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The ability of the pancreatic b-cells to adapt the rate of insulin
release in accordance to changes in circulating glucose levels
is essential for glucose homeostasis. Two spatial barriers
imposed by the plasma membrane and inner mitochondrial
membrane need to be overcome in order to achieve stringent
coupling between the different steps in the stimulus-secretion
cascade.

The first spatial barrier is overcome by the presence of a
glucose transporter (GLUT) in the plasma membrane, whereas
a low affinity hexokinase IV (glucokinase, GK) in the cytosol
conveys glucose availability into a metabolic flux that triggers
and accelerates insulin release. The mitochondrial inner
membrane comprises a second spatial barrier that compart-
mentalizes glucose metabolism into glycolysis (cytosol) and
tricarboxylate (TCA) cycle (mitochondrial matrix).

The exchange of metabolites between cytosol and
mitochondrial matrix is mediated via a set of mitochondrial
carriers, including the aspartate-glutamate carrier (aralar1), a-
ketoglutarate carrier (OGC), ATP/ADP carrier (AAC), glutamate
carrier (GC1), dicarboxylate carrier (DIC) and citrate/isocitrate
carrier (CIC). The scope of this review is to provide an overview
of the role these carriers play in stimulus-secretion coupling
and discuss the importance of these findings in the context of
the exquisite glucose responsive state of the pancreatic b-cell.

Insulin Secretion from the Pancreatic b-cell

The consensus model of glucose-stimulated insulin secretion
(GSIS) holds that an increase in glucose metabolism results in a
rise of the cytosolic ATP/ADP ratio (Fig. 1A), which promotes
closure of the ATP-sensitive K+ (KATP) channels and triggers
plasma membrane depolarization. This depolarization event
opens voltage-gated Ca2+ channels (VDCC) that facilitate the
influx of Ca2+ which accelerates insulin release.1-4 This KATP

channel-dependent pathway appears to be particularly important
in the first acute triggering phase, whereas other metabolites have
been suggested to play a role in the second and more sustained
phase of insulin release.5 Strong evidence for the KATP channel-
independent pathways of GSIS has been provided by studies
showing that glucose can still augment insulin secretion in islets

from mice that lack functional KATP channels or in conditions
where the KATP channels are held open by application of
diazoxide and membrane depolarization is evoked by high K+.6,7

These observations led to the adaptation of the original model,
taking into account that ATP may target alternate modalities
in the stimulus-secretion cascade or that other metabolic signals
may promote insulin release via a pathway that does not involve
the KATP-channel. Several metabolites, including GTP,8,9 mal-
onyl-CoA,10 long chain acyl (LC)-CoAs,11 glutamate12 and
NADPH13,14 have been proposed to act as metabolic coupling
factors in the KATP-channel-independent pathways of GSIS.

The Proximal Glucose Sensor

Considering that glucose metabolism is essential for GSIS, both
the high Km glucose transporter GLUT2 (SLC2A2) and glucose
phosphorylating enzyme GK have been suggested to mediate a
pivotal role as a proximal glucose sensor.15,16 Parallel loss of
GLUT2 and GSIS has been reported in various rodent models
of diabetes,17,18 indicating that inadequate glucose transport in
β-cells may be involved in the etiology of the metabolic
disease.19,20 However, comparative studies between rat and human
β-cells have revealed a remarkable difference, as human β-cells
abundantly express GLUT1 (SLC2A1), whereas the inverse
holds true for rat β-cells.21 These interspecies differences have
challenged the view that GLUT2 is an obligatory component of
the β-cell glucose sensor and this notion has been supported by
various lines of investigation. First, GLUT2 protein levels are at
least 90% lower in islets obtained from transgenic mice that
express the human [Val12]HRAS oncoprotein under control of the
insulin promoter.22 Nevertheless, these animals remain glucose
tolerant for several months. Second, parallel measurements of
glucose transport and glucose utilization in the glucose com-
petent βTC3 and βHC9 cell lines have indicated that elevated
GLUT1 levels are sufficient to provide sufficient glucose over
the plasma membrane to support glycolysis.23 Consistent with
this idea, glucose transport was determined to occur at least one
order of magnitude in excess of glycolytic flux in rodent islets
and FACS-enriched rat β-cells.23,24 In human islets, glucose
transport also exceeds glycolytic flux at least 4- to 5-fold,21

indicating that glucose uptake is not the rate limiting step in
glucose metabolism, and therefore, does not affect the degree
of glucose sensitivity in β-cells. Finally, the idea that GLUT1 can
compensate for the complete lack of GLUT2 was evidenced in
vivo as β-cell specific expression of GLUT1 in GLUT2 deficient
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mice (GLUT22/2) was sufficient to restore glucose tolerance.25

Introduction of high affinity, low capacity components to
compete with the low affinity, high capacity components of the
proximal glucose sensor has provided more support for the idea
that GLUT2 is not an essential component of the glucose sensor
as introduction of GLUT1 did not affect GSIS, whereas the
introduction of hexokinase I severely diminishes glucose respon-
siveness.26 These findings indicate that GK is a more likely
candidate glucose sensor protein as its activity is more tightly
correlated with glycolytic flux.21,22 The idea that the phosphoryla-
tion of glucose constitutes the rate-determining step in glycolysis
is supported by several approaches.

First, mild upregulation of GK increases the glucose responsive
state of β-cells, whereas more substantial levels of overexpression
(. 4-fold) tend to abolish glucose responsiveness, and more distal
steps in glucose metabolism acquire rate limiting properties.27,28

Second, differences in GK expression levels seem to account for
the heterogeneity that exists among individual β-cells as GK levels
in high responsive β-cells are more elevated than those observed
in low responsive β-cells.29 The idea that GK is an essential
component of the β-cell glucose sensor is furthermore supported
by the observation that β-cell specific heterozygous GK deficiency
leads to moderate hyperglycemia, whereas homozygous deficient
animals die within a few days after birth from severe diabetes.30

Studies in humans with specific GK gene mutations have led to

similar conclusions as mutations that increase GK activity cause
persistent hypoglycemic hyperinsulinemia,31,32 whereas mutations
that reduce its catalytic activity or negatively affect protein
stability have been associated with the occurrence of maturity-
onset diabetes of the young type 2. (MODY2).33-35

The Metabolic Fate of Glucose in Glycolysis
and Mitochondrial Glucose Metabolism

Biochemical measurements on rodent β-cells have indicated that
the metabolic fate of glucose is almost entirely directed toward
entry into the TCA cycle as the metabolic flux via the pentose
phosphate pathway is low and glycogen synthesis accounts for
only a minor fraction of total glucose utilization.36,37 In addition,
β-cells have been shown to express very low levels of lactate
dehydrogenase, suggesting that shunting of pyruvate away from
mitochondrial entry is not likely to occur.38 When added to the
culture medium, pyruvate appears to be a poor stimulus for
insulin secretion and this so-called “pyruvate paradox” was
resolved after it was demonstrated that the monocarboxylate
transporter 1 protein (MCT1, SLC16A1) is scarcely present in
the plasma membrane of primary β-cells.38,39 As such, these cells
appear to be unable to transport pyruvate efficiently over the
plasma membrane and this point was elegantly made when forced
MCT1 overexpression did render primary β-cells in a pyruvate

Figure 1 (See opposit  e page). The stimulus-secretion cascade in pancreatic b-cells. (A) Overview of the spatial barriers in the stimulus-secretion cascade.
Two spatial barriers, imposed by the plasma membrane and mitochondrial inner membrane, need to be overcome in order to achieve efficient coupling
between the different steps in the stimulus-secretion cascade. The first spatial barrier is surmounted by the presence of a glucose transporter (GLUT) in
the plasma membrane, whereas a low affinity hexokinase IV, also known as glucokinase (GK), sets the glycolytic pace in accordance to changes in cellular
glucose availability. Together, these proximal components play an essential role in the stimulus-secretion cascade as they convey extracellular glucose
availability into a metabolic flux. The second spatial barrier in the stimulus-secretion cascade, imposed by the mitochondrial inner membrane is
overcome by a set of mitochondrial carrier proteins that not only ensures tight metabolic coupling between glycolysis and TCA cycle via the efficient
import of glycolytic end products into the mitochondrial matrix, but also facilitates the export of mitochondrial signals that promote insulin release via
KATPchannel-dependent and -independent pathways. The mitochondrial import of pyruvate occurs via the pyruvate carrier (PyC) after which the
glycolytic end product enters the TCA cycle in roughly equal proportion via oxidative (pyruvate dehydrogenase, PDH) and anaplerotic (pyruvate
carboxylase, PC) pathways. Reducing equivalents captured during glycolysis are transferred into the mitochondrial matrix for ATP production via the
glycerol phosphate and malate-aspartate shuttle, both of which warrant the continuation of glycolysis by replenishing cytosolic NAD+ levels [indicated in
green; more detailed overview in (B)]. (B) Role of the mitochondrial carrier proteins in the NADH shuttles. The transfer of electrons from cytosolic NADH
into the mitochondrial matrix is mediated via the malate-aspartate shuttle and critically depends on the presence of the aspartateglutamate carrier
(aralar1) and a-ketoglutarate carrier (OGC). The glycerol phosphate shuttle, on the other hand, transports the electrons directly in the respiratory chain
via the existence of a cytosolic and membrane bound isoform of glycerol-3-phosphate dehydrogenase. (C) Role of the mitochondrial carrier proteins in
the transport or production of cytosolic coupling factors. The efficient exchange of metabolites between cytosol and mitochondrial matrix is mediated by
a set of mitochondrial carriers, including the ATP/ADP carrier (AAC), the aspartate-glutamate carrier (aralar1), a-ketoglutarate carrier (OGC), citrate/
isocitrate carrier (CIC), dicarboxylate carrier (DIC) and glutamate carrier (GC1). The exchange carrier AAC mediates the transport of ADP and ATP over the
mitochondrial inner membrane. Aralar1 catalyzes the electrogenic exchange of aspartate for glutamate and a H+, whereas OGC mediates the
electroneutral exchange of a-ketoglutarate for some other dicarboxylates, of which malate is bound with the highest affinity. CIC catalyzes the
electroneutral exchange of one of three tricarboxylic acids (citrate, isocitrate, cis-aconitate) plus a proton, for another tricarboxylate-H+, a dicarboxylate
(malate or succinate) or phosphoenolpyruvate, whereas DIC catalyzes the electroneutral exchange of certain dicarboxylates (e.g., malate and succinate)
for inorganic phosphate or sulfur-containing compounds such as, sulphite, sulfate or thiosulphate. GC1, on the other hand, catalyzes the transport of
glutamate across the inner mitochondrial membrane either by proton co-transport or in exchange for hydroxyl ions and is, therefore, depicted as a
unilateral transporter. These metabolite transporters are structural components in pathways that either ensure a certain degree of metabolic coupling
between glycolysis and TCA cycle (B), provide anaplerotic substrate into the TCA cycle, or facilitate the export of mitochondrial signals into the cytosol.
Candidate coupling factors proposed to augment GSIS either via KATP-channel-dependent or -independent pathways are depicted in a red box and
include: ATP, GTP, glutamate, malonyl-CoA, long chain acyl (LC)-CoA’s and NADPH. (Abbreviations used in the figure: AAC, ATP/ADP carrier; AAT,
aspartate aminotransferase; ACC, acetyl-CoA carboxylase; ACL, ATP-dependent citrate lyase; Aralar1, aspartate/glutamate carrier; Asp, aspartate; CIC,
citrate/isocitrate carrier; CPTI, carnitine palmitoyltransferase I; DIC, dicarboxylate carrier; FAS, fatty acid synthase; GC1, glutamate carrier; GK, glucokinase;
Glu, glutamate; GLUT, glucose transporter; G6P, glucose-6-phosphate; GPDc, cytosolic glycerol-3-phosphate dehydrogenase; GPDm, membrane-bound
glycerol-3-phosphate dehydrogenase; ICDc, cytoplasmic isocitrate dehydrogenase; MDH, malate dehydrogenase; MEc, cytoplasmic malic enzyme; OGC,
2-oxoglutarate carrier; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PEPCKm, mitochondrial phosphoenolpyr-
uvate carboxykinase; PyC, pyruvate carrier; PYR, pyruvate).
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responsive state.40 Silencing of the MCT1 gene appears to
be crucial for normal β-cell function as mutations that induce
MCT1 gene expression cause hyperinsulinemia during exercise
and other catabolic states.41,42

In conditions where cytosolic pyruvate levels are elevated,
the glycolytic end product enters the TCA cycle via pyruvate
dehydrogenase (PDH) and pyruvate carboxylase (PC) in roughly
equal proportion feeding acetyl-CoA and oxaloacetate into the
oxidative and anaplerotic branches of the TCA cycle.37,43 The PC-
mediated replenishment of oxaloacetate (anaplerosis) seems to be
of critical importance for β-cell glucose competence as C13-NMR
isotopomer analysis revealed that glucose responsiveness is more
stringently associated with anaplerotic substrate flow than with
oxidative metabolism.44 The notion that anaplerosis might be an
important determinant of glucose responsiveness has furthermore
been strengthened by several independent studies that focus on
the inhibition of PC activity either via pharmacologic compounds
or siRNAmediated knockdown.45-48 These studies have clearly
established that efficient inhibition of PC activity (by 50% or
more) renders clonal β-cells and primary rat islets in a glucose
unresponsive state that is furthermore characterized by a signi-
ficant drop in glucose-stimulated NADPH/NADP+ and ATP/
ADP levels despite normal glucose oxidation rates.

Mitochondrial Carrier Proteins

Most of the key mitochondrial carrier proteins that facilitate the
transport of important metabolites, nucleotides and cofactors
across the mitochondrial membrane belong to the solute carrier
family 25 (SLC25).49 A generally accepted model of these mito-
chondrial transporter proteins is that they exist as homodimers
with the C- and N-terminus of each monomer being directed
toward the intermembrane space. Each monomer consists of six
hydrophobic transmembrane segments that traverse the mito-
chondrial inner membrane as a-helices and form a gateway for
the transport of specific metabolites over the mitochondrial inner
membrane. This review focuses on a role for the 2-oxoglutarate
carrier (OGC; SLC25A11), aspartate-glutamate carrier aralar1
(AGC1; SLC25A12), glutamate carrier (GC1; SLC25A22),
dicarboxylate carrier (DIC; SLC25A10) and citrate/isocitrate
carrier (CIC; SLC25A1) in pancreatic β-cells.

A Role for the Mitochondrial Carrier Proteins
in Metabolic Coupling between Cytosolic
and Mitochondrial Glucose Metabolism

Although the mitochondrial pyruvate carrier (PyC) still awaits
identification, it is evident that the transport of pyruvate over the
mitochondrial inner membrane remains an obligatory step in
order to achieve stringent metabolic coupling between glycolysis
and mitochondrial glucose metabolism. But pyruvate is not the
only glycolytic end product as electrons captured during the
conversion of NAD+ to NADH by glyceraldehyde phosphate
dehydrogenase (GAPDH) need to be transferred to the respiratory
chain in order to yield ATP. The glycerol-phosphate and malate-
aspartate shuttles not only provide a way to transfer reducing

equivalents from the cytosol into the electron transport chain for
ATP production, but also allow the continuation of glycolysis by
the replenishment of cytosolic NAD+ levels (Fig. 1A and B).50,51

It was demonstrated that NADH shuttle activity is enhanced by
a cytosolic rise in Ca2+ levels, indicating that a more efficient
state of metabolic coupling may be attained during GSIS.52,53

The glycerol-phosphate shuttle does not require mitochondrial
carriers and transfers electrons to the electron transport chain via
a series of metabolic reactions catalyzed by cytosolic and mito-
chondrial glycerol-3-phosphate dehydrogenase. The functional
state of the malate-aspartate shuttle, on the other hand, critically
depends on the presence of OGC and aralar1. Overexpression of
aralar1 in a clonal β-cell line or rat islets markedly enhances
glucose competence characterized by improved glucose oxidation,
NAD(P)H yield and ATP production.54,55

Studies aimed at evaluating the importance of these NADH
shuttle systems initially raised the possibility that a certain degree
of redundancy may exist as their combined inhibition is required
to render β-cells in a glucose unresponsive state.56,57 However,
more recent studies have shown that siRNA-mediated knock-
down of aralar1 negatively affected GSIS by a moderate 25% in
INS-1, but not in rat islets.58 Knockdown of OGC, however, did
significantly lower the glucose responsive state of INS-1 cells
and rat islets, indicating that the mitochondrial carrier may be
involved in other pathways in addition to the malate-aspartate
shuttle.59

A Role for the Mitochondrial Carrier Proteins
in the Rise of Cytosolic Coupling Factors

that Enhance GSIS

ATP is considered to be a pivotal signal for the initiation of
GSIS as the rise in ATP/ADP levels was shown to precede the
influx of Ca2+ ions which accelerates insulin release.60 However,
ATP does not seem to be the only relevant signal for GSIS as
some nutrients raise the ATP/ADP ratio, but do not augment
the rate of insulin release.61 Other metabolites, such as succinate,
on the other hand possess the ability to augment insulin release
even in conditions where cytosolic ATP and Ca2+ levels are
clamped at maximal levels.62 These observations suggest that
metabolic factors can enhance GSIS without affecting ATP or
Ca2+ levels.

Role for the GTP/GDP Ratio in GSIS

GTP was proposed to act as a coupling factor in rodent islets
after it was established that pharmacologic inhibition of de novo
cytosolic GTP production significantly lowers GSIS.8 The idea
that the GTP/GDP ratio is a more relevant signal for insulin
release followed from the observation that the insulinotropic
actions of GTP-c-S can be counterbalanced by the addition of
GDP-β-S.63,64 GTP regained attention as a potential coupling
factor after mitochondrial GTP production was lowered by
siRNA-mediated knockdown of GTP-specific succinyl-CoA
synthetase (GTP-SCS) in INS-1 cells and rat islets.9 Under these
conditions, a marked reduction in oxygen consumption, cytosolic
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Ca2+ levels and GSIS was noted. Conversely, when the rate of
mitochondrial GTP synthesis was raised by knockdown of ATP-
specific succinyl-CoA synthetase (ATP-SCS) a marked reduction
in ATP production was observed despite increased oxygen
consumption, cytosolic Ca2+ levels and insulin release.9 In the
cytosol, GTP could serve as a substrate for several GTPases that
have been implicated in cytoskeletal remodeling and insulin
granule fusion, but it remains to be established how GTP pro-
duced in the mitochondria can be conveyed into the cytosol.65,66

One possibility is that GTP is transported across the mito-
chondrial membrane either directly via a mitochondrial GTP/
GDP carrier as observed in yeast,67 or indirectly via prior
conversion into ATP by mitochondrial nucleoside diphosphate
kinases (NDK’s) and export via the ADP/ATP carrier AAC
followed by the reconversion into GTP by cytosolic NDK’s.
Evidence for the latter possibility was presented as NDPK-D
forms a complex with GTP-SCS68 and was reported to be
associated with AAC on both sides of the inner mitochondrial
membrane.69 Another possibility is that GTP directly stimulates
the activity of a mitochondrial enzyme, whose product conveys
the signal into the cytosol. GTP-dependent mitochondrial
PEPCK (PEPCKm) was suggested to perform such a role via
the production of phosphoenolpyruvate (PEP), which can
traverse the mitochondrial membrane via CIC and re-enter the
TCA cycle after its conversion to pyruvate by pyruvate kinase
(Fig. 1C).70 A valid alternative to the proposed PEP cycle arises
from the possibility that PEP itself acts as an insulinotropic
metabolite by suppressing okadaic acid-sensitive Ser/Thr protein
phosphatase activity,71 an event that has been shown to augment
Ca2+ influx in RINm5F cells.72

Role for Glutamate in GSIS

Glutamate was originally proposed as a potential coupling factor
in GSIS by Wollheim and Maechler.12 Findings by several other
groups, however, do not support the idea that a causal relation-
ship exists between a rise in cellular glutamate levels and insulin
release.73,74 When added as a stimulus, the insulinotropic action
of glutamate appears to be insensitive to the ATP synthase
inhibitor, oligomycin, indicating that glutamate may act in a
KATP-independent fashion, most likely by providing anaplerotic
input into the TCA cycle.12 Glutamate can enter the mitochon-
drial matrix either via aralar1 or GC1, but considering that
glutamate transported by aralar1 is mainly utilized for transami-
nation in the malate-aspartate shuttle, it has been proposed that
most of the glutamate consumed in other glutaminolytic reactions
enters the mitochondrial matrix via GC1 (Fig. 1C).75 The best
studied glutaminolytic pathways in pancreatic β-cells are the
deamination of glutamate by glutamate dehydrogenase (GDH)
to yield a-ketoglutarate and the oxidative decarboxylation of
glutamate by glutamate decarboxylase (GAD) to generate gamma-
aminobutyric acid (GABA).76,77 Considering that the production
of GABA is enhanced by glutamine and taking into account
that a-ketoglutarate promotes GABA conversion to succinate, it
seems plausible that these two glutaminolytic pathways work
in concert to provide anaplerotic input into the TCA cycle. This

idea is not only supported by earlier studies demonstrating the
insulinotropic potential of a-ketoglutarate and succinate,78,79 but
is also in agreement with the observation that glutamine does
not exert a significant insulinotropic impact unless GDH is
allosterically activated by leucine or 2-norbornane carboxylic acid
(BCH).73,80

Role for Malonyl-CoA and LC-CoA’s in GSIS

A role for intermediates of lipogenic pathways as potential
coupling factor in GSIS was first proposed by Barbara Corkey and
Marc Prentki, showing that the intracellular levels of citrate,
malonyl-CoA and LC-CoA’s rise rapidly when clonal β-cells or
rodent islets are exposed to elevated glucose concentrations.10,11

The malonyl-CoA/LC-CoA hypothesis states that PC-mediated
replenishment of oxaloacetate in the TCA cycle facilitates the
accumulation and escape of citrate from the mitochondrial matrix
into the cytosol, where it serves as a donor of acetyl-CoA in the
production of lipogenic coupling factors (Fig. 1C).

The mitochondrial export of citrate is mediated via CIC,
possibly in conjunction with DIC, as the latter was shown
to provide sufficient cytosolic malate levels in order to support
CIC function.81-83 Evidence supporting a role for CIC in β-cell
glucose responsiveness is quite strong as pharmacological inhibi-
tion or siRNA-mediated knockdown of this mitochondrial carrier
protein renders INS-1 832/13 cells and rat islets in a glucose-
unresponsive state that is furthermore characterized by a 20–30%
lower NADPH/NADP+ ratio, yet normal glucose utilization,
glucose oxidation and ATP production rates.81,82

In the cytosol, ATP-dependent citrate lyase (ACL) utilizes
citrate as donor of acetyl-CoA for lipogenesis and protein
acetylation (Fig. 1C). Pharmacological inhibition of ACL, which
liberates acetyl-CoA from citrate, was initially reported to inhibit
GSIS84,85 but this may have resulted from an excess of salt that
accrues during the preparation of the CL inhibitor hydroxyci-
trate.86 The role of ACL in GSIS remains controversal as
shRNAmediated suppression of ACL was reported to inhibit
GSIS in one study,81 whereas effective knockdown of ACL did
not affect GSIS in other studies.86-88 Downstream of ACL, the
flux of glucose carbon entering the malonylCoA/LC-CoA
pathway is predominantly controlled by acetyl-CoA carboxylase
1 (ACC1) as ACC2 is poorly expressed in INS-1 and rat islets.89

ACC1 catalyzes the irreversible carboxylation of acetyl-CoA to
generate malonyl-CoA which acts as an allosteric inhibitor of
carnitine palmitoyltransferase-I (CPT-I) and subsequently inhibits
fatty acid oxidation when glucose is readily available.85,90,91

Consistent with this concept, overexpression of a malonyl-CoA
insensitive mutant of CPT-I reduced metabolic flexibility and
glucose competence in INS-1 832/13 cells.92 However, forced
overexpression of malonyl-CoA decarboxylase (MCD), which
effectively opposes the glucose-induced rise in malonyl-CoA levels
had no negative impact on GSIS93 and later it was shown that the
presence of exogenous fatty acids is required in order to observe
the negative impact of MCD overexpression on GSIS.94

Knockdown of ACC1 using small interfering RNA duplexes
was reported to diminish GSIS as a consequence of lower GK
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levels, glycolytic flux, glucose oxidation, ATP production and
pyruvate cycling rates,95 whereas siRNA mediated knockdown
of fatty acid synthase (FAS) also significantly lowered glucose
carbon incorporation into lipids, but did not affect GSIS.86

Interestingly, application of the ACC1 inhibitor TOFA mimicked
the inhibitory actions of ACC1 knockdown on GSIS when
applied for 72 h, but not after 2 h, suggesting that long-term
inhibition of ACC1 is required to negatively affect the glucose
responsive state of the β-cell.95

Finally, it is noteworthy to mention that patch-clamp and
whole-cell studies have demonstrated that LC-CoA’s actually
increase KATP channel activity, an effect that cannot be reconciled
with its proposed role as a coupling factor.96-99

Role for the NADPH/NADP+ Ratio in GSIS

The insulinotropic actions of NADPH were first described by
Watkins et al. in islets of toadfish.13,100-102 Studies aimed at
unveiling the mechanism by which NADPH facilitates insulin
release have indicated that its reductive power may be transferred
to proteins present in the plasma membrane or secretory
granules.99-101 Both Kv2.1 channels and the thiol disulfide
oxido-reductase glutaredoxin-1 (GRX-1) have been proposed as
potential targets in the redox control of insulin secretion.103-105

The existence of aldose reductase-like motifs in the regulatory
β-subunits of the voltage-gated K+ channels (Kv) is particularly
intriguing as increments in the NADPH/NADP+ ratio accelerate
Kv2.1 channel inactivation, an event that ultimately renders
primary β-cells in a more excitable, glucose competent state.105

GRX1 is a cytosolic enzyme localized near to the plasma mem-
brane that catalyzes the reduction of disulphide bonds in its target
proteins by harnessing the reductive power of glutathione (GSH).
Oxidized glutathione (GSSG) is converted back to GSH by
glutathione reductase at the expense of NADPH. Together, these
proteins provide a link between glucose-induced increments in
the NADPH/NADP+ ratio and the cellular redox state, in parti-
cular, the reduction of disulfide bridges in proteins targeted by
GRX1. The involvement of GRX1 in the stimulus-secretion
cascade was demonstrated by a 40% increase in glucose-
stimulated insulin output after GRX1 overexpression in INS-1
and rat islets, whereas siRNA-mediated knockdown of GRX1
renders INS-1 832/13 cells insensitive to the stimulatory actions
of NADPH.103,104 Cytosolic NADPH levels rise rapidly in res-
ponse to several metabolic fuels, such as glucose or leucine106,107

and when the cytosolic rise in the NADPH/NADP+ ratio is
blunted by the addition of NADP+ or menadione, a poor glucose
responsive state is attained.104,108,109 Most of the glucose-induced
rise in NADPH levels originates from the cytosolic isoforms of
malic enzyme (MEc) and isocitrate dehydrogenase (ICDCc),
which are operative in the pyruvate-malate, pyruvate-citrate and
pyruvate-isocitrate pathway14 (Fig. 1C). Knockdown of MEc by

transfection with specific siRNA sequences was reported to inhibit
GSIS by approximately 40% in INS-1 832/13,81,110 but not when
MEc is suppressed chronically.111 Silencing of MEc in primary
mouse or rat islets yielded conflicting results as MEc knockdown
in rat islets does not affect GSIS despite a 30% reduction in the
NADPH/NADP+ levels,112 whereas a similar reduction of the
NADPH/NADP+ levels in mouse islets significantly lowered
GSIS.113 Effective siRNA-mediated knockdown of ICDc, on the
other hand, was reported to inhibit GSIS by approximately 60%
in INS-1 832/13 and rat islets despite a moderate, yet significant,
reduction in the NADPH/NADP+ levels by 18%.114 Silencing or
pharmacological inhibition of the mitochondrial carrier proteins
CIC, DIC and OGC, all of which are indispensable structural
components of the pyruvate cycling pathways, rendered β-cells
in a glucose unresponsive state accompanied with a 20–40%
reduction in the NADPH/NADP+ levels at stimulatory glucose
concentrations, yet normal glucose utilization and oxidation
rates.59,81-83 Considering that OGC is a structural component in
both the malate-aspartate shuttle (Fig. 1B) and pyruvate-isocitrate
cycle (Fig. 1C), it is noteworthy to mention that the observed
loss in glucose competence after siRNAmediated silencing of
OGC occurs in conjunction with a significant 23% reduction in
the NADPH/NADP+ ratio at stimulatory glucose concentrations,
but did not affect the glucose utilization rate or glucose-induced
changes in the ATP/ADP ratio.59 Therefore, the observed loss in
glucose competence after a reduction in OGC protein levels by
approximately 50% appears to result primarily from its role as a
structural component in pyruvate cycling, rather than from its
involvement in the malate-aspartate shuttle.

Conclusion

The proximal glucose sensor is an essential component of the
β-cell stimulus secretion cascade as it conveys extracellular
glucose availability into a metabolic flux over the first spatial
barrier imposed by the plasma membrane (Fig. 1A-C). Down-
stream of the glucose sensor, the mitochondrial inner membrane
constitutes a second spatial barrier which separates cytosolic
(glycolysis) and mitochondrial glucose metabolism (TCA cycle).
The existence of several mitochondrial carrier proteins, including
the aspartateglutamate carrier (aralar1), a-ketoglutarate carrier
(OGC), ATP/ADP carrier (AAC), glutamate carrier (GC1),
dicarboxylate carrier (DIC) and citrate/isocitrate carrier (CIC), are
indispensable in the stimulus secretion cascade as these metabolic
gateways enhance β-cell glucose responsiveness on at least three
levels as: (1) these metabolic carriers not only ensure efficient
metabolic coupling between glycolysis and the TCA cycle, but
also (2) provide an effective way to enhance anaplerotic substrate
flux and (3) facilitate the mitochondrial export of metabolic
signals that are required to trigger and enhance GSIS via both
KATP-channel-dependent and -independent pathways.
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