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Abstract

This paper describes a packet network simulator whose

timing granularity can shift continuously from fine, packet-

level detail to coarse, conversation-level detail. Simula-
tion run time decreases with coarser timing granularity,
but the details in the underlying model become faded
as the timing granularity coarsens. The finer the gran-
ularity, the slower but more precise the simulation. If
a simulation becomes resource limited, it is possible to
coarsen the timing granularity to scale the simulation
larger.

This paper introduces a new simulation technique
to speedup simulation of high speed, wide area net-
works. The new technique can yield order of magni-
tude speedup and memory savings on simulations of
large-scale packet networks. The speedup is achieved
by introducing a degree of approximation into abstract-
ing packet streams. We call this technique Flowsim.
Flowsim can yield different simulation metrics than packet
simulation due to its different degree of simulation gran-
ularity. We have replicated simulations presented in
the literature and, in this paper, show that it is fre-
quently possible to employ coarse timing granularity
when studying flow and congestion control algorithms.

This paper motivates the need for faster and less
memory intensive simulators, introduces two other sim-
ulation techniques which can together double the per-
formance of well written simulators, describes Flowsim’s
traffic representation scheme and internal algorithms,
explores the tradeoff between speed and accuracy, and
explores some of the limitations of traditional simula-
tion. It demonstrates that speedups of a factor of 50
are possible when simulating ATM networks.

1 Introduction

As network researchers, we evaluate new routing, admis-
sion control, congestion control and flow control algo-

rithms by simulation rather than by analysis. We rarely
employ analysis because 1t cannot capture the heart of
the algorithms we wish to study. Unfortunately, simu-
lations are time consuming and memory intensive.

The simulation performance depends on the timing
granularity of simulations. The finer the granularity,
the slower but more precise the simulation. Fine grain,
packet-level simulation models every individual packet’s
behavior. As networks carry more packets, packet-level
simulation becomes slower. Simulation run time de-
creases with coarser timing granularity, but the details
in the underlying model become faded as the timing
granularity coarsens. In coarse grain, conversation-level
simulation, the whole packet stream of each conversa-
tion can be represented analytically with a few param-
eters, for example the average number of packets per
second.

This paper describes a packet network simulator whose
timing granularity can shift continuously from fine, packet-
level detail to coarse, conversation-level detail. The new
simulator represents packet streams either in packet-
level detail or in conversation-level detail whenever it
is appropriate. The new simulation technique can cut
the cost to simulate high bandwidth, wide area packet
networks by an order of magnitude. This cost reduction
comes at the price of introducing an adjustable degree
of approximation into abstracting packet streams. The
higher the memory savings, the faster the simulator, but
the less accurate the computed metrics. We call our
technique Flowstm, because 1t deals with packet flows,
rather than individual packets.

This paper, through the example below, explains
why analytical techniques have failed to model modern
packet networks, why packet simulation is computation-
ally costly, and why a simulator’s state can grow quickly.

Figure 1 shows a wide-area network topology that
flow and congestion control researchers might study. This
network’s 55 nodes forward the packets of 250 conversa-
tions; only 7 conversation endpoints and 32 gateways are
indicated. Node labels “S”, “D”, and “G” indicate traf-






Simulating five minutes of activity on a network the
size of today’s Internet would require gigabytes of real
memory and months of computation on today’s 100 MIP
uniprocessors. Our long term research goal is to de-
velop the necessary simulation technology to evaluate
such large internets.

Section 2, below, describes two techniques applica-
ble to any packet simulator that double performance
for FIFO switch scheduling algorithms. Section 3 shows
how Flowsim’s packet representation scheme can save
memory, and Section 4 explains why Flowsim is an or-
der of magnitude faster than packet simulators. Section
5 describes our simulations and interprets their results.
We discuss insights into simulating networks and con-
sider some of Flowsim’s limitations in Section 6.

2 Two Speedup Techniques

Packet network simulators, like all discrete event sim-
ulators, are built around an event list. When a node
forwards a packet along a link towards a neighboring
node, it actually inserts two events into the event list;
one with time set to the service time to put the packet
on the wire plus the current time and one with time set
to the sum of the link’s propagation delay, the service
time, and the current time. It includes the service time
because few packet switches employ cut-through rout-
ing and hence cannot switch a packet until its last bit
arrives.

When simulated time catches up with the first event,
the node can dispatch a buffered packet upstream. When
time catches up with the second event, the destination
node retrieves the pointer to the packet header and ei-
ther delivers the packet to the application layer or en-
queues it towards the hop.

2.1 Optimization for FIFO Switches

We have developed a technique that can double the per-
formance of packet simulators when switch scheduling
is FIFO. This technique expands the outbound looka-
head of FIFO switches to be enough large to dispatch
all buffered packets at one time. The discrete-event sim-
ulation literature describes a node’s lookahead as the
time beyond its logical clock that a node can simulate
without violating causality. A node has two different
lookaheads; inbound and outbound lookahead. A node
can buffer packets which will arrive no later than its
inbound lookahead and forward packets which will de-
part no later than its outbound lookahead. The bigger
outbound lookahead, the more packets can depart in ad-
vance and the less events to inform the time at which

a next packet departs. Without outbound lookahead,
modeling each packet’s departure needs two events as
explained above.

Without the new technique, outbound lookahead would
be at most the same as inbound lookahead. The out-
bound lookahead of FIFO switches can be increased to
infinite since packet arrival can not force a previously
arrived packet to be dropped or affect the time at which
it should depart the switch. The technique directly for-
wards packets upstream without ever serializing them
in the buffer since their arrival time and dropout can
be determined in advance. Compared to conventional
implementations, this halves the number of simulation
events necessary to model packet departure to neigh-
boring nodes. Upon receiving a packet arrival event, a
node immediately forwards it towards the next node or,
if this packet should overflow, discards it immediately.
The node sets the arrival event to occur at time accord-
ing to the sum of its queueing delay, its node service
time, and the link propagation delay. All that is nec-
essary 1is for the node to keep track of its virtual queue
length as well as the time at which the previous packet
departed. For example, if a packet arrives at time 3,
but the virtual queue won’t clear until time 4, then the
packet is enqueued to arrive down stream at time max(3,
4) 4+ packet service time + link propagation delay.

2.2 Reducing Global Event List Length

Even well optimized packet network simulators can spend
25%-50% of their time inserting and deleting events;
flow control and packet forwarding are not themselves
terribly costly. Event lists are built from priority queues.
Although naive priority queues work best with a small
number of events, sophisticated ones exhibit O(1) be-
havior even with a large number of events if the varia-
tion in the number of events remains low [3, 22]. This
leads us to ponder how the number of events in the event
list fluctuates with time.

The bandwidth-delay product of a link establishes
the maximum number of packets that it can carry. Sum-
ming this maximum over all links establishes the max-
imum number of events in the event list. If network
routing and traffic sources remain fixed throughout the
simulation, the variation in the number of packets in
the simulator depends on the traffic characteristics and
oscillates with the flow control window sizes. The faster
and longer the link, the higher the variation of the num-
ber of events in the simulation. This variation, which
is not a problem when simulating a 1.544 Mb/s T1
link carrying IP packets, seriously degrades the event
list performance when simulating gigabit links carrying

ATM cells.
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Figure 2: Reducing variation in the event list’s length.

Flowsim reduces the event list’s length and variance
in length by inserting into the event list only the next-
to-arrive packet from each link. The events for all other
in-transit packets remain in the appropriate link’s event
FIFO. The simulator, upon deleting the next-to-arrive
packet from the head of the event list, moves the head of
the appropriate link’s FIFO into the event list. Figure 2
illustrates a link, the link’s event FIFO, and the (global)
event list. The heavy dotted line represents the rela-
tionship between the next-to-arrive packet in the event
list, and the subsequent packet in the link’s event FIFO.
Keeping all but the leading packet in the FIFO rather
than directly in the global event list can reduce global
event list processing time by 50%.

2.3 Adjustable Calendar Queue

This section addresses a problem with calendar queues,
a sophisticated priority queue used as the global event
queue in our simulator. Table 1 lists random seed val-
ues for five simulation runs and the corresponding exe-
cution times. The second row shows, surprisingly, that
a change on the random seed causes one simulation run
to take twelve times more than other runs. It is because
calendar queues do not adapt their structure dynami-
cally to the event distribution changing over time.

Calendar queues take after calendars on which peo-
ple write down their to-do-lists. A calendar queue is
an array of pointers called buckets. Each bucket has
a width representing a certain amount of time and en-
queues events whose time falls within the bucket’s width
in order of their timestamps. The calendar queue per-
formance depends on how evenly events are distributed
over buckets. With too big a width, a long line of events
forms at only a few buckets. On the other hand, too
small a width separates adjacent events across lots of
buckets so that a dequeue operation needs to visit a lot
of buckets before reaching the next event.

| Random Seed | Exe. Time(Sec) |

17 2,166
25 28,022
52 1,877
78 1,921
98 1,969

Table 1: Execution time of a packet simulator while
varying random seed

The huge execution time of the second row in Table
1 results from continuous use of too small bucket width
computed at one time. Calendar queues calculate the
bucket width by averaging some number of inter-event
gaps only when the number of enqueued events dou-
bles or halves comparing to the number at the last time
when the bucket width is computed. When the number
of enequeued events does not vary, calendar queues will
use the same bucket width during the rest of simula-
tion duration. Let’s assume that when a calendar queue
determines the bucket width, the calendar queue rep-
resents time interval [3, 10] which can be divided into
two sub-intervals according to event distribution; [3, 4]
with 0.1 millisecond average inter-event gap and [4, 10]
with 1 millisecond average inter-event gap. The bucket
width determined based on [3, 4] would be too small for
events in [4, 10]. We plan to implement a mechanism in
calendar queues to monitor the event distribution and
change the width dynamically based on on the event
distribution, not on the number of events.

3 Representation

Our third optimization technique represents an entire
group of closely spaced packets as a single event, en-
abling Flowsim to represent wide-area network traffic
with fewer events than a tradititional simulator. Below,
we show how Flowsim represents packets in switches and

links.

3.1 Reducing Memory Usage

Because an event can represent many packets, Flowsim’s
event structure includes much of the protocol header
information present on real networks, plus additional
fields for timing and event management. The exact
structure of an event depends on whether or not the sim-
ulator simulates a particular protocol processing stack,
or whether some of this detail has been abstracted. The
simulator out of which we developed Flowsim represents



Message Fields
packet *next
int packet_type
short Source_lode

short Destination_Node
short packet_size

time transmission_time
long sequence number

FEvent Fields
time event_time
void (*evt_handler) ()
Event *next
Node_ID Node

Figure 3: Typical fields in an event.

the TCP/IP protocol stack in fine detail. Figure 3 de-
tails some essential fields.

It’s relatively easy to reduce memory consumption
per event by factoring out the event’s Message fields.

One can replace both Source Node and Destination Node

with a pointer to a Conversation Descriptor shared
by all a conversation’s packets. Even the packet_size
can be factored into the Conversation Descriptor if,
like FTP or audio, the conversation uses a single packet
size all the time. Beyond such factoring, further reduc-
ing memory consumption requires making approxima-
tions.

3.2 Flowsim on Links

Jain noted that back-to-back packets on local area net-
works tend to arrive from the same source and are headed
to the same destination [18]. He called such a burst a
packet train. He said that if the spacing between two
packets exceeds some inter-train gap, that these pack-
ets belong to separate {rains. In subsequent years, sev-
eral protocol stack implementations were optimized to
exploit this phenomenon [4, 16]. More recently, other
investigators found that due to the high degree of mul-
tiplexing, back-to-back packet trains are not as promi-
nent on wide-area networks as they are for local area
networks [14, 10]. Researchers are already calling for a
definition of packet trains for wide-area-networks [21].

We now describe how, motivated by wide-area-network
packet trains, Flowsim represents closely spaced pack-
ets. Each link in Flowsim places a conversation’s packets
on a linked list of packet trains called a flow descriptor.
Each conversation traversing a link has its own flow de-

Train Descriptor Fields
int packet_count
time lead_time

time tail_time
time link_idle_time
long sequence number

Figure 4: Fields of a train descriptor.

scriptor. When a node originates or forwards a packet
onto a link, the simulator appends 1t to the correspond-
ing flow descriptor.

Each packet train in a flow descriptor contains the in-
formation listed in Figure 4. A flow descriptor appends
a new packet to an existing train if some other packet
was also added to this train no longer than an inter-train
gap ago. If the flow descriptor appends the packet to the
train, it increments the train’s packet_count and ex-
tends its tail_time accordingly. If it cannot append the
packet to the train, it creates a new train for the packet
and chains it to the other trains it carries. Flow descrip-
tors also create new trains for protocol specific reasons.
For example, if packets carry sequence numbers, then a
packet with a non-sequential sequence number starts a
new train.

The upper half of Figure 5 illustrates a physical link
carrying packets from three conversations. The lower
half of the figure illustrates Flowsim’s internal represen-
tation of the same. Fach train’s packet_count is shown,
as well as each train’s first and last packet. Line seg-
ments represent packet trains, and chained packet trains
belong to the same flow descriptor and hence conversa-
tion.

Packet trains save memory because they represent
many packets in the same space of one. However, since
Flowsim eliminates exact packet arrival times, it can
only approximate the location of packets in trains.

3.3 Event List and Flow Descriptors

We described in Section 2.2 how we reduced the event
list’s length by only inserting each link’s lead packet.
Recall that upon dispatching the event corresponding to
a link’s lead packet, we insert the link’s next packet into
the event list. We could have inserted the lead packet
from each flow descriptor into the event list, and upon
dispatching this event, approximated an arrival time of
the flow descriptor’s next packet and inserted this next
packet into the event list. The disadvantage of this so-
lution is that the global event list would have grown by
the number of conversations traversing each link. To
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Figure 5: Flowsim’s packet representation.

avold this, we maintain a separate priority queue for
each link’s flows and place only each link’s lead packet
into the global event list.

Many protocols generate nearly as many acknowl-
edgements as data packets. For example, most TCP
implementations acknowledge every or every other data
packet. Although acknowledgement packets tend to be
smaller than data packets, simulators represent them
both with the same size events. Because half the possi-
ble memory savings may be in the form of acknowledge-
ments, Flowsim places acknowledgement packets into
trains, just as it does data packets.

Notice that trains are created dynamically. Traf-
fic sources emit packets which the simulator places into
trains. The representation saves memory at the cost
of introducing variations in timing into the simulation.
Notice that decreasing the inter-train gap recovers exact
packet-by-packet simulation. While debugging Flowsim,
we frequently set the gap to zero to see that Flowsim
and our packet-by-packet simulators agreed.

3.4 Flowsim at Buffers

We use flow descriptors to hold packets enqueued at
network switches, and, as the next section describes,
use these flow descriptors to move entire packet trains
through network switches simultaneously.

Figure 6 illustrates how Flowsim represents a switch
buffer. Packets that arrive at a switch get inserted into
flow descriptors, just as if they were being placed on a
link. FIFO switches always read from the train with the
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Figure 6: Flowsim at switches.

earliest lead _time. Fach time the switch reads from a
train, that train’s new lead_time is approximated or,
if the train’s packet count reaches zero, it is discarded.
A priority queue per switch buffer identifies the earliest
train. Note that a train’s lead_time is the approximate
time at which the train’s leading packet is enqueued at
the switch. Switches with other scheduling disciplines
must employ a priority queue that orders their flow de-
scriptors as needed.

If a switch discards a packet for lack of buffer space,
the flow descriptor insertion algorithm detects a gap in
sequence numbers and automatically causes the packet
train to stop growing and starts a new train.

3.5 Distribution of Packets in Trains

Flowsim approximates that packets within a train are
constantly spaced along the train. Flowsim does not ap-
proximate that packets are distributed more randomly
along the train, because it would complicate the hybrid
algorithm described later. Flowsim does not, as implied
above, extract individual packets off of flow descriptors
and switch them individually. Instead, as described in
the next section, Flowsim brings entire trains of packets
through network switches in a single, hybrid operations.
However, it is possible to use just Flowsim’s packet rep-
resentation to save memory and not use its hybrid tech-
nique to save simulation time.

When not using hybrid simulation, Flowsim regener-
ates individual packets. Upon delivering a train’s lead-
ing packet, Flowsim must select the time for the train’s
new leading packet and adjust the train’s lead _time.
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Figure 7: Regeneration algorithm uses the link idle time
recorded for each train.

The regeneration algorithm places an equal slice of the
link idle time between a train’s packets by adding this
slice to the packet’s service time. Recall that switch
service time is the packet size divided by the outgoing
link bandwidth. Extending the service time maintains
spacing between packets. All of our simulations employ
a traffic type dependent, constant packet size.

Figure 7 illustrates two conversations that fall in
two packet trains. Below the figure of the packets and
queues is a sequence of line segments that indicate the
amount of idle time that precedes each packet. The
bottom of the figure shows each train’s duration, the
number of packets in each train, and sum of the idle
time before the train’s packets.

4 Hybrid Simulation

Flowsim saves CPU usage over packet-by-packet simu-
lation by simultaneously conducting entire packet trains
through network switches. It does this by exploiting two
ideas from the field of conservative, parallel distributed
simulation [23]. On the example topologies we tested,
this feature makes Flowsim 3 to 11 times faster than
the optimized packet-by-packet simulator from which it
was developed. Obviously, like the flow descriptor and
train representations, this algorithm trades accuracy for
efficiency.

4.1 Conducting Trains through Switches

Conducting entire trains through switches would be sim-
ple if each switch could independently unlink the train
with the earliest lead _time from its link buffer and
deposit the train, appropriately modified, on the next
hop’s link buffer. Unfortunately, two features of packet

(1) Calculate Lookahead L; of node

(2) While (train = GetEvent()) {
(3)  If (train->lead_time > L;) {

(4) InsertEvent(train);
break;
(5)  } elseif (train->tail_time > L;)

(6) SplitEvent(train);
(7)  Consume(train);

}

(8) Assign buffer overflow losses;

(9) Calculate train departure times;

(10) Advance local clock to L;;

(11) Forward trains that depart before L;.
Delay remaining trains in output buffer.

Figure 8: Flowsim’s train processing algorithm.

trains prevent switches from doing this. First, because
trains overlap each other, the first train to arrive at
a switch may not be the first train to depart. This
means that to conduct the first train, all trains that
overlap with it must be dealt with at the same time.
Second, each of Flowsim’s switches maintains its own
logical clock. A switch cannot process trains beyond the
earliest time that, on any of its links, a new train might
arrive. Hence, not only must Flowsim’s switches process
trains simultaneously, but they must obey the causality
constraints of conservative, distributed, discrete-event
simulation.

The discrete-event simulation literature describes a
node’s lookahead as the time beyond its logical clock
that a node can simulate without violating causality.
For packet networks, a switch’s lookahead increases lin-
early with the propagation delay of its links. The higher
the propagation delay, the greater the lookahead. Since
Flowsim’s performance increases with lookahead, its per-
formance gets better as the bandwidth-delay product
increases.

4.2 The Switch Algorithm

This section walks through the algorithm sketched in
Figure 8. Flowsim’s global scheduler invokes this algo-
rithm on the node with the oldest ready-to-depart (ear-
liest lead _time) train in the system. Figure 8 denotes
this as node ¢. In step (1), node ¢ calculates its looka-
head — the minimum amount of time through which it
can process trains without violating causality. Once it
knows 1ts lookahead, it can fetch all the trains from its
incoming links with lead _time less than its lookahead.



Node #’s lookahead, L;, is the minimum of the looka-
head along its incoming links. The lookahead of an in-
coming link from node j, denoted L;;, is the maximum
of (a) the tail_time of any incoming train on the link
(Tj:), and (b) the sum of j’s logical clock and the link’s
propagation delay (C; + Dj;).

I Minimaize
t over j
where

Lji = Mawz (Tji, Cj + Dji)

If node jis idle, then Flowsim substitutes the logical
time at which node j will next be scheduled in place of
C; above. In summary, in step 1, node ¢ predicts the
earliest possible arrival time of any train that any of its
neighbors can send.

In steps (2)-(7) the node collects trains to process
simultaneously. It stops collecting trains when no more
trains are ready (step 2) or when it encounters a train
that arrives beyond the lookahead time (step 3). In
the latter case, it puts this train back in the event list
(step 4). In step 5 it identifies trains that straddle the
lookahead time and puts the latter half of such trains
back on the event list (step 6).

Step 7, invoked each time through the loop, conducts
a train into the switch’s output buffer, although this is
only a temporary step. After collecting all trains in
the output buffer, it calculates and assigns packet losses
in step 8 and splits the affected trains. It calculates
train departure times in step 9, as detailed below. The
node advances its clock to the lookahead time L; (step
10), splits outgoing trains that straddle L;, enqueues
the departed portion of these trains on the appropri-
ate upstream links (step 11), and leaves the undeparted
portion of these trains in 1ts output buffers. Note that a
split train may be merged together when the node later
enqueues 1t on the flow descriptor. As an optimization,
FIFO switches can forward all trains in step 11, even
trains that depart after L;. For priority scheduling dis-
ciplines, causality prevents these trains from leaving the
output buffers early.

4.3 Approximating Packet Loss

In mapping trains through a switch, buffers might over-
flow. In step (8), Flowsim’s switches calculate packet
losses and assign them to trains. It must do this with-
out regenerating individual packets from trains to retain
the speed advantage of the train representation. It em-
ploys a simple fluid approximation to packet loss. At
instants where a new train appears or an old one ends,
Flowsim subtracts the number of packets that have de-
parted from the number that have arrived at the buffer,

and calculates the number of packets, if any, lost to
overflow. If overflows occur during one of these inter-
vals, Flowsim attempts to distribute packet losses to the
various trains, according to their packet density.

While this computation is costly, in a large network,
most of the switches are not congested. This means
that flowsim only infrequently has to work harder, and
on average, it gains speedup.

4.4 Approximating Departure Times

After a node splits i1ts trains due to packet losses, it
must approximate the time at which each train’s leading
and trailing packet departs. The departure time of any
packet is, of course, the sum of its arrival time at the
buffer, the time it waits in the buffer, and the service
time to place it on the wire. We consider FIFO switches
and more general policies separately.

With FIFO scheduling, we estimate a packet’s queue-
ing delay as an average packet service time multiplied
by the number of packets that are ahead of it. Calcu-
lating the lead_time and tail_time of a train reduces
to counting the number of packets that get transmitted
before the first and before the last packet of a train.
The number of packets transmitted before a particular
packet is the sum of two quantities: the packets in trains
that depart before this packet and the fair fraction of
the packets of overlapping trains. Consider, for instance,
two overlapping trains on the same output buffer. Let
one have 10 packets on the interval [2, 8] and the other
T packets on the interval [5, 12]. Flowsim would approx-
imate that (3/6)*10 of the first train’s packets are sent
before the first packet of the second train.

With priority scheduling, switches can only forward
trains that are ready to depart before the lookahead
time. Causality prevents them from forwarding trains
that depart after the lookahead time because a higher
priority trains could preempt their position in the out-
put buffer. In contrast to FIFO switches which need
only order newly arrived trains, priority switches need
to re-rank all the trains in the link buffer according
to their priority and then calculate loss and departure
times. After reordering the trains, priority switches ap-
ply the same calculation as FIFO switches to determine
departure times.

4.5 Implementation Status

This concludes our description of Flowsim’s packet rep-
resentation and internal algorthms. Flowsim is imple-
mented in Jacobson’s and McCanne’s tepsim, a simula-
tor which evolved from Berkeley’s REA L and Columbia’s



NEST [11]. In the next section we report Flowsim’s
speedups and contrast its simulated metrics against our
packet-by-packet version of this simulator. For refer-
ence, our packet simulator processes 28,400 events per
second on a SPARCstation-20 machine when simulating
the topology shown in Figure 1.

5 Experiments

We conducted many experiments to evaluate Flowsim’s
speedup and the tradeoff, in its hybrid mode, between
speedup and accuracy. Here, we present the results
of simulating large window TCP flow control on two
network topologies; one big topology shown in Figure
1 where b5 gateways forward packets of 250 conver-
sations and one small ATM network where 30 traffic
sources send 53-byte cells to one destination via a gate-
way. A practical constraint prevented us from simulat-
ing a larger topology: without Flowsim, our traditional
packet simulator takes 19 hours to simulate 3 minutes of
the big gigabit network. Because three minutes of net-
work time 1s enough time for four thousand round trip
times through the network, we felt that 3 minutes was
enough time to see any interesting behavior that might
develop.

Our experiments investigated the stable unfairness
between similarly routed bulk transfer conversations that
Floyd identified and termed phase effects [13]. Our ex-
periments investigated whether phase effects cause un-
fairness even with large flow control windows, high net-
work bandwidths, and higher degrees of traffic multi-
plexing.

5.1 Speedups and Accuracy

The total number of events generated during a simula-
tion determines a simulation’s run time. In Flowsim’s
hybrid mode, longer trains mean fewer events and faster
simulations, because Flowsim can process an n packet
train in the cost of a few packets. Train length depends
on lookahead which is a function of network topology,
bandwidth, and link length. Larger lookaheads per-
mit fewer train splittings and increase Flowsim’s per-
formance. For these reasons, Flowsim performs well in
networks with high bandwidth, long links; small packets
and bursty sources.

The longer we stretch trains by increasing the per-
missible inter-train gaps, the less accurate are simula-
tion’s metrics. Figure 9 shows Flowsim’s speedup over
our traditional packet simulation as a function of inter-
train gap. The two upper lines occur for the simulation
of the small ATM network. For ATM network simula-

tions, we added an ATM adaptation layer, assembling
and disassembling IP packets into 53-byte cells below
IP. For the lower line, we physically shortened the bot-
tleneck link between the switch and the destination and
lowered its bandwidth to shorten packet train lengths
and reduce node lookahead time. In this more con-
gested network, more packet losses occur, more of the
bulk transport connections are inactive, and trains tend
to be shorter.

For both ATM topologies, Flowsim gets faster as
trains grow. FEven at zero inter-train gap, when the
hybrid algorithm is disabled and Flowsim simulates one
packet at a time, the two techniques explained in Section
2 make Flowsim 1.8 times faster than its packet simula-
tor. With 0.05 millisecond inter-train gap, the speedup
jumps to 28 and 44 times since after this gap trains
begin to convey more than one IP packet. Note that
acks come back 0.025 millisecond apart during the con-
gestion period since the 200 Mbps bottleneck link takes
0.025 millisecond to transmit a 512-byte packet. Finally,
Flowsim approaches to 56 and 34 times speedup. The
lowest line of Figure 9 plots Flowsim’s speedup when
simulating the big IP network in Figure 1. Note that
the bandwidths of Figure 1’s central links are lower than
the edges, producing lots of congestion. For reference,
our packet simulator required 19 hours to simulate the
congested Figure 1 topology. As trains stretch longer,
Flowsim can achieve 8 times speedup in this topology.

For Flowsim’s accuracy, we measured three simula-
tion metrics in the IP network of Figure 1: each conver-
sation’s throughput, number of dropped packets, and its
one-way delay. For audio traffic conversations, which do
not employ flow control, the essential metrics are one-
way delay and drop rate. For bulk transfer traffic, the
essential metrics are throughput and loss rate.

We first consider the average throughput and the
variance between the throughputs of all 78 FTP conver-
sations. For the average throughput of packet simula-
tion, we ran simulations with 8 different random seeds.
Figure 10 plots the ratio of Flowsim’s results to packet
simulation’s results. It shows that Flowsim is different
than packet simulation by less than 2 % in terms of the
average throughput and variance.

Figure 11 shows the packet loss ratio of Flowsim to
packet simulation. Two flat lines in Figure 11 are the
upper and lower bound of 90 % confidence interval of
packet simulation. The two flat lines show a range of
how much packet loss can be fluctuated even in packet
simulation when the random seed is varied. In this
figure, as trains stretch Flowsim tends to drop more
packets, up to 15 % with 1 millisecond inter-train gap.
It is due to the Flowsim’s approximation that packets
are evenly distributed in their trains. The Flowsim’s
approximation can underestimate the traffic burstiness,



open TCP congestion windows wider, and finally lead
to more drop.

Figure 12 plots the average throughput ratio of Flowsim
to packet simulation over twenty bulk transfer conver-
sations. Figure 12 draws two vertical lines representing
90 % confidence interval over each conversation iden-
tifier(cid); one vertical line with circles ends for packet
simulation and another with plus ends for Flowsim. Each
vertical line shows the range of average throughput that
each F'TP can achieve during 3-minute simulation time.
From Figure 12, we can see that cid 25 sends 25 % more
packets in Flowsim than in packet simulation. Flowsim’s
approximation causes less traffic burstiness, less packet
loss and delivers more packets for this FTP conversa-
tion. On the other hand, cid 20 sends less packets
in Flowsim. It is because the increased throughputs
of neighboring FTP’s cause more congestion for this
FTP. Since most of Flowsim’s confidence intervals over-
lap with the corresponding packet simulation confidence
intervals, however we conclude that Flowsim produces
similar throughput metrics to packet simulation.

Figure 13 and 14 plot the one-way delay distribution
of an audio conversation sending packets from S-1 to D-
1 in Figure 1. The minimum one-way delay without
queueing delay between the two nodes is 20 millisec-
onds. In Figure 14, packet simulation predicts the same
delay distribution regardless of random seed values. The
curves in Figure 13 are distinguishable from packet sim-
ulation; Flowsim appears not to affect real-time con-
versation delay because any decrease in throughput of
one conversation is compensated by another conversa-
tion’s increase. One difference is that as trains stretch
longer Flowsim tends to deliver more packets with the
minimum delay, 20 milliseconds. With 0.3 millisecond
intertrain gap, Flowsim delivers 7 % more packets by 20
milliseconds delay than 0.05 millisecond intertrain gap.

A network algorithm can be more sensitive to the
Flowsim’s approximation than other network algorithms.
In FIFO switches, Flowsim represents packet streams
differently, producing different packet loss, driving TCP
in a different direction and finally yielding different sim-
ulation metrics. For example, when an ON-OFF source
generates four packets every 0.1 millisecond, Flowsim
delivers one packet every 0.025 millisecond at down stream
switches, resulting in different packet loss. Our ex-
periments, however showed that in large-scale networks
where packets from a number of conversations get multi-
plexed, Flowsim can predict the same simulation metrics
even with large inter-train gaps.
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6 Conclusions

In high bandwidth-delay networks, thousands of pack-
ets can simultaneously traverse a given link. This paper
investigated a new technique to reduce the cost of sim-
ulating such networks. The new technique can reduce
simulator memory consumption and processing time by
a factor of 3 to 11, although it adds a degree of ap-
proximation to the simulation. In addition, this paper
introduces two new simulation techniqeus; the first tech-
nique reduces the cost of managing the global event list.
The second technique halves the number of events nec-
essary to simulate the same network. When simulating
ATM networks and when simulating IP over ATM net-
works, the three techniques, togetger can achieves mas-
sive speedups.

Below we review the lessons we learned while evalu-
ating the degree of approximation that Flowsim intro-
duces, speculate on problems to which Flowsim can be
applied, and summarize our next steps.

6.1 Notes on Network Simulation

Upon implementing Flowsim, we thought we could quickly
evaluate how it affects the simulation of trivial network
topologies. This was not the case. Instead, it took over
a year of experimentation for us to learn the following
lesson: It is not easy to evaluate simulations of small
topologies with relatively static traffic sources because
the metrics that they yield can be sensitive to minuscule
changes in network bandwidths and link lengths [13].

Fundamentally, the question 1s whether we have a
firm enough grasp on the factors that affect a simula-
tion’s metrics to evaluate flow and congestion control al-
gorithms via simulation. The lesson is that you cannot
learn from your experiments if you misattribute the rea-
son why the metrics differ. You must observe the range
of these measures in an ensemble of similar topologies.
Future experimenters should report some of their results
in scatter plots like our Figure 12. The larger the topol-
ogy, the more dynamic the traffic models, the higher the
degree of traffic multiplexing, the safer the simulation is
to interpret.

A simulation run is nothing more than a sample path
in a very large event space. Floyd showed that, at least
for slow-start TCP, this sample path depends on mea-
sures as curious as exact cable lengths. In the final anal-
ysis, let the experimenter beware. We find that after a
year of experience with Flowsim, that we are confident
that Flowsim can be applied to study interesting prob-
lems in adaptive routing, flow control, and congestion
control. Flowsim also could be used to study call rout-
ing and call admission control algorithms in a mix of



real-time and data traffic.

6.2 Extensibility

We applied Flowsim to a study of a network congestion
detection algorithm, Tri-S, a variation of which is em-
ployed in Vegas TCP [24, 2]. Tri-S monitors the network
traffic and stops increasing congestion window before
packet loss when the measured traffic congestion is be-
yond a certain threshold. Figure 15 and Figure 16 plot
the congestion window of an FTP competing for a gate-
way’s finite buffer with another FTP. Each figure has
two lines; the solid line for a packet simulation and the
broken line for Flowsim. In Figure 15, Flowsim shows
the same oscillatory behavior of TCP as packet simu-
lation. The two lines in Figure 16 indicate that Tri-S
windows approach to a steady state value even though
Flowsim predicts a larger window size.

Another important measure of Flowsim’s usefulness
is whether 1t can model relevant new network scheduling
mechanisms. In addition to FIFO router scheduling,
we regularly apply Flowsim to Fair Queueing routers
[8]. We have even created a compacted buffer space
representation for 1t. Flowsim and packet simulation
agree more closely for Fair Queueing routers than they
do for FIFO routers because TCP conversations crossing
Fair Queueing switches do not suffer phase effects.

We have sketched but not implemented a way to ap-
proximate FIFO+, a scheduling technique designed for
multimedia traffic [7]. In FIFO+, the header of each
packet carries a field indicating whether the packet is
behind schedule or ahead of it. In a simulator, this
field can be derived from a time stamp that indicates
the exact time at which a source emits a packet. Al-
though Flowsim discards per packet information, it can
approximate this timestamp at the cost of two addi-
tional timestamp fields per train.

However Flowsim does have its limitations. The
TCP/IP community will soon agree on a selective ac-
knowledgement scheme so that TCP can employ large
window sizes efficiently [17]. Selective acknowledgements
will reduce Flowsim’s packet train length somewhat, be-
cause sources will send packets out of order and some
acknowledgements may not be compactable at all. Pri-
ority scheduling mechanisms may also decrease train
lengths and adversely affect Flowsim’s performance.

6.3 Future Directions

This paper contributes three techniques that enable us
to simulate bigger packet networks. Two of these tech-
niques introduce no approximation and can double sim-
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ulator performance. We need simulation tools that let us
study bigger and bigger networks because network phe-
nomena are difficult to predict. Simulation of a dozen
nodes can mislead one to choose a particular adaptive
routing algorithm or flow control algorithm. For exam-
ple, Floyd showed that IP routers tend to self-synchronize
and send routing update messages periodically only when
the number of routers exceeds a certain threshold [12].

We are now employing randomly generated network
topologies driven with models of dynamic data and real-
time traffic [6] to evaluate various flow control and adap-
tive routing algorithms.
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