm{O})]^{7+}$ building block predominates, ${ }^{23,24,26}$ and the μ_{3}-bridging oxime promotes oligomerisation of the basic triangles. Complexes 3 and $\mathbf{4}$ differ, the major change in reaction conditions being the introduction of pyridine. This results in the formation of a cluster adopting a metallic skeleton comprising two edge-sharing tetrahedra. Pyridine is present in excess and thus acts as base, ligand and co-solvent - a strategy that has been shown previously to aid the growth of very large mineral-like Fe^{3+} clusters. ${ }^{30}$

Magnetism

Direct current (dc) magnetic susceptibility measurements were performed on microcrystalline samples of representative $\mathbf{1}$ and 3 in a field of 0.1 T and in the $5-300 \mathrm{~K}$ temperature range. The magnetic behaviour of complex $\mathbf{5}$ is analogous to that of complex 6 which we have reported before, so will not be repeated here. ${ }^{17}$ For 1 (Fig. 7) the room temperature $\chi_{\mathrm{m}} T$ value of $12.38 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1} is significantly below the value of $35 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ expected for eight non-interacting high spin $(S=5 / 2) \mathrm{Fe}^{3+}$ ions, indicative

Table 2 The structurally characterised $\mathrm{Fe} / \mathrm{R}-\mathrm{sao}^{2-}$ complexes in the CCDC database

Molecule	Core	Oxime coordination	Ref.
$\left[\mathrm{HNEt}_{3}\right]\left[\mathrm{Fe}_{2}(\mathrm{OMe})(\mathrm{Ph}-\mathrm{sao})_{2}(\mathrm{Ph}-\mathrm{saoH})_{2}\right] \cdot 5 \mathrm{MeOH}$	$\left[\mathrm{Fe}_{2}(\mathrm{OMe})(\mathrm{NO})_{2}\right]^{3+}$ dimer	$2 \times \mu, 1 \times \mathrm{NO}$ chelate	16
$\left[\mathrm{Fe}_{2}(\mathrm{sao})_{3}(\right.$ tmtacn $\left.)\right] \cdot \mathrm{MeOH}$	$\left[\mathrm{Fe}_{2}(\mathrm{NO})_{3}\right]^{3+}$ dimer	$3 \times \mu$	21
$\left[\mathrm{Fe}_{2}(3-5 \text {-di-'but-sao) })_{3}(\mathrm{tmtacn})\right] \cdot 3.5 \mathrm{CHCl}_{3}$	$\left[\mathrm{Fe}_{2}(\mathrm{NO})_{3}\right]^{3+}$ dimer	$3 \times \mu$	21
$\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{5}(\mathrm{sao})(\mathrm{MeOH})_{2}\right] \cdot 1.25 \mathrm{MeOH} \cdot 1.05 \mathrm{H}_{2} \mathrm{O}$	$\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu$	23
$\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{s}(\mathrm{sao})(\mathrm{EtOH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{EtOH}$	$\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu$	23
$\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{5}(\mathrm{Et}-\mathrm{sao})(\mathrm{MeOH})_{2}\right] \cdot 3 \mathrm{MeOH}$	$\left[\mathrm{Fe}_{3}\left(\mu_{3} \mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu$	16
$\left[\mathrm{Fe}_{3} \mathrm{O}(\mathrm{OMe})\left(\mathrm{Ph}-\mathrm{sao}_{2} \mathrm{Cl}_{2}(\mathrm{py})_{3}\right] \cdot 2 \mathrm{MeOH}\right.$	$\left[\mathrm{Fe}_{3}\left(\mu_{3} \mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu$	26
$\left[\mathrm{Fe}_{3} \mathrm{O}(\mathrm{OMe})(\mathrm{Ph}-\mathrm{sao})_{2} \mathrm{Br}_{2}(\mathrm{py})_{3}\right] \cdot \mathrm{Et} 2 \mathrm{O}$	$\left[\mathrm{Fe}_{3}\left(\mu_{3} \mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu$	26
$\left[\mathrm{HNEt}_{3}\right]\left[\mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{salmpH} \mathrm{H}_{3}\right)(\mathrm{sao})_{2}(\mathrm{saoH})\right] .2 \mathrm{H}_{2} \mathrm{O}$	$\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangle	$1 \times \mu, 1 \times \mathrm{NO}$ chelate	20
$\left[\mathrm{Fe}_{4}(\mathrm{Me}-\mathrm{sao})_{4}(\mathrm{Me}-\mathrm{saoH})_{4}\right] \cdot \mathrm{MeOH}$	Distorted $\left[\mathrm{Fe}_{4}(\mathrm{NO})_{4}\right]^{8+}$ cube	$4 \times \mu_{3}, 4 \times$ NO chelate	16
$\left[\mathrm{Fe}_{4}(\mathrm{Me}-\mathrm{sao})_{4}(\mathrm{Me}-\mathrm{saoH})_{4}\right] \cdot \mathrm{saoH}_{2} \cdot \mathrm{C}_{8} \mathrm{H}_{10}$	Distorted $\left[\mathrm{Fe}_{4}(\mathrm{NO})_{4}\right]^{8+}$ cube	$4 \times \mu_{3}, 4 \times \mathrm{NO}$ chelate	14
$\left[\mathrm{Fe}_{4}(\mathrm{Ph}-\mathrm{sao})_{4} \mathrm{~F}_{4}(\mathrm{py})_{4}\right] \cdot 1.5 \mathrm{MeOH}$	$\left[\mathrm{Fe}_{4}(\mathrm{NO})_{4} \mathrm{~F}_{4}\right]$ square	$4 \times \mu$	26
$\left[\mathrm{Fe}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{3}(\text { sao) })_{2}(\mathrm{tmtacn})_{2}\right]\left[\mathrm{PF}_{6}\right]$	$\left[\mathrm{Fe}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{\text {3+ }}$ butterfly	$2 \times \mu$	25
$\left[\mathrm{Fe}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CC}(\mathrm{OH}) \mathrm{Ph}_{2}\right)_{3}(\mathrm{sao})_{2}(\text { tmtacn })_{2}\right]\left[\mathrm{ClO}_{4}\right]$	$\left[\mathrm{Fe}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]^{8+}$ butterfly	$2 \times \mu$	22
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{sao})_{2}\left(\mathrm{MeCONH}_{2}\right) 2\right] \cdot 6 \mathrm{MeCN}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$2 \times \mu_{3}$	24
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}(\mathrm{sao})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{MeCN} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{++}$triangles	$2 \times \mu_{3}$	24
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OH})_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{Et} \text {-sao) })_{2}(\mathrm{Et}-\mathrm{saoH})_{2}\right]$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$2 \times \mu, 2 \times \mu_{3}$	26
$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OH})_{2}\left(\mathrm{O}_{2} \mathrm{CPh}(\mathrm{Me})_{2}\right)_{6}(\mathrm{Et}-\mathrm{sao})_{4}\right] \cdot 2 \mathrm{MeCN}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$2 \times \mu, 2 \times \mu_{3}$	26
$\left[\mathrm{Fe}_{6} \mathrm{Na}_{3} \mathrm{O}(\mathrm{OH})_{4}(\mathrm{OMe})_{3}(\mathrm{Me}-\mathrm{sao})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{MeOH})_{6}\right] \cdot \mathrm{MeOH}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right)^{7+}$ triangles	$6 \times \mu$	26
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{10}\left(3 \text {-'but-5-NO }{ }_{2} \text {-sao) }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{MeCN}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$2 \times \mu$	26
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{Ph}\right)_{10}(3 \text {-'but-sao) })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 5 \mathrm{MeCN}$	$2 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$2 \times \mu$	26
$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{sao})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{MeOH})_{2}\right]$	$\begin{aligned} & 2 \times \text { edge sharing }\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+} \\ & \text { tetrahedra } \end{aligned}$	$4 \times \mu$	16/This paper
$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Et}-\mathrm{saO})_{4}\left(\mathrm{SO}_{4}\right)_{2}(\mathrm{MeOH})_{2}\right]$	$2 \times$ edge sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$4 \times \mu$	This paper
$\left[\mathrm{Fe}_{6} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPhNO}_{2}\right)_{4}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{sao})_{2} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right]$	$2 \times$ edge sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$2 \times \mu_{3}$	This paper
$\begin{aligned} & {\left[\mathrm{Fe}_{6} \mathrm{O}_{2}(\mathrm{OMe})_{4}\left(\mathrm{O}_{2} \mathrm{CPhNO}_{2}\right)_{4}(\mathrm{Et}-\mathrm{sao})_{2} \mathrm{Cl}_{2}(\mathrm{py})_{2}\right]} \\ & \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{MeOH} \end{aligned}$	$\begin{aligned} & 2 \times \text { edge sharing }\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+} \\ & \text { tetrahedra } \end{aligned}$	$2 \times \mu_{3}$	This paper
$\left[\mathrm{Fe}_{8} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{3}(\mathrm{Me}-\mathrm{sao})_{3}\left(\right.\right.$ tea) $\left.(\text { teaH })_{3}\right]$	$3 \times$ common-edge sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$3 \times \mu$	16
$\left[\mathrm{Fe}_{8} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CMM}\right)_{3}(\mathrm{Et-sao})_{3}\left(\right.\right.$ tea) $\left.(\text { teaH })_{3}\right]$	$3 \times$ common-edge sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$3 \times \mu$	16
$\left[\mathrm{Fe}_{8} \mathrm{O}_{3}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{3}(\mathrm{Ph}-\mathrm{sao})_{3}\left(\right.\right.$ tea) $\left.(\text { teaH })_{3}\right]$	$3 \times$ common-edge sharing $\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$3 \times \mu$	16
$\left[\mathrm{Fe}_{8} \mathrm{O}_{4}(\mathrm{sao})_{8}(\mathrm{py})_{4}\right] \cdot 4 \mathrm{py}$	$4 \times\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+}$ tetrahedra	$4 \times \mu, 4 \times \mu_{3}$	25
$\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{4}(\mathrm{Me}-\mathrm{sao})_{6} \mathrm{Br}_{4}(\mathrm{py})_{4}\right] \cdot 2 \mathrm{Et} 2 \mathrm{O} \cdot \mathrm{MeOH}$	$\begin{aligned} & 2 \times \text { bicapped }\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+} \\ & \text { tetrahedra } \end{aligned}$	$2 \times \mu, 2 \times \mu_{3}, 2 \times \mu_{4}$	This paper
$\left[\mathrm{Fe}_{8} \mathrm{O}_{2}(\mathrm{OMe})_{3.85}\left(\mathrm{~N}_{3}\right)_{4.15}(\mathrm{Me}-\mathrm{sao})_{6}(\mathrm{py})_{2}\right]$	$\begin{aligned} & 2 \times \text { bicapped }\left[\mathrm{Fe}_{4}\left(\mu_{4}-\mathrm{O}\right)\right]^{10+} \\ & \text { tetrahedra } \end{aligned}$	$2 \times \mu, 2 \times \mu_{3}, 2 \times \mu_{4}$	This paper
$\left[\mathrm{HNEt}_{3}\right]_{2}\left[\mathrm{Fe}_{12} \mathrm{Na}_{4} \mathrm{O}_{2}(\mathrm{OH})_{8}(\mathrm{OMe})_{6}(\mathrm{sao})_{12}(\mathrm{MeOH})_{10}\right]$	$4 \times\left[\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{O}\right)\right]^{7+}$ triangles	$6 \times \mu, 6 \times \mu_{3}$	26

Abbreviations: saoH_{2}, Ph -sao H_{2}, see Fig. 1. tmtacn, 1,4,7-trimethyl-1,4,7-triazacyclononane; salmpH${ }_{3}$, 2(bis(salicylideneamino)methyl)phenolate(-3); teaH ${ }_{3}$, triethanolamine.

Fig. 7 Plot of $\chi_{\mathrm{M}} T$ vs. T for complexes $\mathbf{1}$ (squares) and $\mathbf{3}$ (triangles).
of relatively strong antiferromagnetic exchange interactions. The $\chi_{\mathrm{m}} T$ value decreases steadily with decreasing temperature reaching $0.79 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ at 5 K , consistent with an $S=0$ ground state. A plot of $1 / \chi_{\mathrm{m}}$ vs. T affords $\theta=-115 \mathrm{~K}$.

The room temperature $\chi_{\mathrm{m}} T$ value of complex $\mathbf{3}$ is $11.23 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1}, lower than the expected value for six non-interacting Fe^{3+} ions ($26.25 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$). The $\chi_{\mathrm{m}} T$ value then decreases constantly with decreasing temperature to a value of $0.25 \mathrm{~cm}^{3} \mathrm{~K}$ mol^{-1}. This is again indicative of antiferromagnetic exchange interactions between the Fe^{3+} ions and the stabilisation of a diamagnetic ground state. A Curie-Weiss analysis of the $1 / \chi_{\mathrm{m}}$ vs. T plot affords $\theta=-386 \mathrm{~K}$. The complex nature of the structures precludes fitting of the susceptibility data by standard procedures. Of the thirty two complexes listed in Table 2 only two structural types (and a total of eight molecules) have been reported to possess non-zero spin ground states - the $\left[\mathrm{Fe}_{3}\right]$ triangles and complexes 5 and $\mathbf{6}$. Both are the result of spin frustration effects from antiferromagnetic exchange within symmetric metallic cores. This suggests that future attempts to build $\mathrm{Fe}^{3+} / \mathrm{R}$ - sao^{2-} clusters with non-zero spin ground states should focus on the use of high temperature/high pressure (e.g. solvothermal or microwave) reaction conditions which are likely to produce highly symmetric molecules. ${ }^{10}$

Conclusions

The two hexa- and four octa-metallic Fe^{3+} salicylaldiminato clusters presented here all have a common building block, the tetrahedral $\left[\mathrm{Fe}_{4} \mathrm{O}\right]^{10+}$ moiety. Each contains a central core of two such edge-sharing tetrahedra, with $\mathbf{1}$ and $\mathbf{2}$ having two vertices additionally capped by Fe^{3+} ions, as a result of a unique $\mu_{4}-\mathrm{Me}-$ sao^{2-} coordination mode. In contrast to Mn^{3+} complexes, the selfassembly of these Fe^{3+} molecules - and the coordination mode of the phenolic oxime ligand - appears to be highly dependent upon the presence of co-ligands and the steric bulk of the ketoxime group. The magnetic behaviour of all complexes is [perhaps unsurprisingly] dominated by relatively strong antiferromagnetic exchange interactions, as seen for almost all reported $\mathrm{Fe}^{3+} / \mathrm{R}-$ sao H_{2} complexes. However, the observation in complex 2 of the partial replacement of a μ-bridging OMe^{-}ion with an endon $\mu-\mathrm{N}_{3}{ }^{-}$ion, and the symmetric cores of complexes $\mathbf{5}$ and $\mathbf{6}$, suggests targeting both azide-based clusters and highly symmetric complexes, since they may pave the way for isolating compounds displaying frustration effects, and/or ferro- or ferrimagnetic exchange interactions.

Notes and References

1 H. Basch, K. Mogi, D. G. Musaev and K. Morokuma, J. Am. Chem. Soc., 1999, 121, 7249.
2 E. C. Theil, Annu. Rev. Biochem., 1987, 57, 289; B. Xu and N. D. Chasteen, J. Biol. Chem., 1991, 266, 19965.
3 S. A. Malone, A. Lewin, M. A. Kilic, D. A. Svistuneko, C. E. Cooper, M. T. Wilson, N. E. Le Brun, S. Spiro and G. R. Moore, J. Am. Chem. Soc., 2004, 126, 496.
4 J. Schnack, Dalton Trans., 2010, 39, 4677.
5 J. Schnack, M. Luban and R. Modler, Europhys. Lett., 2001, 56, 863.
6 V. O. Garlea, S. E. Nagler, J. L. Zarestky, C. Stassis, D. Vaknin, P. Kögerler, D. F. McMorrow, C. Niedermayer, D. A. Tennant, B. Lake, Y. Qiu, M. Exler, J. Schnack and M. Luban, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 024414.
7 J. van Slageren, P. Rosa, A. Caneschi, R. Sessoli, H. Casellas, Y. V. Rakitin, L. Cianchi, F. Del Giallo, G. Spina, A. Bino, A.-L. Barra, T. Guidi, S. Carretta and R. Caciuffo, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 014422.
8 M. Evangelisti and E. K. Brechin, Dalton Trans., 2010, 39, 4672.

9 M. Evangelisti, A. Candini, A. Ghirri, M. Affronte, E. K. Brechin and E. J. L. McInnes, Appl. Phys. Lett., 2005, 87, 072504.

10 R. Shaw, R. H. Laye, L. F. Jones, D. M. Low, C. Talbot-Eeckelaers, Q. Wei, C. J. Milios, S. Teat, M. Helliwell, J. Raftery, M. Evangelisti, M. Affronte, D. Collison, E. K. Brechin and E. J. L. McInnes, Inorg. Chem., 2007, 46, 4968.
11 P. A. Tasker, P. G. Plieger and L. C. West, Comprehensive Coordination Chemistry II, 2004, 9, 759.
12 G. A. Kordosky, Proceedings of the International Solvent Extraction Conference, Cape Town, South Africa, March 17-21, 2002, p. 853.
13 P. J. Mackey, CIM Mag., 2007, 2, 35.
14 J. M. Thorpe, R. L. Beddoes, D. Collison, C. D. Garner, M. Helliwell, J. M. Holmes and P. A. Tasker, Angew. Chem., Int. Ed., 1999, 38, 1119.

15 R. Dunsten and T. A. Henry, J. Chem. Soc. Trans., 1899, 75, 66.
16 I. A. Gass, C. J. Milios, A. Collins, F. J. White, L. Budd, S. Parsons, M. Murrie, S. P. Perlepes and E. K. Brechin, Dalton Trans., 2008, 2043.
17 K. Rajender Reddy, M. V. Rajasekharan and J. -P. Tuchagues, Inorg. Chem., 1998, 37, 5978.
18 G. De Munno, T. Poerio, G. Viau, M. Julve and F. Lloret, Angew. Chem., Int. Ed. Engl., 1997, 36, 1459.
19 P. Chaudhuri, M. Winter, P. Fleischhauer, W. Haase, U. Florke and H.-J. Haupt, Inorg. Chim. Acta, 1993, 212, 241.

20 E. Bill, C. Krebs, M. Winter, M. Gerdan, A. X. Trautwein, U. Florke, H.-J. Haupt and P. Chaudhuri, Chem.-Eur. J., 1997, 3, 193.

21 C. N. Verani, E. Bothe, D. Burdinski, T. Weyhermuller, U. Florke and P. Chaudhuri, Eur. J. Inorg. Chem., 2001, 2161.

22 P. Chaudhuri, E. Rentschler, F. Birkelbach, C. Krebs, E. Bill, T. Weyhermuller and U. Florke, Eur. J. Inorg. Chem., 2003, 541.
23 C. P. Raptopoulou, Y. Sanakis, A. K. Boudalis and V. Psycharis, Polyhedron, 2005, 24, 711.
24 C. P. Raptopoulou, A. K. Boudalis, Y. Sanakis, V. Psycharis, J. M. Clemente-Juan, M. Fardis, G. Diamantopoulos and G. Papavassiliou, Inorg. Chem., 2006, 45, 2317.
25 I. A. Gass, C. J. Milios, A. G. Whittaker, F. P. A. Fabiani, S. Parsons, M. Murrie, S. P. Perlepes and E. K. Brechin, Inorg. Chem., 2006, 45, 5281.

26 K. Mason, I. A. Gass, S. Parsons, A. Collins, F. White, A. M. Z. Slawin, E. K. Brechin and P. A. Tasker, Dalton Trans., 2010, 39, 2727.

27 R. Inglis, L. F. Jones, C. J. Milios, S. Datta, A. Collins, S. Parsons, W. Wernsdorfer, S. Hill, S. P. Perlepes, S. Piligkos and E. K. Brechin, Dalton Trans., 2009, 3403.
28 R. Inglis, L. F. Jones, K. Mason, A. Collins, S. A. Moggach, S. Parsons, S. P. Perlepes, W. Wernsdorfer and E. K. Brechin, Chem.-Eur. J., 2008, 14, 9117.
29 L. F. Jones, R. Inglis, M. E. Cochrane, K. Mason, A. Collins, S. Parsons, S. P. Perlepes and E. K. Brechin, Dalton Trans., 2008, 6205.

30 G. W. Powell, H. N. Lancashire, E. K. Brechin, D. Collison, S. L. Heath, T. Mallah and W. Wernsdorfer, Angew. Chem., Int. Ed., 2004, 43, 5772.

[^0]: ${ }^{a}$ School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ. E-mail: ebrechin@staffmail.ed.ac.uk, Peter. Tasker@ed.ac.uk; Tel: +44 (0) 131-650-7545
 ${ }^{b}$ Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 157 71, Zogragfou, Greece
 \dagger CCDC reference numbers 667681, 667684, 794871-794875. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c0dt01593h

