
Speedup vs. Simulation GranularityJong-Suk Ahn and Peter B. DanzigComputer Science DepartmentUniversity of Southern CaliforniaLos Angeles, CA 90089-0781fjahn,danzigg@usc.edu213-740-4780 (O�ce) 213-740-7285 (Fax)AbstractThis paper describes a packet network simulator whosetiming granularity can shift continuously from�ne, packet-level detail to coarse, conversation-level detail. Simula-tion run time decreases with coarser timing granularity,but the details in the underlying model become fadedas the timing granularity coarsens. The �ner the gran-ularity, the slower but more precise the simulation. Ifa simulation becomes resource limited, it is possible tocoarsen the timing granularity to scale the simulationlarger.This paper introduces a new simulation techniqueto speedup simulation of high speed, wide area net-works. The new technique can yield order of magni-tude speedup and memory savings on simulations oflarge-scale packet networks. The speedup is achievedby introducing a degree of approximation into abstract-ing packet streams. We call this technique Flowsim.Flowsim can yield di�erent simulationmetrics than packetsimulation due to its di�erent degree of simulation gran-ularity. We have replicated simulations presented inthe literature and, in this paper, show that it is fre-quently possible to employ coarse timing granularitywhen studying ow and congestion control algorithms.This paper motivates the need for faster and lessmemory intensive simulators, introduces two other sim-ulation techniques which can together double the per-formance of well written simulators, describes Flowsim'stra�c representation scheme and internal algorithms,explores the tradeo� between speed and accuracy, andexplores some of the limitations of traditional simula-tion. It demonstrates that speedups of a factor of 50are possible when simulating ATM networks.1 IntroductionAs network researchers, we evaluate new routing, admis-sion control, congestion control and ow control algo-

rithms by simulation rather than by analysis. We rarelyemploy analysis because it cannot capture the heart ofthe algorithms we wish to study. Unfortunately, simu-lations are time consuming and memory intensive.The simulation performance depends on the timinggranularity of simulations. The �ner the granularity,the slower but more precise the simulation. Fine grain,packet-level simulationmodels every individual packet'sbehavior. As networks carry more packets, packet-levelsimulation becomes slower. Simulation run time de-creases with coarser timing granularity, but the detailsin the underlying model become faded as the timinggranularity coarsens. In coarse grain, conversation-levelsimulation, the whole packet stream of each conversa-tion can be represented analytically with a few param-eters, for example the average number of packets persecond.This paper describes a packet network simulatorwhosetiming granularity can shift continuously from �ne, packet-level detail to coarse, conversation-level detail. The newsimulator represents packet streams either in packet-level detail or in conversation-level detail whenever itis appropriate. The new simulation technique can cutthe cost to simulate high bandwidth, wide area packetnetworks by an order of magnitude. This cost reductioncomes at the price of introducing an adjustable degreeof approximation into abstracting packet streams. Thehigher the memory savings, the faster the simulator, butthe less accurate the computed metrics. We call ourtechnique Flowsim, because it deals with packet ows,rather than individual packets.This paper, through the example below, explainswhy analytical techniques have failed to model modernpacket networks, why packet simulation is computation-ally costly, and why a simulator's state can grow quickly.Figure 1 shows a wide-area network topology thatow and congestion control researchers might study. Thisnetwork's 55 nodes forward the packets of 250 conversa-tions; only 7 conversation endpoints and 32 gateways areindicated. Node labels \S", \D", and \G" indicate traf-1

Figure 1: A typical simulated topology.�c sources, tra�c destinations, and network gateways.For example, tra�c source-1 traverses path S1-G7-G6-G1-G3-G19-D1. Link propagation times range from 1 to6 milliseconds and gateways employ 300-packet outputbu�ers.Each conversation carries either `FTP' bulk transfer,`BURST' data, `telnet' remote terminal, or `audio' traf-�c. Audio tra�c does not employ ow control. Audiosources toggle between a geometrically distributed talkand silent states. When talking, an audio source sends asingle 50-byte packet every 10 milliseconds and its des-tination sends no acknowledgements. A telnet sourcesends 50-byte packet with exponentially distributed ar-rival times; bursty sources deliver a blast of ten 512-bytepackets and then wait an exponentially distributed pe-riod; FTP sources continuously send 512-byte packets.The three data sources require a ow control algorithmwhich limits the rate at which they inject packets intothe network. The senders transmit data packets towardsthe sink, and the sink transmits small acknowledgementpackets back to the senders. A typical simulation mightexamine the interaction of transport layer ow controland router packet scheduling algorithms.To see why the performance analyst simulates ratherthan models, consider the di�erence between �xed win-dow and slow-start TCP. While analytical methods en-joy some small success modeling �xed-window ow con-

trol algorithms [1], no one uses �xed-window algorithmsanymore; Jacobson's slow-start [15] TCP has completelyreplaced them. No one has successfully modeled slow-start analytically for several reasons. A sender's slow-start window size oscillates over time; it grows when itdetects that the network is not congested, but quicklyshrinks as soon as congestion occurs. The oscillatingwindow size makes TCP's round trip time estimator os-cillate, which impacts TCP's retransmission strategy.Finally, if only to dash any vestiges of hope, TCP re-ceivers employ several di�erent acknowledgement strate-gies and TCP senders employ two di�cult-to-model re-transmission strategies (fast retransmission and Karn'salgorithm [5]).Granted that one must simulate rather than model,what does one measure? The essential metrics are, ofcourse, throughput, fairness, delay, loss rate, and linkutilization. To contrast slow-start with some more ex-otic algorithm like Packet-Pair [20] for bulk transfer traf-�c, the �le transfer time and equitable distribution ofnetwork bandwidth are the essential metrics [19]. Tocontrast slow-start and packet-pair for interactive traf-�c, the essential metrics are one-way packet delay andloss rates. If the experimenter is investigating admis-sion control and router scheduling algorithms for voiceor video tra�c [7], the packet loss rate and the tail ofthe delay distribution are the metrics of interest.Packet simulators are computationally expensive. Atleast two events get scheduled each time a node forwardsa packet: one to model the time it takes to put a packet\on the wire", one event to schedule the packet's arrivalat the subsequent node, and |if it is a source node|one event for a future packet retransmission. Depend-ing on the exact ow control algorithm, sink nodes mayhave to transmit an acknowledgement packet that tra-verses the network back to the sender. For example,a traditional packet simulator would �eld about 8 mil-lion events to deliver 900,000 packets over a two hopnetwork.Packet simulators are also memory intensive. Thenumber of packets that simultaneously traverse a linkincreases linearly with the link's bandwidth-delay prod-uct. A 20-millisecond gigabit-per-second link can hold20 Mbits of data in each direction, which is equivalentto 3,600 packets |2,400 1KB data packets and 1,20040-byte acknowledgement packets (assuming the TCPdelayed-acknowledgement standard of 1 ACK for every2 data packets). Given an ATM network's 53 byte per IPcell payload (Only 48 of ATM's 53 bytes carry data, theother 5 bytes get lost to the assembly reassembly pro-tocol [9]), this number blossoms to 47,000 cells per link.Since simulators represent an event with a 100-200 bytedata structure, each link can take several megabytes torepresent, even with IP's 1,024 byte packets.2

Simulating �ve minutes of activity on a network thesize of today's Internet would require gigabytes of realmemory and months of computation on today's 100MIPuniprocessors. Our long term research goal is to de-velop the necessary simulation technology to evaluatesuch large internets.Section 2, below, describes two techniques applica-ble to any packet simulator that double performancefor FIFO switch scheduling algorithms. Section 3 showshow Flowsim's packet representation scheme can savememory, and Section 4 explains why Flowsim is an or-der of magnitude faster than packet simulators. Section5 describes our simulations and interprets their results.We discuss insights into simulating networks and con-sider some of Flowsim's limitations in Section 6.2 Two Speedup TechniquesPacket network simulators, like all discrete event sim-ulators, are built around an event list. When a nodeforwards a packet along a link towards a neighboringnode, it actually inserts two events into the event list;one with time set to the service time to put the packeton the wire plus the current time and one with time setto the sum of the link's propagation delay, the servicetime, and the current time. It includes the service timebecause few packet switches employ cut-through rout-ing and hence cannot switch a packet until its last bitarrives.When simulated time catches up with the �rst event,the node can dispatch a bu�ered packet upstream. Whentime catches up with the second event, the destinationnode retrieves the pointer to the packet header and ei-ther delivers the packet to the application layer or en-queues it towards the hop.2.1 Optimization for FIFO SwitchesWe have developed a technique that can double the per-formance of packet simulators when switch schedulingis FIFO. This technique expands the outbound looka-head of FIFO switches to be enough large to dispatchall bu�ered packets at one time. The discrete-event sim-ulation literature describes a node's lookahead as thetime beyond its logical clock that a node can simulatewithout violating causality. A node has two di�erentlookaheads; inbound and outbound lookahead. A nodecan bu�er packets which will arrive no later than itsinbound lookahead and forward packets which will de-part no later than its outbound lookahead. The biggeroutbound lookahead, the more packets can depart in ad-vance and the less events to inform the time at which

a next packet departs. Without outbound lookahead,modeling each packet's departure needs two events asexplained above.Without the new technique, outbound lookahead wouldbe at most the same as inbound lookahead. The out-bound lookahead of FIFO switches can be increased toin�nite since packet arrival can not force a previouslyarrived packet to be dropped or a�ect the time at whichit should depart the switch. The technique directly for-wards packets upstream without ever serializing themin the bu�er since their arrival time and dropout canbe determined in advance. Compared to conventionalimplementations, this halves the number of simulationevents necessary to model packet departure to neigh-boring nodes. Upon receiving a packet arrival event, anode immediately forwards it towards the next node or,if this packet should overow, discards it immediately.The node sets the arrival event to occur at time accord-ing to the sum of its queueing delay, its node servicetime, and the link propagation delay. All that is nec-essary is for the node to keep track of its virtual queuelength as well as the time at which the previous packetdeparted. For example, if a packet arrives at time 3,but the virtual queue won't clear until time 4, then thepacket is enqueued to arrive down stream at timemax(3,4) + packet service time + link propagation delay.2.2 Reducing Global Event List LengthEven well optimized packet network simulators can spend25%-50% of their time inserting and deleting events;ow control and packet forwarding are not themselvesterribly costly. Event lists are built frompriority queues.Although naive priority queues work best with a smallnumber of events, sophisticated ones exhibit O(1) be-havior even with a large number of events if the varia-tion in the number of events remains low [3, 22]. Thisleads us to ponder how the number of events in the eventlist uctuates with time.The bandwidth-delay product of a link establishesthe maximumnumber of packets that it can carry. Sum-ming this maximum over all links establishes the max-imum number of events in the event list. If networkrouting and tra�c sources remain �xed throughout thesimulation, the variation in the number of packets inthe simulator depends on the tra�c characteristics andoscillates with the ow control window sizes. The fasterand longer the link, the higher the variation of the num-ber of events in the simulation. This variation, whichis not a problem when simulating a 1.544 Mb/s T1link carrying IP packets, seriously degrades the eventlist performance when simulating gigabit links carryingATM cells.3

PACKETS ON LINK

S-1 S-2

GLOBAL EVENT LIST

FIFO LINK QUEUEFigure 2: Reducing variation in the event list's length.Flowsim reduces the event list's length and variancein length by inserting into the event list only the next-to-arrive packet from each link. The events for all otherin-transit packets remain in the appropriate link's eventFIFO. The simulator, upon deleting the next-to-arrivepacket from the head of the event list, moves the head ofthe appropriate link's FIFO into the event list. Figure 2illustrates a link, the link's event FIFO, and the (global)event list. The heavy dotted line represents the rela-tionship between the next-to-arrive packet in the eventlist, and the subsequent packet in the link's event FIFO.Keeping all but the leading packet in the FIFO ratherthan directly in the global event list can reduce globalevent list processing time by 50%.2.3 Adjustable Calendar QueueThis section addresses a problem with calendar queues,a sophisticated priority queue used as the global eventqueue in our simulator. Table 1 lists random seed val-ues for �ve simulation runs and the corresponding exe-cution times. The second row shows, surprisingly, thata change on the random seed causes one simulation runto take twelve times more than other runs. It is becausecalendar queues do not adapt their structure dynami-cally to the event distribution changing over time.Calendar queues take after calendars on which peo-ple write down their to-do-lists. A calendar queue isan array of pointers called buckets. Each bucket hasa width representing a certain amount of time and en-queues events whose time falls within the bucket's widthin order of their timestamps. The calendar queue per-formance depends on how evenly events are distributedover buckets. With too big a width, a long line of eventsforms at only a few buckets. On the other hand, toosmall a width separates adjacent events across lots ofbuckets so that a dequeue operation needs to visit a lotof buckets before reaching the next event.

Random Seed Exe. Time(Sec)17 2,16625 28,02252 1,87778 1,92198 1,969Table 1: Execution time of a packet simulator whilevarying random seedThe huge execution time of the second row in Table1 results from continuous use of too small bucket widthcomputed at one time. Calendar queues calculate thebucket width by averaging some number of inter-eventgaps only when the number of enqueued events dou-bles or halves comparing to the number at the last timewhen the bucket width is computed. When the numberof enequeued events does not vary, calendar queues willuse the same bucket width during the rest of simula-tion duration. Let's assume that when a calendar queuedetermines the bucket width, the calendar queue rep-resents time interval [3, 10] which can be divided intotwo sub-intervals according to event distribution; [3, 4]with 0.1 millisecond average inter-event gap and [4, 10]with 1 millisecond average inter-event gap. The bucketwidth determined based on [3, 4] would be too small forevents in [4, 10]. We plan to implement a mechanism incalendar queues to monitor the event distribution andchange the width dynamically based on on the eventdistribution, not on the number of events.3 RepresentationOur third optimization technique represents an entiregroup of closely spaced packets as a single event, en-abling Flowsim to represent wide-area network tra�cwith fewer events than a tradititional simulator. Below,we show how Flowsim represents packets in switches andlinks.3.1 Reducing Memory UsageBecause an event can represent many packets, Flowsim'sevent structure includes much of the protocol headerinformation present on real networks, plus additional�elds for timing and event management. The exactstructure of an event depends on whether or not the sim-ulator simulates a particular protocol processing stack,or whether some of this detail has been abstracted. Thesimulator out of which we developed Flowsim represents4

Message Fieldspacket *nextint packet typeshort Source Nodeshort Destination Nodeshort packet sizetime transmission timelong sequence number... Event Fieldstime event timevoid (*evt handler)()Event *nextNode ID Node...Figure 3: Typical �elds in an event.the TCP/IP protocol stack in �ne detail. Figure 3 de-tails some essential �elds.It's relatively easy to reduce memory consumptionper event by factoring out the event's Message �elds.One can replace both Source Node and Destination Nodewith a pointer to a Conversation Descriptor sharedby all a conversation's packets. Even the packet sizecan be factored into the Conversation Descriptor if,like FTP or audio, the conversation uses a single packetsize all the time. Beyond such factoring, further reduc-ing memory consumption requires making approxima-tions.3.2 Flowsim on LinksJain noted that back-to-back packets on local area net-works tend to arrive from the same source and are headedto the same destination [18]. He called such a burst apacket train. He said that if the spacing between twopackets exceeds some inter-train gap, that these pack-ets belong to separate trains. In subsequent years, sev-eral protocol stack implementations were optimized toexploit this phenomenon [4, 16]. More recently, otherinvestigators found that due to the high degree of mul-tiplexing, back-to-back packet trains are not as promi-nent on wide-area networks as they are for local areanetworks [14, 10]. Researchers are already calling for ade�nition of packet trains for wide-area-networks [21].We now describe how, motivated by wide-area-networkpacket trains, Flowsim represents closely spaced pack-ets. Each link in Flowsimplaces a conversation's packetson a linked list of packet trains called a ow descriptor.Each conversation traversing a link has its own ow de-

Train Descriptor Fieldsint packet counttime lead timetime tail timetime link idle timelong sequence numberFigure 4: Fields of a train descriptor.scriptor. When a node originates or forwards a packetonto a link, the simulator appends it to the correspond-ing ow descriptor.Each packet train in a ow descriptor contains the in-formation listed in Figure 4. A ow descriptor appendsa new packet to an existing train if some other packetwas also added to this train no longer than an inter-traingap ago. If the ow descriptor appends the packet to thetrain, it increments the train's packet count and ex-tends its tail time accordingly. If it cannot append thepacket to the train, it creates a new train for the packetand chains it to the other trains it carries. Flow descrip-tors also create new trains for protocol speci�c reasons.For example, if packets carry sequence numbers, then apacket with a non-sequential sequence number starts anew train.The upper half of Figure 5 illustrates a physical linkcarrying packets from three conversations. The lowerhalf of the �gure illustrates Flowsim's internal represen-tation of the same. Each train's packet count is shown,as well as each train's �rst and last packet. Line seg-ments represent packet trains, and chained packet trainsbelong to the same ow descriptor and hence conversa-tion.Packet trains save memory because they representmany packets in the same space of one. However, sinceFlowsim eliminates exact packet arrival times, it canonly approximate the location of packets in trains.3.3 Event List and Flow DescriptorsWe described in Section 2.2 how we reduced the eventlist's length by only inserting each link's lead packet.Recall that upon dispatching the event corresponding toa link's lead packet, we insert the link's next packet intothe event list. We could have inserted the lead packetfrom each ow descriptor into the event list, and upondispatching this event, approximated an arrival time ofthe ow descriptor's next packet and inserted this nextpacket into the event list. The disadvantage of this so-lution is that the global event list would have grown bythe number of conversations traversing each link. To5

Conversation-3

Conversation-2

Conversation-1

S-1 S-2

Conversation-3

Conversation-2

Conversation-1

S-1 S-2

9

4 3

4 5

FLOWSIM REPRESENTATION

PACKETS
ON THE
LINK

F
lo

w
 D

es
cr

ip
to

rs
PACKETS
SORTED BY
CONVERSATION

1Figure 5: Flowsim's packet representation.avoid this, we maintain a separate priority queue foreach link's ows and place only each link's lead packetinto the global event list.Many protocols generate nearly as many acknowl-edgements as data packets. For example, most TCPimplementations acknowledge every or every other datapacket. Although acknowledgement packets tend to besmaller than data packets, simulators represent themboth with the same size events. Because half the possi-ble memory savings may be in the form of acknowledge-ments, Flowsim places acknowledgement packets intotrains, just as it does data packets.Notice that trains are created dynamically. Traf-�c sources emit packets which the simulator places intotrains. The representation saves memory at the costof introducing variations in timing into the simulation.Notice that decreasing the inter-train gap recovers exactpacket-by-packet simulation. While debugging Flowsim,we frequently set the gap to zero to see that Flowsimand our packet-by-packet simulators agreed.3.4 Flowsim at Bu�ersWe use ow descriptors to hold packets enqueued atnetwork switches, and, as the next section describes,use these ow descriptors to move entire packet trainsthrough network switches simultaneously.Figure 6 illustrates how Flowsim represents a switchbu�er. Packets that arrive at a switch get inserted intoow descriptors, just as if they were being placed on alink. FIFO switches always read from the train with the

Conversation-3

Conversation-2

Conversation-1

S-2

Conversation-3

Conversation-2

Conversation-1

S-2

9

4 3

4 5

FLOWSIM REPRESENTATION OF BUFFER

PACKETS IN
SWITCH
BUFFERS

F
lo

w
 D

es
cr

ip
to

rs

PACKETS
SORTED BY
CONVERSATION

1Figure 6: Flowsim at switches.earliest lead time. Each time the switch reads from atrain, that train's new lead time is approximated or,if the train's packet count reaches zero, it is discarded.A priority queue per switch bu�er identi�es the earliesttrain. Note that a train's lead time is the approximatetime at which the train's leading packet is enqueued atthe switch. Switches with other scheduling disciplinesmust employ a priority queue that orders their ow de-scriptors as needed.If a switch discards a packet for lack of bu�er space,the ow descriptor insertion algorithm detects a gap insequence numbers and automatically causes the packettrain to stop growing and starts a new train.3.5 Distribution of Packets in TrainsFlowsim approximates that packets within a train areconstantly spaced along the train. Flowsim does not ap-proximate that packets are distributed more randomlyalong the train, because it would complicate the hybridalgorithm described later. Flowsim does not, as impliedabove, extract individual packets o� of ow descriptorsand switch them individually. Instead, as described inthe next section, Flowsim brings entire trains of packetsthrough network switches in a single, hybrid operations.However, it is possible to use just Flowsim's packet rep-resentation to save memory and not use its hybrid tech-nique to save simulation time.When not using hybrid simulation, Flowsim regener-ates individual packets. Upon delivering a train's lead-ing packet, Flowsim must select the time for the train'snew leading packet and adjust the train's lead time.6

Link Idle Time

Conversation-2
Packets: 4
Idle Time: 9 ms

Link Clock T(link)I2 I1 I1 I2 I1 I2 I1

3 ms 6 ms 7 ms 5 ms 4 ms 1ms 8ms

Conversation-1
Packets: 4
Idle Time: 25 msFigure 7: Regeneration algorithm uses the link idle timerecorded for each train.The regeneration algorithm places an equal slice of thelink idle time between a train's packets by adding thisslice to the packet's service time. Recall that switchservice time is the packet size divided by the outgoinglink bandwidth. Extending the service time maintainsspacing between packets. All of our simulations employa tra�c type dependent, constant packet size.Figure 7 illustrates two conversations that fall intwo packet trains. Below the �gure of the packets andqueues is a sequence of line segments that indicate theamount of idle time that precedes each packet. Thebottom of the �gure shows each train's duration, thenumber of packets in each train, and sum of the idletime before the train's packets.4 Hybrid SimulationFlowsim saves CPU usage over packet-by-packet simu-lation by simultaneously conducting entire packet trainsthrough network switches. It does this by exploiting twoideas from the �eld of conservative, parallel distributedsimulation [23]. On the example topologies we tested,this feature makes Flowsim 3 to 11 times faster thanthe optimized packet-by-packet simulator from which itwas developed. Obviously, like the ow descriptor andtrain representations, this algorithm trades accuracy fore�ciency.4.1 Conducting Trains through SwitchesConducting entire trains through switches would be sim-ple if each switch could independently unlink the trainwith the earliest lead time from its link bu�er anddeposit the train, appropriately modi�ed, on the nexthop's link bu�er. Unfortunately, two features of packet

(1) Calculate Lookahead Li of node(2) While (train = GetEvent()) f(3) If (train->lead time > Li) f(4) InsertEvent(train);break;(5) g else if (train->tail time > Li)(6) SplitEvent(train);(7) Consume(train);g(8) Assign bu�er overow losses;(9) Calculate train departure times;(10) Advance local clock to Li;(11) Forward trains that depart before Li.Delay remaining trains in output bu�er.Figure 8: Flowsim's train processing algorithm.trains prevent switches from doing this. First, becausetrains overlap each other, the �rst train to arrive ata switch may not be the �rst train to depart. Thismeans that to conduct the �rst train, all trains thatoverlap with it must be dealt with at the same time.Second, each of Flowsim's switches maintains its ownlogical clock. A switch cannot process trains beyond theearliest time that, on any of its links, a new train mightarrive. Hence, not only must Flowsim's switches processtrains simultaneously, but they must obey the causalityconstraints of conservative, distributed, discrete-eventsimulation.The discrete-event simulation literature describes anode's lookahead as the time beyond its logical clockthat a node can simulate without violating causality.For packet networks, a switch's lookahead increases lin-early with the propagation delay of its links. The higherthe propagation delay, the greater the lookahead. SinceFlowsim's performance increases with lookahead, its per-formance gets better as the bandwidth-delay productincreases.4.2 The Switch AlgorithmThis section walks through the algorithm sketched inFigure 8. Flowsim's global scheduler invokes this algo-rithm on the node with the oldest ready-to-depart (ear-liest lead time) train in the system. Figure 8 denotesthis as node i. In step (1), node i calculates its looka-head { the minimum amount of time through which itcan process trains without violating causality. Once itknows its lookahead, it can fetch all the trains from itsincoming links with lead time less than its lookahead.7

Node i's lookahead, Li, is the minimumof the looka-head along its incoming links. The lookahead of an in-coming link from node j, denoted Lji, is the maximumof (a) the tail time of any incoming train on the link(Tji), and (b) the sum of j's logical clock and the link'spropagation delay (Cj + Dji).Li = Minimizeover j Lji whereLji = Max (Tji; Cj +Dji)If node j is idle, then Flowsim substitutes the logicaltime at which node j will next be scheduled in place ofCj above. In summary, in step 1, node i predicts theearliest possible arrival time of any train that any of itsneighbors can send.In steps (2)-(7) the node collects trains to processsimultaneously. It stops collecting trains when no moretrains are ready (step 2) or when it encounters a trainthat arrives beyond the lookahead time (step 3). Inthe latter case, it puts this train back in the event list(step 4). In step 5 it identi�es trains that straddle thelookahead time and puts the latter half of such trainsback on the event list (step 6).Step 7, invoked each time through the loop, conductsa train into the switch's output bu�er, although this isonly a temporary step. After collecting all trains inthe output bu�er, it calculates and assigns packet lossesin step 8 and splits the a�ected trains. It calculatestrain departure times in step 9, as detailed below. Thenode advances its clock to the lookahead time Li (step10), splits outgoing trains that straddle Li, enqueuesthe departed portion of these trains on the appropri-ate upstream links (step 11), and leaves the undepartedportion of these trains in its output bu�ers. Note that asplit train may be merged together when the node laterenqueues it on the ow descriptor. As an optimization,FIFO switches can forward all trains in step 11, eventrains that depart after Li. For priority scheduling dis-ciplines, causality prevents these trains from leaving theoutput bu�ers early.4.3 Approximating Packet LossIn mapping trains through a switch, bu�ers might over-ow. In step (8), Flowsim's switches calculate packetlosses and assign them to trains. It must do this with-out regenerating individual packets from trains to retainthe speed advantage of the train representation. It em-ploys a simple uid approximation to packet loss. Atinstants where a new train appears or an old one ends,Flowsim subtracts the number of packets that have de-parted from the number that have arrived at the bu�er,

and calculates the number of packets, if any, lost tooverow. If overows occur during one of these inter-vals, Flowsim attempts to distribute packet losses to thevarious trains, according to their packet density.While this computation is costly, in a large network,most of the switches are not congested. This meansthat owsim only infrequently has to work harder, andon average, it gains speedup.4.4 Approximating Departure TimesAfter a node splits its trains due to packet losses, itmust approximate the time at which each train's leadingand trailing packet departs. The departure time of anypacket is, of course, the sum of its arrival time at thebu�er, the time it waits in the bu�er, and the servicetime to place it on the wire. We consider FIFO switchesand more general policies separately.With FIFO scheduling, we estimate a packet's queue-ing delay as an average packet service time multipliedby the number of packets that are ahead of it. Calcu-lating the lead time and tail time of a train reducesto counting the number of packets that get transmittedbefore the �rst and before the last packet of a train.The number of packets transmitted before a particularpacket is the sum of two quantities: the packets in trainsthat depart before this packet and the fair fraction ofthe packets of overlapping trains. Consider, for instance,two overlapping trains on the same output bu�er. Letone have 10 packets on the interval [2, 8] and the other7 packets on the interval [5, 12]. Flowsim would approx-imate that (3/6)*10 of the �rst train's packets are sentbefore the �rst packet of the second train.With priority scheduling, switches can only forwardtrains that are ready to depart before the lookaheadtime. Causality prevents them from forwarding trainsthat depart after the lookahead time because a higherpriority trains could preempt their position in the out-put bu�er. In contrast to FIFO switches which needonly order newly arrived trains, priority switches needto re-rank all the trains in the link bu�er accordingto their priority and then calculate loss and departuretimes. After reordering the trains, priority switches ap-ply the same calculation as FIFO switches to determinedeparture times.4.5 Implementation StatusThis concludes our description of Flowsim's packet rep-resentation and internal algorthms. Flowsim is imple-mented in Jacobson's and McCanne's tcpsim, a simula-tor which evolved fromBerkeley's REAL and Columbia's8

NEST [11]. In the next section we report Flowsim'sspeedups and contrast its simulated metrics against ourpacket-by-packet version of this simulator. For refer-ence, our packet simulator processes 28,400 events persecond on a SPARCstation-20 machine when simulatingthe topology shown in Figure 1.5 ExperimentsWe conducted many experiments to evaluate Flowsim'sspeedup and the tradeo�, in its hybrid mode, betweenspeedup and accuracy. Here, we present the resultsof simulating large window TCP ow control on twonetwork topologies; one big topology shown in Figure1 where 55 gateways forward packets of 250 conver-sations and one small ATM network where 30 tra�csources send 53-byte cells to one destination via a gate-way. A practical constraint prevented us from simulat-ing a larger topology: without Flowsim, our traditionalpacket simulator takes 19 hours to simulate 3 minutes ofthe big gigabit network. Because three minutes of net-work time is enough time for four thousand round triptimes through the network, we felt that 3 minutes wasenough time to see any interesting behavior that mightdevelop.Our experiments investigated the stable unfairnessbetween similarly routed bulk transfer conversations thatFloyd identi�ed and termed phase e�ects [13]. Our ex-periments investigated whether phase e�ects cause un-fairness even with large ow control windows, high net-work bandwidths, and higher degrees of tra�c multi-plexing.5.1 Speedups and AccuracyThe total number of events generated during a simula-tion determines a simulation's run time. In Flowsim'shybrid mode, longer trains mean fewer events and fastersimulations, because Flowsim can process an n packettrain in the cost of a few packets. Train length dependson lookahead which is a function of network topology,bandwidth, and link length. Larger lookaheads per-mit fewer train splittings and increase Flowsim's per-formance. For these reasons, Flowsim performs well innetworks with high bandwidth, long links, small packetsand bursty sources.The longer we stretch trains by increasing the per-missible inter-train gaps, the less accurate are simula-tion's metrics. Figure 9 shows Flowsim's speedup overour traditional packet simulation as a function of inter-train gap. The two upper lines occur for the simulationof the small ATM network. For ATM network simula-

tions, we added an ATM adaptation layer, assemblingand disassembling IP packets into 53-byte cells belowIP. For the lower line, we physically shortened the bot-tleneck link between the switch and the destination andlowered its bandwidth to shorten packet train lengthsand reduce node lookahead time. In this more con-gested network, more packet losses occur, more of thebulk transport connections are inactive, and trains tendto be shorter.For both ATM topologies, Flowsim gets faster astrains grow. Even at zero inter-train gap, when thehybrid algorithm is disabled and Flowsim simulates onepacket at a time, the two techniques explained in Section2 make Flowsim 1.8 times faster than its packet simula-tor. With 0.05 millisecond inter-train gap, the speedupjumps to 28 and 44 times since after this gap trainsbegin to convey more than one IP packet. Note thatacks come back 0.025 millisecond apart during the con-gestion period since the 200 Mbps bottleneck link takes0.025 millisecond to transmit a 512-byte packet. Finally,Flowsim approaches to 56 and 34 times speedup. Thelowest line of Figure 9 plots Flowsim's speedup whensimulating the big IP network in Figure 1. Note thatthe bandwidths of Figure 1's central links are lower thanthe edges, producing lots of congestion. For reference,our packet simulator required 19 hours to simulate thecongested Figure 1 topology. As trains stretch longer,Flowsim can achieve 8 times speedup in this topology.For Flowsim's accuracy, we measured three simula-tion metrics in the IP network of Figure 1: each conver-sation's throughput, number of dropped packets, and itsone-way delay. For audio tra�c conversations, which donot employ ow control, the essential metrics are one-way delay and drop rate. For bulk transfer tra�c, theessential metrics are throughput and loss rate.We �rst consider the average throughput and thevariance between the throughputs of all 78 FTP conver-sations. For the average throughput of packet simula-tion, we ran simulations with 8 di�erent random seeds.Figure 10 plots the ratio of Flowsim's results to packetsimulation's results. It shows that Flowsim is di�erentthan packet simulation by less than 2 % in terms of theaverage throughput and variance.Figure 11 shows the packet loss ratio of Flowsim topacket simulation. Two at lines in Figure 11 are theupper and lower bound of 90 % con�dence interval ofpacket simulation. The two at lines show a range ofhow much packet loss can be uctuated even in packetsimulation when the random seed is varied. In this�gure, as trains stretch Flowsim tends to drop morepackets, up to 15 % with 1 millisecond inter-train gap.It is due to the Flowsim's approximation that packetsare evenly distributed in their trains. The Flowsim'sapproximation can underestimate the tra�c burstiness,9

open TCP congestion windows wider, and �nally leadto more drop.Figure 12 plots the average throughput ratio of Flowsimto packet simulation over twenty bulk transfer conver-sations. Figure 12 draws two vertical lines representing90 % con�dence interval over each conversation iden-ti�er(cid); one vertical line with circles ends for packetsimulationand another with plus ends for Flowsim. Eachvertical line shows the range of average throughput thateach FTP can achieve during 3-minute simulation time.From Figure 12, we can see that cid 25 sends 25 % morepackets in Flowsim than in packet simulation. Flowsim'sapproximation causes less tra�c burstiness, less packetloss and delivers more packets for this FTP conversa-tion. On the other hand, cid 20 sends less packetsin Flowsim. It is because the increased throughputsof neighboring FTP's cause more congestion for thisFTP. Since most of Flowsim's con�dence intervals over-lap with the corresponding packet simulation con�denceintervals, however we conclude that Flowsim producessimilar throughput metrics to packet simulation.Figure 13 and 14 plot the one-way delay distributionof an audio conversation sending packets from S-1 to D-1 in Figure 1. The minimum one-way delay withoutqueueing delay between the two nodes is 20 millisec-onds. In Figure 14, packet simulation predicts the samedelay distribution regardless of random seed values. Thecurves in Figure 13 are distinguishable from packet sim-ulation; Flowsim appears not to a�ect real-time con-versation delay because any decrease in throughput ofone conversation is compensated by another conversa-tion's increase. One di�erence is that as trains stretchlonger Flowsim tends to deliver more packets with theminimum delay, 20 milliseconds. With 0.3 millisecondintertrain gap, Flowsim delivers 7 % more packets by 20milliseconds delay than 0.05 millisecond intertrain gap.A network algorithm can be more sensitive to theFlowsim's approximation than other network algorithms.In FIFO switches, Flowsim represents packet streamsdi�erently, producing di�erent packet loss, driving TCPin a di�erent direction and �nally yielding di�erent sim-ulation metrics. For example, when an ON-OFF sourcegenerates four packets every 0.1 millisecond, Flowsimdelivers one packet every 0.025millisecond at down streamswitches, resulting in di�erent packet loss. Our ex-periments, however showed that in large-scale networkswhere packets from a number of conversations get multi-plexed, Flowsim can predict the same simulationmetricseven with large inter-train gaps.

10
-3

10
-2

10
-1

10
0

0

10

20

30

40

50

60

InterTrain Gap (msec)

Sp
ee

du
p

0.05 msecFigure 9: Flowsim speedup over packet simulation
10

-3
10

-2
10

-1
10

0
0

0.5

1

1.5

2

Inter-Train Gap (msec)

Ra
tio

-o- Average Throughput Ratio of 75 FTP Conversations

-x- Variance Ratio of 75 FTP ConversationsFigure 10: Average throughput and variance
10

-3
10

-2
10

-1
10

0
0

0.5

1

1.5

2

Mean and STD of TCPSIM 7834 144

Mean and STD of Flowsim 8255 455

InterTrain Gap (msec)

Dr
op

 R
ati

oFigure 11: Ratio of Flowsim's to packet simulationspacket drops
10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cid

Ra
tio

o--o 90 % confidence interval of Tcpsim

+--+ 90 % confidence interval of Flowsim

Figure 12: Throughput plot of twenty FTP conversa-tions10

0.02 0.021 0.022 0.023 0.024 0.025 0.026 0.027
0.4

0.5

0.6

0.7

0.8

0.9

1

One-Way Delay (sec)

Cu
m

ula
tiv

e
Pr

ob
ab

ilit
y

- o - : 0.05 msec Inter-Train Gap

- * - : 0.1 msec Inter-Train Gap

- + - : 0.3 msec Inter-Train Gap

- x - : 0.5 msec Inter-Train GapFigure 13: Flowsim's one-way delay distribution

0.02 0.021 0.022 0.023 0.024 0.025 0.026 0.027
0.4

0.5

0.6

0.7

0.8

0.9

1

One-Way Delay (sec)

Cu
m

ula
tiv

e
Pr

ob
ab

ilit
y

- o - : Random Seed 40

- * - : Random Seed 52

- + - : Random Seed 98

- x - : Random Seed 107Figure 14: Packet simulation's one-way delay distribu-tion

6 ConclusionsIn high bandwidth-delay networks, thousands of pack-ets can simultaneously traverse a given link. This paperinvestigated a new technique to reduce the cost of sim-ulating such networks. The new technique can reducesimulator memory consumption and processing time bya factor of 3 to 11, although it adds a degree of ap-proximation to the simulation. In addition, this paperintroduces two new simulation techniqeus; the �rst tech-nique reduces the cost of managing the global event list.The second technique halves the number of events nec-essary to simulate the same network. When simulatingATM networks and when simulating IP over ATM net-works, the three techniques, togetger can achieves mas-sive speedups.Below we review the lessons we learned while evalu-ating the degree of approximation that Flowsim intro-duces, speculate on problems to which Flowsim can beapplied, and summarize our next steps.6.1 Notes on Network SimulationUpon implementingFlowsim, we thought we could quicklyevaluate how it a�ects the simulation of trivial networktopologies. This was not the case. Instead, it took overa year of experimentation for us to learn the followinglesson: It is not easy to evaluate simulations of smalltopologies with relatively static tra�c sources becausethe metrics that they yield can be sensitive to minusculechanges in network bandwidths and link lengths [13].Fundamentally, the question is whether we have a�rm enough grasp on the factors that a�ect a simula-tion's metrics to evaluate ow and congestion control al-gorithms via simulation. The lesson is that you cannotlearn from your experiments if you misattribute the rea-son why the metrics di�er. You must observe the rangeof these measures in an ensemble of similar topologies.Future experimenters should report some of their resultsin scatter plots like our Figure 12. The larger the topol-ogy, the more dynamic the tra�c models, the higher thedegree of tra�c multiplexing, the safer the simulation isto interpret.A simulation run is nothing more than a sample pathin a very large event space. Floyd showed that, at leastfor slow-start TCP, this sample path depends on mea-sures as curious as exact cable lengths. In the �nal anal-ysis, let the experimenter beware. We �nd that after ayear of experience with Flowsim, that we are con�dentthat Flowsim can be applied to study interesting prob-lems in adaptive routing, ow control, and congestioncontrol. Flowsim also could be used to study call rout-ing and call admission control algorithms in a mix of11

real-time and data tra�c.6.2 ExtensibilityWe applied Flowsim to a study of a network congestiondetection algorithm, Tri-S, a variation of which is em-ployed in Vegas TCP [24, 2]. Tri-S monitors the networktra�c and stops increasing congestion window beforepacket loss when the measured tra�c congestion is be-yond a certain threshold. Figure 15 and Figure 16 plotthe congestion window of an FTP competing for a gate-way's �nite bu�er with another FTP. Each �gure hastwo lines; the solid line for a packet simulation and thebroken line for Flowsim. In Figure 15, Flowsim showsthe same oscillatory behavior of TCP as packet simu-lation. The two lines in Figure 16 indicate that Tri-Swindows approach to a steady state value even thoughFlowsim predicts a larger window size.Another important measure of Flowsim's usefulnessis whether it can model relevant new network schedulingmechanisms. In addition to FIFO router scheduling,we regularly apply Flowsim to Fair Queueing routers[8]. We have even created a compacted bu�er spacerepresentation for it. Flowsim and packet simulationagree more closely for Fair Queueing routers than theydo for FIFO routers because TCP conversations crossingFair Queueing switches do not su�er phase e�ects.We have sketched but not implemented a way to ap-proximate FIFO+, a scheduling technique designed formultimedia tra�c [7]. In FIFO+, the header of eachpacket carries a �eld indicating whether the packet isbehind schedule or ahead of it. In a simulator, this�eld can be derived from a time stamp that indicatesthe exact time at which a source emits a packet. Al-though Flowsim discards per packet information, it canapproximate this timestamp at the cost of two addi-tional timestamp �elds per train.However Flowsim does have its limitations. TheTCP/IP community will soon agree on a selective ac-knowledgement scheme so that TCP can employ largewindow sizes e�ciently [17]. Selective acknowledgementswill reduce Flowsim's packet train length somewhat, be-cause sources will send packets out of order and someacknowledgements may not be compactable at all. Pri-ority scheduling mechanisms may also decrease trainlengths and adversely a�ect Flowsim's performance.6.3 Future DirectionsThis paper contributes three techniques that enable usto simulate bigger packet networks. Two of these tech-niques introduce no approximation and can double sim-

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Time(sec)

W
ind

ow
 S

ize

Solid Line: Tcpsim

Broken Line: FlowsimFigure 15: TCP Congestion Window
0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

Time(sec)

W
ind

ow
 S

ize

Solid Line: Tcpsim

Broken Line: FlowsimFigure 16: Tri-S Congestion Windowulator performance. We need simulation tools that let usstudy bigger and bigger networks because network phe-nomena are di�cult to predict. Simulation of a dozennodes can mislead one to choose a particular adaptiverouting algorithm or ow control algorithm. For exam-ple, Floyd showed that IP routers tend to self-synchronizeand send routing update messages periodically onlywhenthe number of routers exceeds a certain threshold [12].We are now employing randomly generated networktopologies driven with models of dynamic data and real-time tra�c [6] to evaluate various ow control and adap-tive routing algorithms.References[1] Dimitri Bertsekas and Robert Gallager. Data Net-works. Prentice-Hall, 1987.[2] Lawrence S. Brakmo, Sean W. O'Malley, andLarry L. Peterson. Tcp vegas: New techniquesfor congestion detection and avoidance. ACM SIG-COMM '94, May 1994.12

[3] Randy Brown. Calendar queues: A fast o(1)priority queue implementation for the simulationevent set problem. Communications of the ACM,31(10):1220{1227, 1988.[4] John B. Carter and Willy Zwaenepoel. Opti-mistic implementation of bulk data tranfer proto-cols. 1989 ACM SIGMETRICS Conference, pages61{69, May 23-26, 1989.[5] Douglas Comer. Internetworking with TCP/IP,volume 1 (2nd edition). Prentice Hall, 1991.[6] Peter B. Danzig, Sugih Jamin, Ramon Caceres,Danny J. Mitzel, and Deborah Estrin. An arti�cialworkload model of TCP/IP internetworks. Jour-nal of Internetworking: Practice and Experience,3(1):1{26, March 1992.[7] Lixia Zhang David Clark, Scott Shenker. Sup-porting real-time applications in an integrated ser-vices packet network: Architecture and mechanism.ACM SIGCOMM 92, August 1992.[8] Alan Demers, Srinivasan Keshav, and ScottShenker. Analysis and simulation of a fair queue-ing algorithm. ACM SIGCOMM 89, 19(4):2{12,August 19-22, 1989.[9] Julio Escobar and Craig Partridge. A proposedsegmentation and re-assembly (SAR) protocol foruse with asynchronous transfer mode (ATM). IFIPWG6.1/WG6.4, November 27-29 1990.[10] Deborah Estrin and Danny Mitzel. An assessmentof state and lookup overhead in routers. IEEE In-focom '92, pages 2332{2342, May 1992.[11] A Dupuy et al. NEST: A network simulation andprototyping testbed. Communications of the ACM,33:10:63{74, Oct 90.[12] Sally Floyd and Van Jacobson. The synchroniza-tion of periodic routing messages. SIGCOMM 93,pages 33{44, October, 1993.[13] Sally Floyd and Van Jacobson. Tra�c phase ef-fects in packet-switched gateways. Journal of Inter-networking:Practice and Experience, 3(3):115{156,September, 1992.[14] Steven A. Heimlich. Tra�c characterization of theNSFNET national backbone. Proceedings Win-ter USENIX Conference, pages 207{227, January1990.[15] Van Jacobson. Congestion avoidance and control.ACM SIGCOMM 88, pages 273{288, 1988.[16] Van Jacobson. Compressing TCP/IP headers forlow-speed serial links. Technical Report RFC1144,LBL, February 1990.

[17] Van Jacobson, R. Braden, and D Borman. TCPextensions for high performance. Technical ReportRFC1323, LBL, ISI, Cray Research, May 1992.[18] Raj Jain and Shawn A. Routhier. Packet trains{measurement and a new model for computer net-work tra�c. IEEE JSAC, pages 986{995, Septem-ber, 1986.[19] Hemant Kanakia, S. Keshav, and Partho P. Mishra.A benchmark suite for comparing congestion con-trol schemes. Technical Report (unpublished), ATTBell Laboratories, July 1992.[20] Srinivasan Keshav. A control-theoretic approachto ow control. ACM SIGCOMM '91, pages 3{15,September 1991.[21] Paul E. McKenney and Ken F. Dove. E�cientdemultiplexing of incoming TCP packets. ACMSIGCOMM 92 Conference, pages 269{279, August1992.[22] George Varghese and Tony Lauck. Hashed and hi-erarchical timing wheels: Data structures for thee�cient implementation of a timer facility. Sympo-sium on Operating System Principles, pages 25{38,1987.[23] David B. Wagner, Edward D. Lazowska, andBrian N. Bershad. Techniques for e�cient shared-memory parallel simulation. SCS Multiconference:Advances in Parallel and Distributed Simulation,pages 29{37, 1990.[24] Zheng Wang and Jon Crowcroft. A new congestioncontrol scheme: Slow start and search(tri-s). Com-puter Communication Review, pages 21(1):32{43,January 1991.
13

