
Vol. 30 no. 22 2014, pages 3215–3222
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu508

Genetics and population analysis Advance Access publication July 30, 2014

Walking the interactome for candidate prioritization in exome

sequencing studies of Mendelian diseases
Damian Smedley1,y, Sebastian K €ohler2,y, Johanna Christina Czeschik3, Joanna Amberger4,
Carol Bocchini4, Ada Hamosh4, Julian Veldboer2,5, Tomasz Zemojtel2,6 and
Peter N. Robinson2,5,7,8,*
1Mouse Informatics Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridgeshire CB10 1SA, UK, 2Institute for Medical Genetics and Human Genetics, Charit�e-Universit€atsmedizin Berlin,
Augustenburger Platz 1, 13353 Berlin, 3Genome Informatics Department, Institute of Human Genetics, University
Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, 4McKusick-Nathans Institute of
Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA, 5Department of
Mathematics and Computer Science, Institute for Bioinformatics, Freie Universit€at Berlin, Takustrasse 9, 14195 Berlin,
Germany, 6Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-701 Poznan, Poland, 7Berlin-Brandenburg
Center for Regenerative Therapies, Charit�e-Universit€atsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin and 8Max
Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany

Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: Whole-exome sequencing (WES) has opened up previ-

ously unheard of possibilities for identifying novel disease genes in

Mendelian disorders, only about half of which have been elucidated

to date. However, interpretation of WES data remains challenging.

Results: Here, we analyze protein–protein association (PPA) networks

to identify candidate genes in the vicinity of genes previously implicated

in a disease. The analysis, using a random-walk with restart (RWR)

method, is adapted to the setting of WES by developing a composite

variant-gene relevance score based on the rarity, location and pre-

dicted pathogenicity of variants and the RWR evaluation of genes har-

boring the variants. Benchmarking using known disease variants from

88 disease-gene families reveals that the correct gene is ranked among

the top 10 candidates in �50% of cases, a figure which we confirmed

using a prospective study of disease genes identified in 2012 and PPA

data produced before that date. We implement our method in a freely

available Web server, ExomeWalker, that displays a ranked list of can-

didates together with information on PPAs, frequency and predicted

pathogenicity of the variants to allow quick and effective searches for

candidates that are likely to reward closer investigation.

Availability and implementation: http://compbio.charite.de/

ExomeWalker
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1 INTRODUCTION

The identification of causative disease genes in Mendelian dis-

orders has contributed greatly to our understanding of gene

functions and biological pathways in rare and common disease

(Antonarakis and Beckmann, 2006). With the development of

whole-exome sequencing (WES), the pace of identification of

novel disease genes has accelerated (Gilissen et al., 2011) to the

extent that groups such as the International Rare Disease

Research Consortium has set out the goal of comprehensive dis-

covery of the molecular etiologies of all rare diseases to enable

molecular diagnosis for all affected individuals by the year 2020

(Baxter and Terry, 2011).

Before WES, most gene discovery projects made use of linkage

analysis or association studies, which typically identified genomic

intervals of 0.5–10 cm containing up to 300 genes (Botstein and

Risch, 2003; Glazier et al., 2002). Numerous computational pro-

cedures have been developed to prioritize candidate genes in the

intervals and guide DNA sequencing efforts (reviewed inMoreau

and Tranchevent, 2012). Although WES provides sequence in-

formation for the great majority of targeted exon sequences, the

need for prioritization remains. An individual exome typically

contains430 000 variants as compared with the genomic refer-

ence sequence, thousands of which are predicted to lead to non-

synonymous amino acid substitutions, alterations of conserved

splice site residues or small insertions or deletions. Typical ana-

lysis strategies have relied on the characteristics of the variants,

focusing on rare variants that are predicted to be pathogenic

(Robinson et al., 2011), but even after such filtering, around

�100–1000 candidate disease-causing variants are found in a

single WES dataset, and additional methods are needed to pre-

dict which of them may have serious functional consequences

and prioritize them for validation (Li et al., 2013; Pelak et al.,

2010). Because each genome harbors �100 genuine loss-of-func-

tion (LOF) variants with �20 genes completely inactivated

(MacArthur et al., 2012), a purely variant-based prioritization

of candidate genes in WES studies will be limited in its ability to

correctly identify the true disease gene.
Previous gene prioritization strategies for prioritizing genes in

linkage studies evaluated one or more characteristics of the
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genes, including functional annotation, gene-expression data or
sequence-based features (Tranchevent et al., 2011). Strategies to
prioritize candidate genes in exome sequencing studies can also

exploit the variant data itself in an attempt to improve priori-
tization of Mendelian disease genes, somatic mutations in cancer
and others. A number of tools and pipelines have been developed

that exploit sophisticated variant filtering strategies. The tools
combine filtering steps that exclude common variants and
retain only variants that are predicted likely pathogenic using

tools such as MutationTaster (Schwarz et al., 2010), and then
exploit sequences from multiple unrelated individuals with the
sought-after disease to search for genes mutated in most or all of

the individuals, as well as linkage or pedigree analysis (Coutant
et al., 2012; Li et al., 2012; Santoni et al., 2014; Sifrim et al., 2012;
Yandell et al., 2011; Zhang et al., 2013). Recently, approaches

have been introduced that combine variant impact prediction
with gene prioritization. The eXtasy algorithm uses genomic
data fusion to integrate variant impact prediction, haploinsuffi-
ciency prediction and phenotype-specific gene prioritization

(Sifrim et al., 2013). The Exomiser implements PHIVE,
PHenotypic Interpretation of Variants in Exomes, an algorithm
that integrates the calculation of phenotype similarity between

human diseases and genetically modified mouse models, with
evaluation of the variants according to allele frequency, patho-
genicity and mode of inheritance (Robinson et al., 2014). FunSeq

intersects regions of the genome that are likely to be sensitive to
mutations with an analysis for variants that disrupt transcrip-
tion-factor binding sites (Khurana et al., 2013). Each of these

algorithms essentially seeks genes or genomic regions that are
both relevant to the disease under investigation and also
harbor variants likely to be pathogenic. We therefore reasoned

that a key factor in exome prioritization algorithms is to intersect
the results of variant analysis with a method that can prioritize
genes according to their potential relevance.

The analysis of protein interaction networks has been widely
used for computational analysis of human disease (Barab�asi,
2007; Gonzalez and Kann, 2012). Typically, proteins do not

act in isolation, but rather perform their functions cooperatively
within a network of functionally related proteins. That is, groups
of functionally related proteins may physically interact with one

another and thereby form a ‘molecular nanomachine’ that me-
diates a particular biological function at cellular or systems level.
A protein–protein interaction (PPI) may be defined as a specific

physical contact with molecular docking between proteins that
occurs in cells or in a living organism in vivo (De Las Rivas and
Fontanillo, 2010). Currently, data on4100000 PPIs in humans

are available (Schaefer et al., 2013), derived from experimental
methods including the yeast two-hybrid system and tandem af-
finity purification. In this work, we make use of data from the

search tool for the retrieval of interacting genes/proteins
(STRING) (Franceschini et al., 2013), which contains not only
PPIs but also indirect (functional) associations derived from gen-

omic context, high-throughput experiments, conserved coex-
pression and text-mining. We will refer to this network as the
protein–protein association (PPA) network. The complete set of

all such interactions and associations has been referred to as the
interactome, and with the increased quantity and quality of such
data, analysis of the protein interactome offers an important

resource for systems-level understanding of cellular processes.

The interactome has also become an important resource for
the computational prioritization of disease genes (Moreau and

Tranchevent, 2012). The main assumption of these methods is

that genes linked to diseases with similar or even identical pheno-

typic manifestations will in many cases code for genes that inter-

act in specific subnetworks within the larger interactome.
Therefore, lists of candidate genes can be prioritized according

to the vicinity of the candidates genes within the interactome to

other known members of a given disease-gene family. Initial

efforts to rank disease genes exploited the presence of direct
interactions (Oti et al., 2006) or the length of the shortest path

of interactions leading from a candidate gene to a known disease

gene (George et al., 2006). We have shown that a global network

measure of distance in the protein–protein interaction network

obtained by random walk analysis, substantially improves can-
didate–gene prioritization, including the search for direct neigh-

bors of other disease genes (K €ohler et al., 2008). In fact, it was

shown that random-walk approaches outperform other gene-

prioritization methods (Navlakha and Kingsford, 2010). In this

work, we test the hypothesis that random-walk analysis of the
protein interactome can improve prioritization of candidate

disease genes in exome sequencing studies.

2 METHODS

2.1 Protein–protein and functional interaction data

The PPA network is represented by an undirected graph with nodes

representing the genes and edges representing the mapped interactions

of the proteins encoded by the genes. Data were taken from STRING

(Search Tool for the Retrieval of Interacting Genes/Proteins) version

9.05, which contains experimental, predicted and transferred protein–

protein interactions, together with interactions obtained through text

mining (Franceschini et al., 2013). Only high-confidence interactions

(score at least 0.7) were used.

2.2 Disease-gene families

A disease-gene family is defined here as a group of genes in which a

mutation in any one of the genes leads to a clinically similar disorder.

Thus, a disease-gene family comprises the genes associated with some

genetically heterogeneous disease. In this work, we have used data on

the phenotypic series from Online Mendelian Inheritance in Man

(OMIM) (Amberger et al., 2011) of March 2013. Each phenotypic

series provides a view of genetic heterogeneity of similar phenotypes

across the genome.

2.3 Simulation of whole-exome and disease data

To validate our methodology, we developed a simulation strategy based

on adding known disease-causing mutations from the Human Gene

Mutation Database (HGMD) into either one of 1092 unaffected whole-

exome files in variant call format (VCF) from the 1000 Genomes Project

(1000 Genomes Project Consortium et al., 2012) or 144 in-house exomes.

The 1000 Genomes Project individual whole-exome files were extracted

from the integrated call sets (October 12, 2012 release) using tabix (Li,

2011) version 0.2.6 and vcftools (Danecek et al., 2011) version 0.1.9.

From the initial 233 phenotypic series involving 1356 genes, we eventually

tested 88 series that contained at least four genes and with known

HGMD mutation(s) for the disease described in the phenotypic series,

corresponding to 285 genes. For autosomal dominant (AD) diseases, one

heterozygous mutation was added, and for autosomal recessive (AR)

diseases, one homozygous mutation was added to the whole-exome files.
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2.4 Whole-exome analysis and filtering

For each of the simulated exomes, we used an exome analysis pipeline to

filter variants according to rarity, predicted pathogenicity and conform-

ance with the expected mode of inheritance. To filter variants according

to rarity, information concerning population minor allele frequency

(MAF) of variants was derived from the database of single nucleotide

polymorphisms (dbSNP) (NCBI Resource Coordinators, 2013) and from

the Exome Variant Server (2013). For this work, the maximum popula-

tion frequency of a variant was taken to be its maximal reported fre-

quency in any data source. For the dbSNP data, only the reported

frequencies from Phase I 1000 Genome Project variants were included.

In addition, ExomeWalker scores variants according to the MAF as pre-

viously described (Robinson et al., 2014) to give a frequency score be-

tween 1 and 0 for variants with a MAF between 0 and 2%, with more

common variants receiving a score of 0. In all simulations reported in this

work, variants with a MAF41% were excluded.

In a typical whole-exome analysis, many of the variants have no avail-

able frequency data in public databases for assessment. Hence, for the

simulations involving 1000 Genomes Project-based exomes, we did not

make use of the 1000 Genomes Project frequency data, as this would lead

to an unfair advantage because each of the non–disease-associated vari-

ants would have frequency data available for filtering and prioritization.

Variants in the VCF files (which are defined using chromosomal

coordinates) were then annotated at transcript level using Jannovar

(J€ager et al., 2014). To filter variants according to predicted pathogen-

icity, a variant score was calculated for each variant. First of all, off-

target variants (those not located in protein coding sequences or in splice

sites) were given a score of zero and removed. Secondly, non-synonymous

variants leading to the substitution of an amino acid residue were scored

according to the most deleterious prediction of SIFT (Ng and Henikoff,

2002), Polyphen2 (Adzhubei et al., 2010) or MutationTaster (Schwarz

et al., 2010). These predictions were extracted from dbNSFP (Liu

et al., 2011). Links between genes and Mendelian diseases were extracted

from data of the Online Mendelian Inheritance in Man resource

(Amberger et al., 2011). In some cases, no predictions were available

from any of these three sources, and a pathogenicity prediction of 0.6

was assigned. This value was arrived at during optimization for another

exome prioritization tool (Robinson et al., 2014) and represents a com-

promise between assuming novel variants are non-pathogenic or fully

pathogenic. For other classes of variants, pathogenicity scores were as-

signed as previously described (Robinson et al., 2014). Future versions of

ExomeWalker will look to incorporate a single measure of pathogenicity

for all types of variants such as CADD scores (Kircher et al., 2014).

For variants that pass the filtering steps, a variant score is assigned for

prioritization, which is simply the product of this pathogenicity score and

the frequency score described above.

2.5 Random walk analysis

The random walk on graphs (Can et al., 2005) is defined as an iterative

walker’s transition from its current node to a randomly selected neighbor

starting at a given source node, s. Here, we used a variant of the random

walk in which we additionally allow the restart of the walk in every time

step at node s with probability r. Formally, the random walk with restart

(RWR) is defined as

pt+1=ð1� rÞWpt+rp0 ð1Þ

The transition matrixW is the column-normalized adjacency matrix of

the graph, and pt is a vector in which the ith element holds the probability

of being at node i at time step t.

In our application, the initial probability vector p0 was constructed

such that equal probabilities were assigned to the nodes representing

members of the disease, with the sum of the probabilities equal to 1.

This is equivalent to letting the random walker begin from each of the

known disease genes with equal probability. Candidate genes were ranked

according to the values in the steady-state probability vector p1. While it

is possible to obtain p1 by explicitly calculating Equation (1) until con-

vergence, we instead solve the equation p1=ð1� rÞWp1+rp0 to obtain

p1=r I� ð1� rÞWð Þ
�1p0 ð2Þ

By precalculating the matrix r I� ð1� rÞWð Þ
�1, we can perform

random walk analysis as a simple matrix multiplication of the vector p0
in Oðn2Þ time, where n is the number of genes in the network. Therefore,

denoting r I� ð1� rÞWð Þ
�1 by R, we can calculate the result of the

random walk analysis by a simple matrix multiplication p1=Rp0. We

can further simplify the calculations by noting that most of the elements

of the vector p0 are zero, with only the elements representing the m seed

genes having the non-zero value 1
m. Denoting the set of the indices of these

elements as j0
� �

, then it is easy to see that only the corresponding col-

umns of R contribute to the final values of p1, whose i
th element can be

given as

p1½i�=
1

m

X

j2 j0f g

R½ j; i� ð3Þ

That is, to get element i in p1, we need only to take the sum of the

products of the non-zero elements of p0 with the corresponding elements

of column i of R. The computational complexity of the random walk

analysis in Equation (1) is dominated by the matrix-vector multiplications

in each step, which is Oðn2Þ for an n� n matrix. In contrast, our method

requires precomputation of one matrix inversion, but the actual calcula-

tion of p1 isOðmnÞ withm� n, as there areOðmÞ operations to calculate

Equation (3), which has to be done for each of the n elements of p1.

p1 is a probability vector, and all its entries sum to unity. For the

purposes of exome analysis, only those genes that have rare predicted

pathogenic variants are considered. For the analysis described in this

article, we chose a value of 0.7 for the restart probability r.

2.6 ExomeWalker score

Finally, a gene is assigned a combined ExomeWalker score, which is a

combination of the random walk score and the best scoring variant in

that gene. In the case of AR inheritance under a compound heterozygous

model, the variant score is taken to be the average of the two highest

scoring variants. Logistic regression on a training set of 20000 disease

variants and 20 000 benign variants was run through the Waikato

Environment for Knowledge Analysis (WEKA) (Hall et al., 2009) data-

mining package to generate the optimal way of combining the variant and

random walker scores into a final ExomeWalker score. A 10-fold cross

validation was used to train and test the model, and the average of the 10

models was used for the final algorithm. Receiver operating characteristic

analysis on the test datasets gave an average area under the curve of 0.96

for the ExomeWalker score compared with 0.78 for the variant score and

0.9 for the random walk score. This final ExomeWalker score gives a

measure from 0 to 1 of how close the gene is to known disease-associated

genes in the interactome and how rare and pathogenic are the variants in

the gene.

2.7 Benchmarking of ExomeWalker

For the simulated exomes involving known disease variants in 285 genes

from 88 phenotypic series, we performed 5000 analyses per experiment.

ExomeWalker was run using the other genes in the phenotypic series as

seed genes for the random walk. Genes were ranked by either the variant

score or the ExomeWalker score. We then compared performance by

assessing how often the known disease gene was recovered as the top

hit or in the top 10 or 50 candidates. An ordinal ranking method

was used where equal scoring genes are resolved arbitrarily but consist-

ently by assigning a unique rank to each of the ties. In our case, we simply
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sort the equally scored genes alphabetically and assign the ranks.

This corresponds to the real life use case where a researcher would

have to take each of the equally scored top candidates and investigate

each one by one for causality by further experimentation or for further

candidacy by reviewing the literature/databases using their expert

knowledge.

3 RESULTS

In this work, we have implemented an algorithm for prioritizing

candidate genes in WES studies by searching for rare variants

with predicted pathogenicity in genes located in the vicinity of

phenotypically related genes in a functional interaction network.

We constructed a PPA network based on 210 945 associations

among 12 511 human genes using high-confidence interactions in

the STRING database (Franceschini et al., 2013). We imple-

mented a global distance measure based on RWR to define

similarity between genes within this interaction network

(K €ohler et al., 2008). The RWR algorithm ranks genes on the

basis of their similarity to known or suspected disease genes.

In our benchmarking, we use phenotypic series from the

OMIM resource (Amberger et al., 2011) to define disease-gene

families. Users of ExomeWalker can either use these same dis-

ease-gene families or enter their own list of genes that are known

or suspected to be associated with the disease being studied.

In parallel, variants from an exome are annotated and the fre-

quency and predicted pathogenicity are evaluated. Candidate

genes with rare, potentially pathogenic variants are then prior-

itized using both the results of variant evaluation and the vicinity

in the PPA network of the genes harboring the variants to the

seed genes (see Section 2 for details).
Figure 1 shows the results of our analysis using STRING

v9.05 as the source of interactome data. Analysis was performed

by adding known disease variants to either in-house exomes

or 1000 Genome Project exomes and with and without the

appropriate inheritance model for the disease being tested.
The results show a substantial performance increase when

including the random walk measure of protein–protein inter-

actions with other genes associated with the disease as compared

with either the variant score or the RWR score alone. For

example, 39.4% of the tested exomes contained the known dis-

ease gene as the top hit for the 1000 Genomes Project–based

simulations compared with 1.4% when just using variant patho-

genicity and frequency to assess candidacy. This is out of an

average of 907 postfiltered genes and 97.1% of the disease

genes are kept during this filtering step. This increases to 43.5

and 67.3% for the AD and recessive models out of an average of

632 and 374 postfiltered genes, respectively. Similar performance

and gains are seen when adding the disease variants to our in-

house exomes that contain many more postfiltered genes (1141

on average for no inheritance model). The correct gene was pre-

sent within the top 10 ranked candidates in nearly 75% of the

simulations using in-house exomes. As shown in Figures 1 and 2,

a large proportion of the performance comes from the random

walk prioritization of the filtered exome candidates with the add-

ition of variant pathogenicity and frequency data adding a fur-

ther 5–10% increase.
STRING includes text-mined associations between genes and

it is possible some of these associations may come from

publications describing two genes being associated with the
same disease, rather than the biological associations we are

trying to detect with our simulation studies. To allow for this,
we repeated the analysis with a version of STRING where all

text-mined associations had been removed (Fig. 2).
As expected, there is a drop in performance compared with

including the text-mined association but ExomeWalker still
shows a substantial improvement over purely variant-based

measures of candidacy. For example, for the 1000 Genomes

Fig. 1. Performance of ExomeWalker using STRING v9.05 as the source

of interactome data. The bars show the percentage of exomes where the

true disease gene is identified as the top hit or in the top 10 or 50 results.

Either in-house or 1000 Genomes Project exomes were used. All exomes

are filtered to remove synonymous, intergenic and intronic variants

except for those in splice sites. In addition, variants with a MAF4 1%

are excluded. Results are shown without (All) or with an AD or AR

inheritance model applied. Ranking is either by Variant scoring that

combines MAF and predicted pathogenicity, RWR analysis alone or

ExomeWalker scoring that additionally includes evidence of protein–pro-

tein associations with other genes linked to the disease

Fig. 2. Performance of ExomeWalker using STRING v9.05 without text-

mined associations as the source of interactome data. Abbreviations are

as in Figure 1

3218

D.Smedley et al.

whole-exome sequencing 
protein
-
protein association 
a total of 
,
st
,
random walk with restart (
)
Online Mendelian Inheritance in Man (
)
in order 
Methods 
-
to 
to 
-
-
&percnt;
autosomal dominant 
-
-
-
to 


Project exomes with no inheritance model, the ExomeWalker
performance drops from 39.4 to 26.1%, having the correct
gene as the top hit but this is still 24.7% higher than with the

variant-based scoring alone.
This strategy of removing all text-mined associations will have

removed many genuine interactions that would be useful for

prioritization of a novel disease–gene association. We expect
the real performance of ExomeWalker in such cases to lie some-
where in-between that seen in Figures 1 and 2. To gain a realistic

estimate of the performance of our method on new data, we
identified 19 disease–gene associations that had been identified
in 2012 that belong to one of the phenotypic series and had a

known variant in HGMD. We tested the performance of our
method using a PPA dataset with data before the discovery of
any of these genes (STRING v9.0). The results are summarized

in Table 1. The true disease-causing gene was present within the
top 10 prioritized genes in 10 of 19 cases (�53%), similar to our

results using large-scale simulations.

4 DISCUSSION

Computational candidate gene prioritization has matured into a
field that has developed and benchmarked scores of algorithms
that exploit and integrate complex and heterogeneous datasets

including gene expression, sequence annotations, data mining,
genetic sequences, functional annotations and protein–protein
interaction networks (Aerts et al., 2006; Lage et al., 2007;

Perez-Iratxeta et al., 2002; Tranchevent et al., 2011; Turner
et al., 2003). The fundamental algorithms have been improved

and extended in many ways, such as including tissue-specificity in
the analysis of the protein interactome (Magger et al., 2012).
Initial computational analysis of exome sequence data concen-

trated on filtering variants according to their population fre-
quency, predicted pathogenicity and the presence of rare
predicted-pathogenic mutations in multiple unrelated individuals

with a certain rare disease (‘intersection’ strategy; Boycott et al.,
2013; Robinson et al., 2011). However, it has become apparent
that it remains difficult to identify novel disease genes or even

known disease genes with WES because of the sheer number of
candidate mutations; each genome is thought to harbor �100
genuine LOF variants with �20 genes completely inactivated

(MacArthur et al., 2012). Therefore, filtering on variant charac-
teristics alone is not effective in situations where a single affected
individual or only a small number of individuals are being inves-

tigated. Therefore, just as positional cloning approaches were
limited by the availability of large well-characterized families,

disease-identification studies by WES are often limited by the
number of individual exome sequences available for variant
intersection. For this reason, candidate gene prioritization meth-

ods have recently begun to be applied to exome analysis. With
positional cloning, prioritization would be applied to all genes
located within the linkage interval; with exome studies, priori-

tization is applied to all genes that harbor rare, potentially patho-
genic mutations. In both settings, the number of genes may be in
the hundreds. Recently, exome prioritization methods have been

introduced that exploit data fusion, phenotypic data and model
organism phenotype data (Robinson et al., 2014; Sifrim et al.,
2013). Random-walk analysis of protein–protein interaction data

has been shown to be a powerful approach to gene prioritization

in the setting of positional cloning projects (K €ohler et al., 2008;
Navlakha and Kingsford, 2010). In this work, therefore, we have
adapted our previous approach and tested its utility for exome

analysis.
Figure 3 illustrates the gene prioritization procedure in the

case of DDOST and DPM2, components of the oligosaccharyl-

transferase complex that transfers a glycan chain to nascent pro-
teins. Congenital disorders of glycosylation (CDG) are inherited
AR diseases that impair N-glycosylation, and previously identi-
fied CDG disease genes were used to prioritize candidate genes

including DDOST and DPM2 in the simulations summarized in
Table 1. It can be seen that DDOST has only two direct inter-
actions with CDG seed genes and is at some distance from the

others, leading to it only being ranked 23rd. However, DPM2
has multiple direct and second-degree interactions with CDG
genes leading to it being ranked as the top-ranked candidate in

simulations.
In contrast, other genes did not achieve a high rank. For in-

stance, TMEM5, mutations which were shown to be a cause of

type A muscular dystrophy-dystroglycanopathy (Vuillaumier-
Barrot et al., 2012), was placed at rank 19 by our method.
This gene has only one high-confidence association in the

STRING database, with PLAU (plasminogen activator, urokin-
ase), which itself has 10 high-confidence associations to other
genes, none of which is related to type A muscular dystrophy-

dystroglycanopathy. Therefore, although mutations in TMEM5
cause the same disease as mutations in the other genes of this
family (POMGNT1, POMGNT2, ISPD, FKTN, POMT1,

POMT2, FKRP, LARGE), there is little functional similarity re-
flecting this in STRING. Thus, although PPA analysis offers an
effective way of prioritizing disease genes in many cases, there are

disease genes that do not show a high random walk score.
In cases where the causative gene does not interact with pre-

vious members of the disease-gene family, or for diseases where

there are no previously known genes, other approaches will have
to be considered. We recently described an approach, Exomiser,
that uses phenotype comparisons with model organism data to

inform on candidacy (Robinson et al., 2014). eXtasy is another
recently published solution that uses phenotype comparisons
along with consideration of many other data types (Sifrim

et al., 2013). To contrast and compare these different approaches
we applied them to the same set of recently solved cases and
report the performance in Table 1. Note that eXtasy does not

perform any variant filtering, and so, to allow a fair comparison
we used VCF files that had already been filtered in the same way
as for the ExomeWalker benchmarking. Three of the diseases

currently have no phenotype annotations available and are there-
fore not runnable through eXtasy or particularly amenable to
Exomiser prioritization. eXtasy can only inform on non-syn-

onymous variants and four of the cases involve a small deletion,
which again was not assessable. Finally, for two of the cases,
eXtasy removed the causative variant during analysis, so no

final ranking was possible. For 2 of the 10 remaining cases,
Exomiser and eXtasy performed better than ExomeWalker,
with ExomeWalker outperforming them in the other cases.

KLHL3 is a good example where there is minimal evidence for
interactions with previously implicated genes but where use of
phenotype data allowed identification of the causative variant as

the top or second best hit using eXtasy or Exomiser, respectively.
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In contrast for the three cases where ExomeWalker identified the

causative gene as the top hit, both eXtasy and Exomiser were

unable to achieve this efficient prioritization.

5 CONCLUSION

We have implemented our method in a freely available Web

server called ExomeWalker. Users can upload a VCF file and

choose one of 243 phenotypic series or enter their own disease-

gene family in the form of a list of Entrez Gene identifiers. These

genes may already be known to be associated with the disease or

be members of a pathway suspected of being disrupted in the

disease or just candidates from in-house knowledge. If the VCF

file contains multiple samples, ExomeWalker will assume that all

samples are from the same family and will ask the user to upload

a pedigree (PED) file. It will then perform pedigree filtering on

the genes and variants represented in the VCF file using the

Jannovar library (J€ager et al., 2014). It will subsequently rank

the candidate genes and return a list of candidates together with

information about the genes. Importantly, it will show all first-

and second-degree interactions with the seed genes, allowing

users to quickly eyeball candidate lists to determine if there are

genes with multiple functional associations with the seed genes

that would reward closer inspection. Exome sequencing remains

a difficult endeavor, and large-scale exome-sequencing studies

for the identification of Mendelian disease causing genes have

reported success rates around 20–35% (de Ligt et al., 2012; Yang

et al., 2013). Therefore, it is not realistically to be expected that a

prioritization method will place the correct gene in the first place,

or first few places, in all cases. An advantage of the methodology

presented here is that ExomeWalker quickly shows whether there

are candidate genes with both predicted pathogenic variants

and multiple functional associations with other genes in the

same disease-gene family. If this is not the case, users may

wish to explore phenotype-based (Robinson et al., 2014) or gen-

omic data fusion (Sifrim et al., 2013) prioritization of exome

data, or if possible sequence additional family samples to

enable linkage filtering (R €odelsperger et al., 2011; Smith et al.,

2011), or sequence additional unrelated individuals for intersec-

tion-based (Robinson et al., 2011) approaches.
The ExomeWalker server is freely available at http://compbio.

charite.de/ExomeWalker/.
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