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ABSTRACT

Motivation: Metagenomes are often characterized by high levels of

unknown sequences. Reads derived from known microorganisms

can easily be identified and analyzed using fast homology search

algorithms and a suitable reference database, but the unknown

sequences are often ignored in further analyses, biasing conclusions.

Nevertheless, it is possible to use more data in a comparative meta-

genomic analysis by creating a cross-assembly of all reads, i.e. a

single assembly of reads from different samples. Comparative meta-

genomics studies the interrelationships between metagenomes from

different samples. Using an assembly algorithm is a fast and intuitive

way to link (partially) homologous reads without requiring a database

of reference sequences.

Results: Here, we introduce crAss, a novel bioinformatic tool that

enables fast simple analysis of cross-assembly files, yielding distances

between all metagenomic sample pairs and an insightful image dis-

playing the similarities.

Availability and implementation: crAss is available as a web server

at http://edwards.sdsu.edu/crass/, and the Perl source code can be

downloaded to run as a stand-alone command line tool.

Contact: dutilh@cmbi.ru.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The sequencing of environmental samples has disclosed a uni-

verse of novel microbial organisms. Microbiologists and virolo-

gists are sequencing DNA and RNA from environments ranging

from coral reefs to the human gut and are discovering previously

unknown microorganisms in all these samples (Mokili et al.,

2012). The fraction of unknown sequences can be particularly

high in viral metagenomes because (i) viruses exhibit relatively

high mutation rates resulting in distant unrecognizable

homology (Bonhoeffer and Sniegowski, 2002), and (ii) this

superkingdom has remained poorly explored, with relatively

few sequences present in the databases. These properties hinder

the comparison of metagenomic samples with high percentages

(up to 60–99%) of unknowns (Mokili et al., 2012) by traditional

methods that map sequencing reads to known annotated refer-

ences (Meyer et al., 2008).
In addition, the abundance and diversity of viruses in natural

systems impede comparisons between metagenomic datasets,

especially when comparing relatively short reads generated by

some second-generation sequencing platforms. A promising

solution is to initially combine the different metagenomes and

perform a de novo assembly of all sequence reads. If applied

conservatively to avoid chimerization, metagenome assembly

can reliably link reads that are completely unknown to reads

that have similarity to annotated sequences.
The tool PHAge Communities from Contig Spectra

(PHACCS) assesses the biodiversity of uncultured viral commu-

nities by mathematically modeling the community structure

using the contig spectrum of metagenome assemblies (Angly

et al., 2005). PHAge Communities from Contig Spectra was ex-

tended to assess cross-assemblies in a tool called Maxi’ (Angly

et al., 2006). Because they do not rely on a database with refer-

ence sequences, these tools provide an approach for comparing

complete metagenomes, even if they contain a high fraction of

unknown sequences.
Here, we present crAss, a novel more direct approach based on

the same concept, i.e. using cross-assembly of reads from differ-

ent metagenomes to assess the degree of similarity between the

sampled communities. Thus, cross-metagenome assembly

enables a sensitive comparison of entities that are shared between

samples, including viruses with no homology to known

sequences. Unlike previous methods, crAss calculates a pairwise

distance score between metagenomes and creates an insightful

image to display these distances graphically. Moreover, a cross-

assembly combines short sequencing reads into longer contigs

that may be more suitable for annotation. For example, down-

stream analyses could include sensitive homology searches

(Soding, 2005), RNA structure detection (Hofacker and

Stadler, 2006) and prediction of alternative genetic codes

(Dutilh et al., 2011).*To whom correspondence should be addressed.
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2 METHODS

2.1 General approach

First, the user will combine the reads from all metagenomic datasets to be

compared into a cross-assembly, i.e. a single assembly from two or more

metagenomes. Note that it is important that all reads have unique iden-

tifiers across all the datasets combined. Cross-assembly can be done with

a de novo assembly tool of choice such as gsAssembler (Margulies et al.,

2005), MIRA (Chevreux et al., 2004) or Velvet (Zerbino and Birney,

2008). We note that it is beyond the scope of this article to evaluate the

performance of the different assembly tools and all the possible parameter

settings (Lin et al., 2011), although it seems that assembler settings opti-

mized for sequence fragments, such as expressed sequence tags (ESTs),

may perform better than assembler settings optimized for complete gen-

omes (see Supplementary File 2). The basic idea is that an assembly

program will link metagenomic reads derived from the same biological

source to one another in a well defined way. The resulting contigs may be

interpreted as ‘metagenomic entities’ or traits that are shared between the

sampled environments. The results shown later to illustrate crAss were

generated using gsAssembler (Margulies et al., 2005) with default param-

eters, but the user can achieve similar results with alternative assembly

tools.

The crAss program takes as input the individual read files (one per

metagenome) in Fasta or Fastq format, as well as the ACE file that

contains the information about the assembled contigs. We note that the

user can strip the potentially privacy-sensitive sequence information from

these files before uploading, as is explained on the crAss help page.

Examples of input files for crAss analysis, including a simplified toy ex-

ample, are available through the crAss web site (http://edwards.sdsu.edu/

crass). For every contig, crAss counts the number of reads derived from

each metagenome and determines whether the contig is shared between

two or more samples (cross-contig). The degree of relatedness between

two metagenomes is calculated from this information according to four

distance formulas (see later).

The output of crAss consists of (i) a list of all contigs showing how

many reads from each metagenome it is composed of (for reference, this

list includes the identifiers of the unassembled singleton reads, which are

not used in the distance calculations), (ii) a symmetrical distance matrix

for each distance formula that contains the distances between all pairs of

metagenomes, and (iii) an image that summarizes the similarities between

the metagenomes (see Section 3). If the user combined two or three

metagenomes, the image will be an XY-plot or an XYZ-plot, respectively,

visualized using Gnuplot. 3D analyses are also presented as a triangle

plot. Note that a user can use the data in the contig list to create other

visualizations. If the user combined more than three metagenomes, there

will be one image for every distance formula, showing a cladogram cre-

ated on the basis of the respective distance matrix using BioNJ (Gascuel,

1997), and visualized using Drawtree version 3.68 from the Phylip pack-

age (Felsenstein, 1989).

2.2 Distance formulas

Comparison tools likeMaxi’ (Angly et al., 2006) parametrize the deform-

ation necessary to morph one metagenome into another. crAss uses a

single dimension, a distance, for the comparisons. There are always many

ways to define distances between given sets of numbers. In crAss, the

distance between all pairs of metagenomes is calculated using four pos-

sible distance formulas. The first is Equation (1), a formula that has been

used to correct for genome size when calculating phylogenetic distances

between species (Dutilh et al., 2004; Dutilh et al., 2007; Korbel et al.,

2002). It is used here to correct for metagenome size when calculating

distances between samples.

Equation 1. Distance formula ‘SHOT’ (Korbel et al., 2002) used for

calculating the distance di,j between metagenomes i and j based on the

number of contigs ci and cj that contain reads from these metagenomes,

respectively, and the number of cross-contigs ci,j with reads from both

metagenomes.

di, j ¼ 1�
ci, jffiffiffi

2
p
� ci � cj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i þ c2j

q� �
The idea of this formula is to normalize the similarity signal ci,j for

metagenome size by dividing by an appropriate mean value of ci and cj, in

this case the square of the geometric mean divided by the root mean

square. As we will see, this mean is never far from the minimum of ci
and cj, min{ci,cj}. Therefore, when ci and cj are far apart in value, the

signal ci,j is not attenuated by dividing by a larger number than necessary.

It is instructive to rewrite the second term in Equation (1) as follows

[compare with Equation (4)]:

ci, jffiffiffi
2
p
� ci � cj

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i þ c2j

q� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�

c2i, j

c2i
þ
c2i, j

c2j

 !vuut

Here, the similarity measure is seen as the root mean square of the

separately normalized quantities ci,j/ci and ci,j/cj. In this form, it is easy to

see that we have the following inequality:

ci, jffiffiffi
2
p
�min ci, cj

� � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�

c2i, j

c2i
þ
c2i, j

c2j

 !vuut �
ci, j

min ci, cj
� �

This points to the second distance metric, where we normalize the

similarity signal ci,j for metagenome size by dividing by the smaller of

the two metagenomes.

Equation 2. Distance formula ‘minimum’ used for calculating the dis-

tance di,j between metagenomes i and j based on the number of contigs ci
and cj that contain reads from these metagenomes, respectively, and the

number of cross-contigs ci,j with reads from both metagenomes.

di, j ¼ 1�
ci, j

min ci, cj
� �

Both Equations (1) and (2) are presence/absence-based formulas. They

assume that the presence of a contig or metagenomic trait in a sample (i.e.

the contig contains at least one read from that sample) is more inform-

ative than its abundance. In our experience, such a qualitative compari-

son can give insightful information for comparing metagenomes because

the number of reads assembled into a contig may not always reflect a

truly random sample from the community metagenome, owing to biases

that may result at the sampling, sequencing or assembly level. However,

we also include two more qualitative distance measures, where the

number of reads is assumed to reflect the abundance of the contig in

the environment. In the first, we index the complete set of observed

contigs by k¼ 1,. . .,n, and let rki denote the number of reads in contig

k from metagenome i. We assume that the fraction of reads from meta-

genome i that are incorporated into contig k.

pki ¼
rkiPn
l¼1 rli

is a measure of the relative importance of contig k to metagenome i, and

that the probability vector (or distribution)

pi ¼ p1i, . . . , pnið Þ

characterizes the metagenome i. Wootters has proposed a natural statis-

tical measure of distance between probability distributions (Wootters,

1981) that is closely related to distance measures associated with the

names of Fisher and Amari (Amari, 1982). It is based generally on the

minimum number of jumps that is required to get from one distribution

to another, where a jump is a statistical fluctuation typical of a finite

sample from the distribution. The distance is normalized in such a way

that it is independent of the sample size used to establish a statistical
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fluctuation. This Wootters metric can be adapted to reflect the distance

between metagenomes as follows.

Equation 3. Distance formula ‘Wootters’ (Wootters, 1981) used for

calculating the distance di,j between metagenomes i and j based on the

fraction of reads pki and pkj from these metagenomes, respectively, that

are incorporated into contig k.

di, j ¼
2

�
cos�1

Xn
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pki � pkj
p

 !

As it may be expected that longer contigs attract more reads from

unrelated metagenomes by chance, we include a fourth distance formula

that mirrors Equation (1), but is based not on the fraction of

cross-contigs but on the fraction of reads assembled into cross-contigs.

Like Equation (3), this is a quantitative comparison that accounts for

skewed read distributions in contigs and corrects for biases, e.g. owing to

differences in contig length.

Equation 4. Distance formula ‘reads’ used for calculating the distance

di,j between metagenomes i and j based on the number of reads ri and rj
from these metagenomes, respectively, that are incorporated into contigs,

and the number of reads ri,j and rj,i from these metagenomes, respectively,

that are incorporated into shared cross-contigs.

di, j ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�

r2i, j

r2i
þ
r2j, i

r2j

 !vuut
Each of the four distance formulas that crAss offers is mathematically

natural for the structure of the data. Our expectation is that each will

prove useful for revealing interrelationships of particular sorts. Just which

metric will be most suitable for which type of comparison will teach us

about the structure of these relationships. We invite users to share their

experience on the SEQanswers user forum (Li et al., 2012), available

through the crAss web site, and let future users know which distance

formula they found useful or useless for their particular application.

2.3 Real data

To illustrate the use of crAss for reference-independent comparative

metagenomics, we selected three sets of viral metagenomes sequenced

using the GS FLX system (Lopez-Bueno et al., 2009; Nakamura et al.,

2009; Rosario et al., 2009). We used viral metagenomes because they are

more challenging than microbial metagenomes because of the high di-

versity and large fraction of unknown sequences. Table 1 shows the 15

samples from these publications that we used as test data for crAss. All

reads were preprocessed using a pipeline including cross_match (http://

www.phrap.org/) to remove possible vector contamination, TagCleaner

(Schmieder et al., 2010) to remove sequencing tags, PRINSEQ

(Schmieder and Edwards, 2011b) to filter low quality, short and dupli-

cate sequences and DeconSeq (Schmieder and Edwards, 2011a) to

remove human-like sequence contamination. The details of the prepro-

cessing pipeline are available at http://edwards.sdsu.edu/mymgdb/. We

then combined the 15 datasets into a single cross-assembly using

gsAssembler 2.6 (Margulies et al., 2005) with default parameters.

Finally, we uploaded the individual raw reads files, as well as the

ACE file resulting from the assembly, to the crAss web server to pro-

duce the presented results.

2.4 Simulated data

We tested the performance of the different distance formulas in crAss

using simulated metagenomic samples created from completely sequenced

bacterial genomes. Genomes between 2 and 6Mb in length representing

the phyla Actinobacteria (n¼ 77), Firmicutes (n¼ 154) and Proteobacteria

(n¼ 280) were selected from RefSeq (Pruitt et al., 2012), choosing one

genome per species to avoid redundancy (Supplementary File 1). We then

created several sets of simulated metagenomes using Grinder 0.4.5 (Angly

et al., 2012) with realistic pyrosequencing parameters: read

length¼ 450� 100nt, and 2% sequencing errors, of which 85% were

substitutions and 15% were indels; homopolymeric errors were included

according to the Balzer model (Balzer et al., 2011).

Three experiments were carried out (Supplementary File 1). First, we

investigated the effect of decreasing species overlap by creating 32 simu-

lated metagenomes of 30 species each. Samples ov00 and ov01 contained

the same thirty Firmicutes, and in every subsequent sample (ov02–ov31),

we randomly replaced one of the Firmicutes by a Proteobacterium. Each

sample was cross-assembled with ov00 to determine how the similarity

score depends on the species overlap.

Second, we investigated the effect of varying species abundance. We

created ten simulated metagenomes containing the same 10 Firmicutes

genomes, but with different logarithmic species distributions (in five

pairs, see Supplementary File 1). These 10 samples were cross-assembled

together.

Third, we investigated the sensitivity for detecting similar (but not the

same) species (either Actinobacteria or Firmicutes) against a background

of noise from a third phylum (Proteobacteria). We created 11 sets of

samples, each consisting of nine metagenomes. Three of those contained

25 or 26 randomly selected (but different) Actinobacteria, and six

contained 25 or 26 Firmicutes. Within these metagenomes, the

Actinobacteria or Firmicutes ‘signal’ was contaminated with an increasing

percentage of Proteobacteria ‘noise’, sampled uniformly from the 280

genomes. The species distributions in all these samples are described in

Supplementary File 1, and the results from these experiments are pre-

sented in Supplementary File 2.

2.5 Short k-mer profiles

Short k-mer profiles have previously been used as an alternative approach

for reference-independent comparative metagenomics, where a length of

k¼ 2 was shown to yield the best separation (Willner et al., 2009).

Distances di,j between metagenomes i and j were calculated from k-mer

profiles as:

di, j ¼
1

16

X
XY

��XYðiÞ � �
�
XYðjÞ

		 		;

Table 1. Viral metagenomic datasets used to illustrate the use of crAss for

reference-independent comparative metagenomics

Dataset Reference

Antarctic spring lake viral metagenome (Lopez-Bueno

et al., 2009)Antarctic summer lake viral metagenome

Human fecal sample N1 viral metagenome (Nakamura

et al., 2009)Human fecal sample N2 viral metagenome

Human fecal sample N3 viral metagenome

Human fecal sample N4 viral metagenome

Human fecal sample N5 viral metagenome

Human nasal sample F1 viral metagenome

Human nasal sample F2 viral metagenome

Human nasal sample F3 viral metagenome

Reclaimed effluent freshwater DNA viral metagenome (Rosario

et al., 2009)Reclaimed effluent freshwater RNA viral metagenome

Reclaimed Nursery freshwater DNA viral metagenome

Reclaimed nursery freshwater RNA viral metagenome

Potable freshwater DNA viral metagenome
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where XY are the dinucleotides, and the dinucleotide odds ratio ��XY is

calculated from the corrected frequencies f�XY (forward and reverse aver-

aged) as follows (Karlin and Mrazek, 1997; Willner et al., 2009):

��XY ¼
f�XY
f�Xf
�
Y

2.6 Reference mapping

We compared the performance of crAss with a reference mapping ana-

lysis. All reads were queried by blastn 2.2.25þ (Camacho et al., 2009)

(default parameters, E-value �0.001) to the Genbank non-redundant nu-

cleotide database (nt, October 19th, 2011) and assigned to the taxonomic

clade of their closest hit. Read counts were divided in case of draws and

iteratively summed for all parent clades as explained previously

(Trindade-Silva et al., 2012). Distances between datasets were calculated

as one minus the correlation coefficient of the resulting taxonomic

distributions.

3 RESULTS

It is expected that metagenomes from a similar environment
share a larger fraction of microbial or viral species than meta-

genomes from different origins. These shared ‘metagenomic enti-

ties’ can be reconstructed by cross-assembly of the metagenomes

and analyzed and visualized using crAss. The contigs that link

two samples (cross-contigs) directly represent the similarity be-

tween those samples. If most contigs are composed of a mix of
reads from different samples, then it may be concluded that there

are many shared entities among those samples. Conversely, if

contigs are predominantly composed of reads from either one

of the samples, but there are few cross-contigs, these samples are

highly dissimilar in composition.

3.1 Simulation experiments

To evaluate the performance of each of the distance formulas

and compare cross-assembly with existing approached for com-

parative metagenomics, we created several simulated metagen-
omes by sampling reads from completely sequenced bacterial

genomes (Supplementary File 1).

First, we investigated a sequence of samples with decreasing
species overlap by creating 31 simulated datasets of 30 species

each (ov01–ov31); the first contained 30 Firmicutes, and one of

those was replaced by a Proteobacterium in each subsequent

dataset. Each of these was cross-assembled with another dataset

of 30 Firmicutes (ov00, which was sampled from the same species

as ov01, see Supplementary File 1). As shown in Figure 1, the
distance to sample ov00 decreases with increasing species overlap

for all distance formulas. As a result of the assembly parameters

in Newbler, which are optimized for complete genome assembly,

the curves show a non-linear response of the distance score to the

degree of species overlap. For comparison, the second tab in
Supplementary File 2 shows MIRA (Chevreux et al., 2004)

assemblies optimized for either complete genomes (tries to

build long contigs) or ESTs (allows shorter fragments), which

shows a more linear response. Indeed, the EST parameters

might be more appropriate for metagenome assembly as well.
Second, we investigated the effect of varying species abun-

dance by creating five pairs of simulated metagenomic samples

with different logarithmically distributed species abundances

(see Supplementary File 1 for species distributions). As shown

in Supplementary Figure S1, all distance formulas cluster the

correct sample pairs together. Interestingly, the quantitative dis-

tance formula ‘Wootters’ [Equation (3)], as well as the dinucleo-

tide odds ratios (Willner et al., 2009), captures the connection

between the clusters (ab03, ab04) and (ab05, ab06), which both

have the highest fraction of Bacillus weihenstephanensis KBAB4

reads (70%, see Supplementary File 1), and subsequently cluster

(ab07, ab08), with 21% B.weihenstephanensis KBAB4 reads. In

contrast, the qualitative distance formulas ‘SHOT’ [Equation (1)]

and ‘minimum’ [Equation (2)] do not capture these connections,

nor does the ‘reads’ formula [Equation (4)].

Third, we evaluated the sensitivity of crAss for detecting dif-

ferent species from the same phylum in the face of increasing

levels of noise. Simulated metagenomic samples were created

from the complete genomes of 511 species (see Supplementary

File 1 for species distributions). Three metagenomes contained

25 or 26 different Actinobacteria each, and six metagenomes con-

tained 25 or 26 different Firmicutes each. These nine datasets

were contaminated with 0–100% noise in the form of simulated

reads from Proteobacteria genomes. The results of this analysis

show that crAss can separate the Actinobacteria from the

Firmicutes metagenomes, with up to 80% Proteobacteria con-

tamination (70% for the distance formula ‘minimum’, see Fig.

2). As expected, the approach based on dinucleotide odds ratios

also separates Firmicutes (also known as low GþC

gram-positive bacteria) from Actinobacteria (or high GþC

gram-positive bacteria), even when contaminated with up to a

90% Proteobacteria reads.
To summarize, crAss clusters metagenomes containing differ-

ent species from the same phylum in the face of high levels of

noise derived from identical contaminating species sets.

Moreover, the length of the branch that separates these groups

decreases with the decrease in signal for all distance formulas

(Fig. 2), showing that crAss can sensitively identify the degree

of similarity between samples.
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Fig. 1. Distance between 31 simulated metagenomic samples with

increasing species overlap, and simulated sample ov00 (see

Supplementary File 1 for species distributions). Distances were calculated

using the four crAss distance formulas; the fifth line shows the distance

based on dinucleotide odds ratios (Willner et al., 2009). See Section 2 for

details
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3.2 Comparing publically available viral metagenomes

crAss visualizes the similarity between metagenomes in different

ways depending on the number of metagenomes combined in the

cross-assembly. Two or three samples will be displayed as an

XY-plot or an XYZ-plot, respectively, showing the number of

reads combined into each of the contigs. 3D analyses are also

presented as a triangle plot. Figure 3 displays an illustrative ex-

ample of a cross-assembly between three metagenomes, showing

shared and non-shared contigs. Contigs composed solely of reads

from a single metagenome will be plotted along the axes, as only

one metagenome will have a non-zero value. In the example

shown in Figure 3, there are 76 contigs that contain only reads

from the fecal N1 sample, 338 contigs with only fecal N2 reads

and 152 contigs with only nasal F1 reads. Furthermore, this plot

shows that 176 of the 230 cross-contigs lie in the bottom plane,

indicating that they contain reads from both the fecal samples

but not from the nasal sample. Only 24 contigs contain reads

from all three metagenomes. These details are available in the

crAss output file output.contigs2reads.txt, which can be down-

loaded, e.g. for alternative visualization in a program of choice.

The results illustrate, as expected, that the fecal samples are more

similar to one another than either of them are to the nasal

sample.
More than three metagenomes cannot be easily visualized in

such a plot, so when more than three datasets are used, crAss

outputs a cladogram that shows the similarities between samples.

The cladogram is calculated from the distance matrix using

BioNJ (Gascuel, 1997), and crAss outputs a different one for

each of the four distance formulas. Moreover, we present two

versions of each cladogram, a version with branch lengths that

represent the distances between the samples and one where the

branch lengths are ignored. This may be useful if the differences

between metagenomes are much more pronounced than the simi-

larities, leading to short internal branch lengths.
The latter cross-assembly uses 53.1� 26.6% of the reads from

the 15 metagenomes for the comparison. A comparative

metagenomic analysis based on blastn mapping of the reads to

the Genbank reference database uses 45.9� 43.1% of the reads,

slightly less and with a much wider spread because of the differ-

ence in the eight human versus seven water samples (84.3� 9.5%

and 1.9� 1.7% reads mapped, respectively, see Supplementary

Fig. S3A). Human-associated microbes have traditionally been

abundant in the databases, whereas microbes from other biomes

remain underrepresented. Although a cladogram based on the

correlation coefficient of the taxonomic distributions of these hits

(see Section 2) shows some clustering of biomes (Supplementary

Fig. S3B), it is not as accurate as the crAss analysis in Figure 4.

Water samples occur in separate clusters, and the human nasal

samples are separated from human fecal samples. We suspect

that this is a long-branch attraction artifact, caused by the

water samples, which are unlike any of the other samples,

being pushed to the center of the cladogram.

4 DISCUSSION

Determining the interrelationships between metagenomes from

different biomes or different time points is important to under-

stand the microbial world around us. Mapping metagenomic

sequences to a reference database of known genes is a feasible

approach to transfer taxonomical and functional annotations to

sequence reads. However, it can limit the amount of data that

can be analyzed because the majority of the sequencing reads in

difficult-to-annotate datasets, such as viral metagenomes from

biomes other than the human microbiome, lack known homo-

logs (Mokili et al., 2012). A promising alternative is reference-

independent comparative metagenomics.
We present crAss, an intuitive approach for comparative

metagenomics that calculates a similarity signal using shared

entities, which are identified by cross-assembly. The tool does
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not depend on homology of the sequenced reads to any known

sequence in a reference database, or even on full-length hom-

ology of the reads to one another. Assembly algorithms, such

as those used to create the ACE files required for crAss analysis,

identify shared subsequences (long or signature k-mers) between

reads to assemble them (Li et al., 2011). Because it relies on a

different similarity signal, this long k-mer approach is comple-

mentary to the use of short k-mer profiles (Ghosh et al., 2011;

Willner et al., 2009).
We expect that Equations (1) and (2) can be applied for quali-

tative comparisons between environments because they only take

the degree of shared entities (cross-contigs) into account.

Conversely, Equations (3) and (4) will be more suited for quan-

titative comparisons because they consider the read counts as a

measure of abundance. Although limited in scope, our current

results based on analyses of simulated metagenomic samples sug-

gest that the distance formula ‘Wootters’ [Equation (3)] may

outperform the other formulas for detecting both qualitative

and quantitative signals, with similar performance as the com-

parisons based on dinucleotide odds ratios (Willner et al., 2009).

Nevertheless, it is difficult to predict which of the distance for-

mulas presented in this article will be the most suitable for which

biological application. That is why we have created a user forum

at SEQanswers (Li et al., 2012), available through the crAss web

site, where we hope that users will share their experiences and

any publications that use crAss.

An additional advantage of using cross-assembly is that the

sequences of biological entities, which are shared between specific

samples, are simultaneously assembled. Based on the results

obtained using simulated data (Supplementary File 2), we

expect that fragment assemblers developed for ESTs, such as

MIRA, or specialized metagenome assemblers will be more suit-

able for cross-metagenome assembly than assemblers like

Newbler, which are optimized for single-genome assembly.
If the parameters of the assembly program are set to strict

values to avoid chimerization, tentative taxonomic annotations

may be transferred between reads that are linked within one

contig. We recommend using parameter settings that the user

is comfortable with for metagenomic assembly, but it should

be noted that the resulting crAss cladogram is based on a simi-

larity score between entire metagenomes, which limits the effect

of possibly rare chimerical sequences. Moreover, chimerization

may be problematic between closely related species, but less

severe for more distant organisms. Thus, although they will

add some noise to the similarity signal, chimeras are more

likely to link reads from biomes that are already similar, alleviat-

ing errors in the final cladogram. To address the issue of poten-

tial chimerization, we recommend creating separate

cross-assemblies and crAss cladograms with stringent and per-

missive assembly parameters, which will lead to fewer and more

chimerical contigs, respectively. The resulting cladograms can

then be compared to evaluate the effect of chimerization on

the cross-assembly analysis. In general, we have seen that the

cladogram rarely changes with altered assembly parameters, indi-

cating that crAss is a robust approach for comparative

metagenomics.

Funding: NSF Division of Biological Infrastructure grant

0850356 and Division of Environmental Biology grant 1046413

(to R.A.E.). Dutch Science foundation (NWO) Veni grant

016.111.075 (to B.E.D.).

Conflict of Interest: none declared.

REFERENCES

Amari,S.-I. (1982) Differential geometry of curved exponential families-curvatures

and information loss. Ann. Stat., 10, 357–385.

Angly,F. et al. (2005) PHACCS, an online tool for estimating the structure and

diversity of uncultured viral communities using metagenomic information.

BMC Bioinformatics, 6, 41.

Angly,F.E. et al. (2006) The marine viromes of four oceanic regions. PLoS Biol., 4,

e368.

Angly,F.E. et al. (2012) Grinder: a versatile amplicon and shotgun sequence simu-

lator. Nucleic Acids Res., 40, e94.

Balzer,S. et al. (2011) Systematic exploration of error sources in pyrosequencing

flowgram data. Bioinformatics, 27, i304–i309.

Bonhoeffer,S. and Sniegowski,P. (2002) Virus evolution: the importance of being

erroneous. Nature, 420, 367, 369.

Camacho,C. et al. (2009) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Chevreux,B. et al. (2004) Using the miraEST assembler for reliable and automated

mRNA transcript assembly and SNP detection in sequenced ESTs. Genome

Res., 14, 1147–1159.

Dutilh,B.E. et al. (2004) The consistent phylogenetic signal in genome trees revealed

by reducing the impact of noise. J. Mol. Evol., 58, 527–539.

Dutilh,B.E. et al. (2011) FACIL: Fast and Accurate Genetic Code Inference and

Logo. Bioinformatics, 27, 1929–1933.

Dutilh,B.E. et al. (2007) Assessment of phylogenomic and orthology approaches for

phylogenetic inference. Bioinformatics, 23, 815–824.

Felsenstein,J. (1989) PHYLIP—Phylogeny Inference Package (Version 3.2).

Cladistics, 5, 164–166.

Rec
lai

m
ed

 fr
es

hw
at

er

Nur
se

ry
 D

NA

Reclaimed freshwater
Effluent DNA

Reclaim
ed freshwater

Nursery RNA

R
ec

la
im

ed
 fr

es
hw

at
er

E
ffl

ue
nt

 R
N

A

Po
ta

bl
e 

w
at

er
 D

N
A

Antarctic lake spring

Antarctic lake summer

Human nasal F1

H
um

an fecal N
4

H
um

an
 fe

ca
l N

2Human fecal N5

Human fecal N3

Hum
an

 fe
ca

l N
1

H
um

an nasal F2

Human nasal F3

Fig. 4. Cladogram representing the distance between metagenomes based

on the fraction of cross-assembled contigs between all sample pairs. crAss

creates this cladogram from a distance matrix using BioNJ (Gascuel,

1997) and visualizes it using Drawtree (Felsenstein, 1989). This cladogram

was based on Equation (1). The complete output for this dataset, includ-

ing distance matrices and cladograms based on the other distance for-

mulas, can be retrieved at http://edwards.sdsu.edu/crass/ under Job ID

1329505996

3230

B.E.Dutilh et al.

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts613/DC1
http://edwards.sdsu.edu/crass/


Gascuel,O. (1997) BIONJ: an improved version of the NJ algorithm based on a

simple model of sequence data. Mol. Biol. Evol., 14, 685–695.

Ghosh,T.S. et al. (2011) HabiSign: a novel approach for comparison of metagen-

omes and rapid identification of habitat-specific sequences. BMC Bioinfor-

matics, 12 (Suppl. 13), S9.

Hofacker,I.L. and Stadler,P.F. (2006) Memory efficient folding algorithms for cir-

cular RNA secondary structures. Bioinformatics, 22, 1172–1176.

Karlin,S. and Mrazek,J. (1997) Compositional differences within and between eu-

karyotic genomes. Proc. Natl Acad. Sci. USA, 94, 10227–10232.

Korbel,J.O. et al. (2002) SHOT: a web server for the construction of genome

phylogenies. Trends Genet., 18, 158–162.

Li,J.W. et al. (2012) SEQanswers: an open access community for collaboratively

decoding genomes. Bioinformatics, 28, 1272–1273.

Li,Z. et al. (2011) Comparison of the two major classes of assembly algorithms:

overlap-layout-consensus and de-bruijn-graph. Brief. Funct. Genomics, 11,

25–37.

Lin,Y. et al. (2011) Comparative studies of de novo assembly tools for

next-generation sequencing technologies. Bioinformatics, 27, 2031–2037.

Lopez-Bueno,A. et al. (2009) High diversity of the viral community from an

Antarctic lake. Science, 326, 858–861.

Margulies,M. et al. (2005) Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 437, 376–380.

Meyer,F. et al. (2008) The metagenomics RAST server - a public resource for the

automatic phylogenetic and functional analysis of metagenomes. BMC

Bioinformatics, 9, 386.

Mokili,J.L. et al. (2012) Metagenomics and future perspectives in virus discovery.

Curr. Opin. Virol., 2, 1–15.

Nakamura,S. et al. (2009) Direct metagenomic detection of viral pathogens in nasal

and fecal specimens using an unbiased high-throughput sequencing approach.

PLoS One, 4, e4219.

Pruitt,K.D. et al. (2012) NCBI Reference Sequences (RefSeq): current status, new

features and genome annotation policy. Nucleic Acids Res., 40, D130–D135.

Rosario,K. et al. (2009) Metagenomic analysis of viruses in reclaimed water.

Environ. Microbiol., 11, 2806–2820.

Schmieder,R. and Edwards,R. (2011a) Fast identification and removal of sequence

contamination from genomic and metagenomic datasets. PLoS One, 6, e17288.

Schmieder,R. and Edwards,R. (2011b) Quality control and preprocessing of meta-

genomic datasets. Bioinformatics, 27, 863–864.

Schmieder,R. et al. (2010) TagCleaner: identification and removal of tag sequences

from genomic and metagenomic datasets. BMC Bioinformatics, 11, 341.

Soding,J. (2005) Protein homology detection by HMM-HMM comparison.

Bioinformatics, 21, 951–960.

Trindade-Silva,A.E. et al. (2012) Taxonomic and functional microbial signatures of

the endemic marine sponge Arenosclera brasiliensis. PLoS One, 7, e39905.

Willner,D. et al. (2009) Metagenomic signatures of 86 microbial and viral metagen-

omes. Environ. Microbiol., 11, 1752–1766.

Wootters,W.K. (1981) Statistical distance and Hilbert space. Phys. Rev. D, 23,

357–362.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Res., 18, 821–829.

3231

Comparative metagenomics using cross-assembly: crAss


