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Coral cover has declined rapidly on Caribbean reefs since the early 1980s,

reducing carbonate production and reef growth. Using a cross-regional

dataset, we show that widespread reductions in bioerosion rates—a key

carbonate cycling process—have accompanied carbonate production declines.

Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths

collectively averages 2 G (where G ¼ kg CaCO3 m22 yr21) (range 0.96–

3.67 G). This rate is at least 75% lower than that reported from Caribbean

reefs prior to their shift towards their present degraded state. Despite chronic

overfishing, parrotfish are the dominant bioeroders, but erosion rates are

reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates

have declined further and are functionally irrelevant to bioerosion on most

reefs. These changes demonstrate a fundamental shift in Caribbean reef car-

bonate budget dynamics. To-date, reduced bioerosion rates have partially

offset carbonate production declines, limiting the extent to which more wide-

spread transitions to negative budget states have occurred. However, given the

poor prognosis for coral recovery in the Caribbean and reported shifts to coral

community states dominated by slower calcifying taxa, a continued transition

from production to bioerosion-controlled budget states, which will increas-

ingly threaten reef growth, is predicted.
1. Introduction
Caribbean coral reef ecology has changed rapidly since the early 1980s. Live coral

cover has declined on all reefs, populations of key reef-building coral taxa

(especially the Acroporids) have been decimated [1], reef structural complexity

has diminished [2], many reefs now have high macroalgal cover [3] and reef trophic

structures have been fundamentally altered [4]. These changes have been driven by

hurricanes and other environmental stressors, such as temperature-induced coral

bleaching and coral disease outbreaks, locally by eutrophication and by the loss

of key herbivorous taxa through disease and fishing pressure. In particular, popu-

lations of the herbivorous sea urchin Diadema antillarum were decimated by a

disease outbreak in 1983 [5], and most Caribbean reefs have suffered from chronic

and sustained overfishing for at least several decades [6]. While these major drivers

of Caribbean reef decline are well documented, the impacts of ecological decline on

rates of reef carbonate production, on reef carbonate cycling, and upon the ability of

reefs to build and maintain their physical structures is far more poorly understood.

However, given the fundamental importance of the physical structure of reefs to
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the provisioning of many key ecosystem goods and services

[2,7], this represents a major knowledge gap.

In this context, recent studies have provided evidence that

average rates of contemporary reef carbonate production are

well below historical and geological averages in the Carib-

bean [8,9]. About a quarter of studied reefs were shown to

be in net negative carbonate budget states (range: 21.7

to 20.1 G, where G ¼ kg CaCO3 m22 yr21), and a further

quarter to be defined by low net positive states, but below

1 G [9]. The major implication of this is that a significant

number of Caribbean reefs are now entering a period of

diminished reef growth potential [9]. However, it is also

apparent from these data that while many Caribbean reefs

sit at the threshold of becoming net budget negative,

to-date more widespread shifts towards significantly net

negative budget states have not yet occurred. This contrasts

to several earlier studies from the Indo-Pacific that documented

marked shifts into net negative budget states and reef struc-

tural erosion following coral die-offs [10–12]. In each case,

these transitions were driven by higher (relative to carbonate

production) bioerosion rates. In reef settings, bioerosion is a

term that describes the biological erosion of both framework

and sediments by a range of reef-associated taxa through

both external grazing and endolithic ‘boring’ life modes [13].

These include grazing species of fish (mainly parrotfish of

the genera Scarus and Sparisoma in the Caribbean) and urchins

(of the genera Diadema and Echinometra), and species of

sponges, bivalves, worms and microorganisms as key endo-

lithic borers. Collectively, these organisms act to denude reef

substrate and are thus critically important to determining net

reef carbonate production rates [14].

In the Caribbean, there is convincing evidence that parrot-

fish and urchins made significant contributions to high

bioerosion rates prior to the period of recent ecological

decline [15,16], although there was also clear variability

between habitats (and especially over depth gradients) in

terms of the abundance and relative importance of different

bioeroding taxa [16,17]. However, Caribbean reef ecology

has fundamentally changed over the past 30–40 years, and

populations of bioeroding urchins (especially D. antillarum)

and parrotfish have also declined [18]. Furthermore, the

widespread loss of branching Acropora spp., as well as an

overall decline in coral cover, have markedly reduced the

structural complexity of most Caribbean reefs [2], changing

habitat and substrate availability. Such habitat changes

have well-documented impacts on urchin [19,20] and parrot-

fish [21] populations. Impacts on endolithic bioeroders are

far more poorly understood. However, given that different

endolithic borers appear to use and exploit different substrate

types in different ways–for example, as morphology or coral

skeletal density change [22]–it is reasonable to assume that

as structural complexity changes, so too may boring species’

abundance and diversity. Given these changes, it is pertinent

to ask: (i) what are the dominant bioeroding groups (and

species) now present within different reef habitats in the Carib-

bean? And (ii) what is the cumulative influence of these

bioeroders on contemporary reef carbonate production rates

across the Caribbean? We explore these questions using data

from 19 coral reefs located across four geographically distinct

areas of the Caribbean. We use these data to undertake a

unique cross-regional census-based assessment of key Carib-

bean reef bioeroding taxa and associated bioerosion rates.

Our study encompasses data from a range of common, shallow
water, Caribbean reef habitats. Specifically, we build on pre-

viously published data describing regional net reef carbonate

budget states [9] and present a novel dataset that quantifies

rates of erosion by the four dominant regional bioeroders.

We consider the cumulative impacts on regional carbonate

budgets, and consider how these have changed in comparison

to rates reported prior to the major ecological changes that have

occurred since the early 1980s.
2. Material and methods
(a) Study sites
Data on bioerosion rates were collected from a range of common

Caribbean fore-reef habitats: nearshore hardground habitat (less

than 5 m depth), relict Acropora palmata habitat (approx. 5 m

depth), Orbicella (previously termed Montastraea) spur-and-groove

habitat (approx. 10 m depth), fore-reef slope habitat (10–15 m

depth) and deeper (18–20 m) shelf-edge Orbicella reef habitat

(figure 1a). Data were collected from 19 reefs across four countries;

Bahamas, Belize, Bonaire and Grand Cayman (electronic sup-

plementary material, table S1). These countries occupy different

regions of the Caribbean with respect to prevailing wave energy/

hurricane frequency [23], and thus a degree of inherent variability

is assumed in terms of background ecological condition and dis-

turbance history. Although selected to provide wide geographical

coverage, we recognize that the range of reefs and countries exam-

ined do not capture the full range of reef types and settings that exist

across the region, nor indeed the full spectrum of disturbance his-

tories that have affected Caribbean reefs. However, the general

ecological condition of the study sites was remarkably consistent

and is considered representative, based on comparisons to recent

metadata analyses [2,3], of the spectrum of ecological and structural

states presently observed on the region’s shallow water reefs. At

most sites, live coral cover was less than 25% (and was often

much lower), and most shallow water sites (less than 10 m) were

devoid of, or had very low cover of, living branched Acropora (his-

torically a key Caribbean reef framebuilder). In addition,

macroalgal cover was high (often exceeding 40%). Exceptions to

the above descriptions occurred at a few sites in Bonaire, where

live coral cover was higher (in places around 40%).
(b) Field data collection
We used the non-destructive census-based protocol described in

the ReefBudget methodology [8] to measure biologically driven car-

bonate erosion rates, with rates described by the unit G, where G ¼

kg CaCO3 m22 yr21. Data were collected between November 2010

and March 2012. Gross and net carbonate production rates and

associated census methodologies are described elsewhere [8,9].

Based on an understanding, derived from past studies, of the

dominant bioeroders that occur in shallow (5–15 m depth) Carib-

bean fore-reef habitats, we focused specifically on determining

rates of bioerosion by four main groups of bioeroders, these

being: (i) bioeroding urchins of the genera Diadema and Echinome-
tra [15,24]; (ii) parrotfish of the genera Scarus and Sparisoma [16];

(iii) endolithic sponges (mainly of the genus Cliona), which have

been shown to dominate the endolithic macroboring community

(typically more than 90% of the community) within the shallow

fore-reef Caribbean habitats we consider here [25]; and (iv) micro-

endolithic borers that are ubiquitous within all reef framework and

sedimentary carbonate substrates in Caribbean fore-reef settings

[26] and are reported to erode at rates relevant to carbonate

budget assessments [27]. In this study, we did not include analysis

of endolithic bivalve borers, nor of sipunculan and polychaete

worms, primarily because they are not reported as key bioeroders

within the habitats we examined (less than 5% of the community

http://rspb.royalsocietypublishing.org/
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[25]) but also because analysis of these taxa is not possible without

destructive sampling. Generic rates are also hard to apply for these

borers due to a lack of experimental data in the Caribbean, but

based on Pacific experimental rate data (and assuming such taxa

may comprise up to 10% of the macroboring community) their

contributions to bioerosion are unlikely to exceed 0.2 G [27].

Other bioeroders such as limpets and chitons were also excluded

as these are restricted to intertidal settings [28]. Thus, while our

data do not capture the entire range of reef bioeroders, it does

capture that by the key fore-reef bioeroders within the region.

To determine rates of erosion by parrotfish, we conducted

10 belt transect surveys (30 m by 4 m wide) in the vicinity of

each transect (electronic supplementary material, table S2). All

observations were made between 11.00 and 17.00 h (the period

of maximum feeding activity) [16]. We recorded abundance, life

phase and fork length in the following size classes: 5–14 cm,

15–24 cm, 25–34 cm and 35–44 cm (no fish more than 45 cm

were recorded in our surveys) for each of the following species

of Scarus: Scarus iserti, Scarus taeniopterus and Scarus vetula, and

of Sparisoma spp.: Sparisoma aurofrenatum, Sparisoma chrysopterum,

Sparisoma rubripinne and Sparisoma viride. Bioerosion rates for

each species/size class were calculated using a model based on

fork length as a predictor of bite rate (bites/hour) derived from

two species (Sparisoma viride and Scarus vetula) at different life

phase stages [29–31]. We made the assumption that relationships

between fork length and bite rate, and fork length and bite size, can

be extrapolated within genera [32]. Estimates of overall parrotfish

erosion rates at each site were based on these calculations. The

main echinoid bioeroders in the Caribbean belong to the genera

Diadema (Diadema antillarum) and Echinometra (Echinometra viridis
and E. lucunter), and erosion rates have been shown to vary as a

function of species and test size [10,15]. To determine urchin ero-

sion rates, we thus counted the number and size class of urchins

(to species) within an area 1 m either side of each transect (total

20 m2), with the number of individuals in the following test size

classes recorded: 0–20 mm, 21–40 mm, 41–60 mm, 61–80 mm,

etc. (electronic supplementary material, table S3). Erosion rates

were determined using published data on test size and erosion
rate relationships: for D. antillarum using the relationship

between urchin bioerosion rate y (g/urchin/day) and test size,

where y ¼ 0.0029x1.6624 [33], and for Echinometra spp., where y ¼
0.0007x1.7309 [24].

For reasons outlined above, estimates of endolithic bioerosion

were made for two bioeroding groups, the endolithic sponges and

the microboring endoliths. To estimate rates of endolithic sponge

bioerosion, we used an adapted version of the non-destructive

census methodology of Ward-Paige et al. [34] to determine the

% surface area covered by the following species of endolithic

sponges: Cliona aprica, Cliona caribbaea, Cliona delitrix, Cliona
tenuis, Cliona varians and Siphonodictyon coralliphagum. Using a

transparent grid, we measured the surface area (cm2) colonized

by the above species within an area 0.5 m either side of each trans-

ect (total 100 000 cm2). Sponge area was measured based on the

occurrence of visible papillae, or the area covered by surficial

tissue, depending on species. To estimate erosion rates by sponges,

we then used published datasets to derive a relationship between

sponge tissue cover and bioerosion rate, as reported by Perry et al.
[8]. This was based on published data on the relationship between

% surface area of sponge tissue or papillae cover and the % volume

of substrate removed [35], and between % volume of substrate

removed and bioerosion rate (kg CaCO3 m22 yr21) [27,33,36].

These data were then used to derive a relationship between % sur-

face area of sponge papillae (in relation to volume of substrate

removed) and bioerosion rate, whereby bioerosion rate ¼%

surface area of sponge tissue/papillae � 0.0231 (electronic sup-

plementary material, table S4). At present, it is not possible to

differentiate erosion rates by different bioeroding sponges and so

until species-specific rate data are available our calculations

assume that rates do not differ between species.

Carbonate substrate degradation by endolithic microorganisms

is more problematic to measure directly using non-destructive

census approaches but, as outlined above, because published micro-

endolithic erosion rates are often within the ranges calculated for

macroborers [27], it is a process that carbonate budget assessments

should not ignore. As a result, we take the approach of applying

known rates of microendolithic bioerosion to all available dead reef

http://rspb.royalsocietypublishing.org/
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framework within each study transect. To the best of our knowledge,

only one previous experimental study has reported microendolithic

erosion rates in the Caribbean across a range of depth intervals [26].

Erosion rates declined significantly with depth, but rates of 0.27 G are

reported for sites between 0 and 10 m depth. Here we use this rate,

which is also within the range of rates reported from Indo-Pacific

sites [27], and apply this to all areas of dead, exposed reef substrate

within each reef zone. Means, medians and standard errors were

calculated across the samples. To test for differences in gross and

taxa-specific erosion rates between habitats, ANOVA tests were

run using SPSS and, where appropriate, a Tukey post-hoc test.

Data were tested for normality and equality of variances.
3. Results
Bioerosion rates across the range of reefs and habitats examined

average 2.0 G, ranging from 2.3 G in relict A. palmata habitat, to
1.5 G in shelf-edge Orbicella habitat (figure 2a), but differences

between habitats are not significant (F ¼ 0.522, p ¼ 0.721).

However, it is clear that different bioeroding taxa make mark-

edly different contributions to overall bioerosion rates. Highest

rates overall are attributed to parrotfish, with erosion averaging

1.6 G across all habitats, but are highest in sites shallower than

10 m depth (range: 1.5–1.7 G; figure 2b), although these dif-

ferences are also not significant between habitats (F ¼ 0.854,

p ¼ 0.511). Highest rates at the individual reef scale occur

within the marine reserves in Bonaire and Grand Cayman,

reaching 3.1 G (figure 2b) and are lowest within shelf-edge

Orbicella habitat (figure 2b). Urchin erosion rates are very low

across all habitats, averaging less than 0.1 G (range 0–0.1 G;

figure 2c) and reflect both the very low abundances and

small test sizes of Diadema spp. and Echinometra spp. at most

sites. No urchins were observed on the deeper shelf-edge

Orbicella reefs. Sponge bioerosion rate estimates are also low,

http://rspb.royalsocietypublishing.org/
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averaging 0.1 G (range 0.1–0.02 G; figure 2d) and reflect the

low percentage cover of bioeroding sponges measured at

most sites. Rates of microendolithic erosion average 0.3 G

across all habitats (range 0.2–0.4 G; figure 2e).

Gross erosion rate data at the taxa level thus indicate that

parrotfish are the dominant bioeroders on contemporary Car-

ibbean reefs and are responsible for an average 76% of

bioerosion across all sites (figure 3). Across the shallower

sites (less than 10 m depth) the range is 78.8–84.4%. Parrotfish

bioerosion rates are only significantly lower (F ¼ 7.644, p ¼
0.002) in the shelf-edge Orbicella reef habitat (57.4%), where

overall erosion rates are also reduced (figures 2a and 3). This

trend is consistent with general patterns of declining parrotfish

bioerosion with increasing depth, as reported even from low

fishing pressure reefs [16], but we emphasize that the overall

magnitude of erosion is also reduced. We also note that there

is no clear partitioning across the shallow water habitats in

terms of the key taxa driving bioerosion, nor in terms of their

relative contributions to bioerosion. The relative contribution

of urchins to overall bioerosion, which was previously a key

shallow water bioeroder [15], is now limited across all habitats

(figure 3). Indeed, as a function of their low abundances and

small test sizes, urchins are at present functionally irrelevant

to reef bioerosion at our study sites. We also observe that

sponges and microendolithic taxa only make a meaningful

relative contribution (7.7% and 35%, respectively) to bioerosion

within the deeper shelf-edge Orbicella habitat. However, we

emphasize that actual erosion rates are also lower in these

deeper habitats, averaging 1.5 G (figure 2a). While some uncer-

tainty remains about the relationship between sponge tissue

cover and erosion rates [8], we note that the measured % of sub-

strate infested by sponges is low across all sites (maximum site

average is 5.2% cover). This is, however, in line with estimates

from high nutrient enriched sites in the Florida Keys [34],

suggesting our methods do not underestimate endolithic

sponge cover. Competition with fleshy macroalgae may be

one reason for the relatively low cover of sponges observed

[37]. We also note that microendolithic bioerosion, in the

absence of more extensive erosion by fish and urchins, is
probably now making a more significant contribution to

bioerosion than is often appreciated [27]. Our data suggest

that microborers are removing (eroding) an estimated 0.2–

0.4 kg (as habitat averages) of carbonate, which is equivalent

to between 10 and 20% of total estimated bioerosion, depend-

ing on habitat. This rate may seem high, but we note that both

the rates and the proportions of microendolithic bioerosion we

report are very comparable to those calculated from exper-

imental substrates deployed in various reef settings on the

Great Barrier Reef [27], suggesting that such high relative

contributions are realistic.
4. Discussion
These data provide a novel insight into contemporary rates

and patterns of bioerosion across multiple reef sites and habi-

tats in the Caribbean. In contrast to several localities in the

Indo-Pacific where loss of coral cover has been accompanied

by a rapid increase (or relative increase) in bioerosion rates,

leading to negative carbonate budgets and reef framework

erosion, this state is not currently widely observed in the Car-

ibbean. Indeed, despite low gross carbonate production rates

on Caribbean reefs (average 3.5 G) [9], about two-thirds of

the 19 reefs examined retain low net positive carbonate bud-

gets (rates below 2 G), as reported in [9], with about a quarter

having thus far shifted to net erosional states. In other words,

most reefs are not adding much net carbonate to their struc-

tures, and while surficial complexity has been denuded by

coral skeletal breakdown, widespread erosion of the under-

lying reef framework has not to-date ensued. Census data

reported here suggest that this is in part a function of a

reduction in rates of bioerosion, and point to some funda-

mental changes in the recent dynamics of Caribbean reef

carbonate production and erosion.

Our estimates of bioerosion are based on rates associated

with the major bioeroding taxa that operate in shallow fore-

reef habitats in the Caribbean. These data clearly show that

parrotfish are now the major reef bioeroders in the region.
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This is most significant given the general declines in fish

(including parrotfish) biomass that have occurred across the

Caribbean [4,6]. By contrast, urchins now make a negligible

contribution at our sites, although we note that increases in

numbers of Diadema have been reported from select localities

in the Caribbean [38]. Comprehensive comparative bioero-

sion datasets (that include data from all bioeroding taxa)

from the period pre-dating the recent collapse of Caribbean

reefs (i.e. prior to the late 1970s) do not exist, but there are

a number of erosion rate studies that can be considered typi-

cal of relatively ‘healthier’ (or less impacted) Caribbean reefs,

and that thus provide a benchmark against which current

rates can be compared. These clearly indicate that the relative

importance of bioerosion processes has changed. Historically,

parrotfish and Diadema were probably both important bioer-

oders [6]. However, studies conducted on Caribbean reef

bioerosion in the 1970s and early 1980s show that the

urchin D. antillarum had become the dominant bioeroder on

the region’s shallow water reefs, as parrotfish bioerosion

was suppressed by fishing pressure. Diadema bioerosion

rates for this period are reported to have been in the range

3–5 G [24] and responsible for approximately 80–90% of

total reef bioerosion [15]. However, since the regional Dia-
dema die-off in 1983, that balance has clearly changed

again, and while parrotfish populations remain low on

many reefs, their relative role as substrate bioeroders has

increased significantly and they are now responsible for

an average of approximately 75% of total bioerosion. Quanti-

tative data on past rates of bioerosion by sponges are sparse,

but data from shallow reefs in Barbados [33] report rates of

1.3 G.

A key observation that can be made based on the above

historical rate estimates, which can be conservatively esti-

mated at approximately 8 G (see data in figure 4), is that

such rates exceed measures of contemporary reef carbonate
production (data reported in [9]) at nearly all shallow water

Caribbean reef sites in our study (figure 4). Thus, if these his-

torical erosion rates were applied to most contemporary

Caribbean reefs, the net effect would be a rapid transition

to net negative carbonate budget states and consequent wide-

spread reef erosion. This has not yet, at most sites, been the

outcome. Although carbonate production rates by corals

have declined in most Caribbean fore-reef habitats, largely

because of the loss of branched Acropora species, there has also

been a reduction in rates of total bioerosion. We do not suggest

that this decline has necessarily been linear, but rather that the

balance between production and erosion, and the impact on cur-

rent net budget states, has been temporally variable. Indeed, it is

reasonable to assume that bioerosion rates may initially have

been much higher immediately following past coral mortality

events and where the structural complexity of the reefs

remained intact, e.g. following coral disease outbreaks, and

that rates then declined over time as habitat complexity was

slowly lost. However, it is unlikely that any simple linear

relationships exist between changes in live coral cover, the

associated structural complexity provided by coral skeletons

and overall reef carbonate budget states as a function of chan-

ging production and erosion regimes. The dynamics of

bioerosion de-couple this relationship and may do so in tem-

porally variable ways as both intrinsic (e.g. reef structural

changes) and extrinsic (e.g. fishing pressure, nutrification, etc.)

factors change the abundance and composition of bioeroder

communities and the habitats on which they depend.

A critical issue for the future maintenance of reef framework

structures is how might rates of bioerosion, and the balance

between production and erosion, change in the near-future.

Uncertainty in feedbacks between reef structural change and

habitat complexity change, which would especially impact

upon fish and urchin grazing taxa [19–21], and uncertain

species responses to environmental change, make such
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predictions difficult. However, recent budget modelling

approaches, integrating a range of climate change projec-

tions, indicate that bioerosion is likely to become especially

important to future carbonate budget dynamics [41]. In addi-

tion, there is emerging experimental evidence to suggest that

future changes in ocean chemistry may increase endolithic

bioerosion rates [42–44], and good evidence that endoli-

thic bioerosion rates increase under higher nutrient loading

regimes [34,35,45], such as can occur under increased agricultural

run-off, or associated with tourist development [46].

Future trajectories for grazer-driven bioerosion are more

uncertain. Management interventions may increase parrotfish

numbers, both increasing bioerosion, but also having wider

benefits for coral recruitment [47], although the integrity of

reef structural complexity and others drivers of environ-

mental stress, will be an influence on this. For example, a

recent model of carbonate budget dynamics under physical

and ecological stress [41] found that chronic nutrification

could reduce carbonate budgets even in the presence of

healthy parrotfish populations. Nutrification can benefit the

growth of microendoliths [48] and filter-feeding macrobio-

eroders, such as molluscs and sponges [35], while also

reducing coral calcification and extension rates [49,50].

Thus, while maintaining healthy fish stocks, for example, in

marine protected areas (MPAs), tends to have a net positive

effect on carbonate budgets by increasing the turnover and

recovery of corals [41,47], activities outside MPAs may still

have a profound (and in some cases over-riding) impact on

carbonate budgets. While much has been written about the

importance of managing entire watersheds [51], a further

consideration is thus their impact on reef carbonate budgets.

A range of future budget trajectories can thus be envisaged

that have differing budgetary outcomes depending on future

trajectories of both production and erosion (figure 5). Scenarios

P1 and E1 envisage rates of production and erosion essentially

continuing as at present, the net effect being limited change in
net carbonate production. Persistence of shallow reef habitats

dominated by Porites and Agaricia spp. [52] would be a scenario

in which steady-state carbonate production rates might occur.

Scenario P2 envisages a slow steady recovery of live coral cover

and thus of carbonate production rates, such as might accom-

pany the repopulation of shallow sites by branched Acropora
spp. or other coral taxa. Depending on the associated trajec-

tories for reef bioeroder populations, net production rates

may either increase or remain static. Scenario E2 would

see bioerosion rates increasing as parrotfish or Diadema popu-

lations increase as habitat structure slowly returns, or as

changing marine environmental conditions elevate rates of

endolithic bioerosion [42–44], while scenario E3 envisages a

continued slow steady decline of erosion rates, perhaps through

a lack of Diadema recovery, as a result of sustained fishing

pressure, or as a function of slow, on-going habitat structural

loss. Scenario P3 envisages a further decline in carbonate pro-

duction rates, as further environmental pressures (bleaching,

disease, ocean acidification) further denude coral assemblages.

Under P3 scenarios further net reductions in carbonate pro-

duction are most likely, shifting reefs into net negative budget

states, unless further declines in bioeroder populations occur

as habitat and structure are further denuded.

Ultimately, coral reef growth is the net result of the inter-

actions between a range of constructive (carbonate-producing)

and destructive (bioerosion and physical/chemical erosion)

processes, and it is the balance between these processes that

will determine future reef growth performance and trajectories.

Across the Caribbean, reef carbonate budget states are presently

in a period of major transition. Production rates have been

radically diminished due to widespread coral cover loss and

have been especially impacted by the loss of high carbonate-

producing branched Acropora species [9]. Carbonate production

rates in shallow fore-reef habitats have thus declined from

rates in the range 10–17 G [53], to an average of approximately

3.5 G [9]. However, rates of bioerosion have also been
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diminished from (conservative) estimates of approximately

7–8 G, to an average of approximately 2 G. Thus while net car-

bonate production rates have undergone a significant decline,

associated declines in rates of bioerosion have, to-date at least,

partially offset this, such that many reefs exist in low net (but

slightly positive) production states. However, given the

low net rates of production now evident on most reefs,

and the poor prognosis for coral recovery in the region, it is

the future trajectories of bioerosion that will be especially

critical to determining whether reefs persist in states of very

low net production (accretionary ‘stasis’; [14]) or, as seems

likely, may start to progressively shift towards more net nega-

tive (erosional) budget states. The latter will have significant

implications for a very wide range of ecosystem goods and
services that are inherently dependent upon the maintenance

and continued growth of reef framework structures.
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