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Abstract. We study a stochastic fractional complex Ginzburg-Landau equation with multi-
plicative noise in three spatial dimensions with particular interest in the asymptotic behavior of
its solutions. We first transform our equation into a random equation whose solutions generate a
random dynamical system. A priori estimates are derived when the nonlinearity satisfies certain
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the random dynamical system is established.
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1. Introduction A fractional differential equation is an equation that con-
tains fractional derivatives or fractional integrals. The fractional derivative and the
fractional integral have a wide range of applications in physics, biology, chemistry
and other fields of science, such as kinetic theories of systems with chaotic dynamics
([34, 41]), pseudochaotic dynamics ([42]), dynamics in a complex or porous medium
([13, 26, 35]), random walks with a memory and flights ([24, 33, 40]), obstacle prob-
lems ([6, 31]). Recently, some of the classical equations of mathematical physics have
been postulated with fractional derivatives to better describe complex phenomena.
Of particular interest are the fractional Schrödinger equation ([12, 16, 17]), the frac-
tional Landau-Lifshitz equation ([19]), the fractional Landau-Lifshitz-Maxwell equa-
tion ([28]) and the fractional Ginzburg-Landau equation ([37]).

Small perturbations (such as molecular collisions in gases and liquids and electric
fluctuations in resistors [15]) may be neglected during the derivation of these ideal
models. However, the perturbations should be included to obtain a more realistic
model and to better understand the dynamical behavior of the model.

One may represent the micro effects by random perturbations in the dynamics
of the macro observable through additive or multiplicative noise in the governing
equation.

To study a stochastic partial differential equation, a key step is to examine the
asymptotic behavior of the random dynamical systems generated by its solutions.
Some nice works along these lines are, for example, by Crauel and Flandoli ([7, 8]) who
developed the theory of random attractors which closely parallels the deterministic
case ([36]), and by Debussche ([11]) who proved that the Hausdorff dimension of the
random attractor could be estimated by using global Lyapunov exponents.
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The well-posedness of solutions of fractional partial differential equations has been
studied to some extent (See [17, 19, 21, 28]). However, there are not many results
for stochastic fractional partial differential equations. In this paper, we examine the
asymptotic behavior of solutions of the fractional Ginzburg-Landau equation with
multiplicative noise on an unbounded domain.

The fractional Ginzburg-Landau equation arises, for example, from the variational
Euler-Lagrange equation for fractal media, which can be used to describe dynamical
processes in a medium with fractal dispersion in [37]. In [29], the authors analyzed a
one-dimensional fractional complex Ginzburg-Landau equation

ut+(1+iν)(−4)αu+(1+iµ)|u|2σu=ρu.

The well-posedness of solutions was obtained by applying the semigroup method under
the condition

1

2
≤σ≤ 1√

1+µ2−1
.

The existence of a global attractor in L2 was also proved when σ= 1. In [23], the dy-
namics of a two-dimensional fractional complex Ginzburg-Landau equations is stud-
ied. A fractional Ginzburg-Landau equation on the line with special nonlinearity and
multiplicative noise was analyzed in [22].

In this paper, we consider a general three-dimensional stochastic fractional
Ginzburg-Landau equation with multiplicative noise of Stratonovich form defined in
the entire space R3 given by

du+((1+iν)(−4)αu+ρu)dt=f(x,u)dt+βu◦dW (t), x∈R3, t>0 (1.1)

with the initial condition

u(x,0) =u0(x), x∈R3, (1.2)

where u(x,t) is a complex-valued function on R3× [0,+∞). In (1.1), i is the imaginary
unit, ν is a real constants, ρ>0, α∈ (1/2,1), and f(x,u) is a nonlinear function, for
instance, f(x,u) =−(1+iµ)|u|2σu with µ∈R and σ>0. For convenience, we some-
times write it as f =f(x,u,ū) or f =f(u), and in the various lemmas that follow we
assume f satisfies some of the following conditions:

Ref(x,u)ū≤−β1|u|2σ+2 +γ1(x), (1.3)

Refu|V|2 +Refū(V̄)2≤−βσ|u|2σ|V|2 + |u|2σ−2(λσ(uV̄)2 + λ̄σ(ūV)2), (1.4)

max{|fu|, |fū|}≤β2, (1.5)∣∣∣∣∂f(x,u)

∂x

∣∣∣∣= |fx|≤γ2(x), (1.6)

for u∈C and V∈Cn, where σ, βi (i= 1,2) are positive constants, βσ is a positive
constant depending on σ, λσ is a complex constant depending on σ, and (V)2 =
V ·V=

∑n
i=1V

2
i , (which is not an inner product on Cn), and γ1(x)∈L1(R3), γ2(x)∈

L2(R3). The white noise described by a two-sided Wiener process W (t) on a complete
probability space results from the fact that small irregularity has to be taken into
account in some circumstances.
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Most of the research with respect to random attractors is restricted to L2. In this
work, we obtain the existence of a pullback attractor in H1 (actually, one can choose
the space to be Hα,α∈ (0,1], but we prefer the stronger regularity of the random
attractor in H1).

The concept of pullback random attractor, which is an extension of global at-
tractor in deterministic systems (see [2, 20, 30, 32, 36]) was introduced in [8, 14]. In
the case of bounded domains, the existence of random attractors for stochastic par-
tial differential equations has been investigated by many authors (see [1, 7, 8, 10, 14]
and the references therein). However, the problem is more challenging in the case
of unbounded domains. Recently, the existence of random attractors for systems on
unbounded domains was studied in [3, 5, 38, 39], which provides guidance for this
work.

It is well known that asymptotic compactness and the existence of a bounded
absorbing set are sufficient to guarantee the existence of a random attractor for a
continuous random dynamical system. However, Sobolev embeddings are not compact
on an unbounded domain. In this paper, we employ a tail-estimates approach to prove
the existence of a compact random attractor.

The paper is organized as follows. In section 2, some preliminaries, notations and
random attractor theory for random dynamical systems are introduced. In section 3,
we define a continuous random dynamical system for the stochastic fractional complex
Ginzburg-Landau equation. In section 4, we derive uniform estimates for solutions,
which include uniform estimates on far field values of solutions. In section 5, we
establish the asymptotic compactness of the solution operator, and then prove the
existence of a pullback random attractor.

2. Preliminaries and Notations We first recall some basic concepts related
to random attractors for stochastic dynamical systems (see [4, 8, 10] for more details).

Let (X,|| · ||X) be a separable Hilbert space with Borel σ-algebra B(X), and let
(Ω,F ,P) be a probability space.
Definition 2.1. (Ω,F ,P,(θt)t∈R) is called a measurable dynamical systems, if θ :R×
Ω→Ω is (B(R)×F ,F)−measurable, θ0 = I, θt+s=θt ◦θs for all t,s∈R, and θtA=A
for all t∈R and A∈F .
Definition 2.2. A stochastic process φ(t,ω) is called a continuous random dynamical
system (RDS) over (Ω,F ,P,(θt)t∈R) if φ is (B(R+)×F×B(X),B(X))−measurable,
and for all ω∈Ω

• the mapping φ :R+×Ω×X→X is continuous;

• φ(0,ω) = I on X;

• φ(t+s,ω,χ) =φ(t,θsω,φ(s,ω,χ)) for all t,s≥0 and χ∈X (cocycle property).

Definition 2.3. A random bounded set {B(ω)}ω∈Ω⊆X is called tempered with re-
spect to (θt)t∈R if for P-a.e. ω∈Ω and all ε>0

lim
t→∞

e−εtd(B(θ−tω)) = 0.

where d(B) = supχ∈B ‖χ‖X .
Consider a continuous random dynamical system φ(t,w) over (Ω,F ,P,(θt)t∈R)

and let D be the collection of all tempered random set of X.
Definition 2.4. D is called inclusion-closed if D={D(ω)}ω∈Ω∈D and D̃={D̃(ω)⊆
X :ω∈Ω} with D̃(ω)⊆D(ω) for all ω∈Ω imply that D̃∈D.
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Definition 2.5. Let D be a collection of random subsets of X and {K(ω)}ω∈Ω∈D.
Then {K(ω)}ω∈Ωis called an absorbing set of φ in D if for all B∈D and P-a.e. ω∈Ω
there exist tB(ω)>0 such that

φ(t,θ−tω,B(θ−tω))⊆K(ω), t≥ tB(ω).

Definition 2.6. Let D be a collection of random subsets of X. Then φ is said to be D-
pullback asymptotically compact in X if for P-a.e. ω∈Ω, {φ(tn,θ−tnω,χn)}∞n=1 has a
convergent subsequence in X whenever tn→∞, and χn∈B(θ−tnω) with {B(ω)}ω∈Ω∈
D.
Definition 2.7. Let D be a collection of random subsets of X and {A(ω)}ω∈Ω∈D.
Then {A(ω)}ω∈Ω is called a D-random attractor (or D-pullback attractor) for φ if the
following conditions are satisfied, for P-a.e. ω∈Ω,

• A(ω) is compact, and ω→d(χ,A(ω)) is measurable for every χ∈X;

• {A(ω)}ω∈Ω is strictly invariant, i.e., φ(t,ω,A(ω)) =A(θtω), ∀t≥0 and for a.e.ω∈Ω;

• {A(ω)}ω∈Ω attracts all sets in D, i.e., for all B∈D and a.e. ω∈Ω we have

lim
t→∞

d(φ(t,θ−tω,B(θ−tω)),A(ω)) = 0,

where d is the Hausdorff semi-metric given by d(Y,Z) = supy∈Y infz∈Z ‖y−z‖X , for
any Y,Z⊆X.

According to [9], we can infer the following result.
Proposition 2.8. Let D be an inclusion-closed collection of random subsets of X
and φ a continuous RDS on X over (Ω,F ,P,(θt)t∈R). Suppose that {K(ω)}ω∈Ω∈D is
a closed absorbing set of φ and φ is D-pullback asymptotically compact in X. Then φ
has a unique D-random attractor which is given by {A(ω)}ω∈Ω with

A(ω) =
⋂
κ≥0

⋃
t≥κ

φ(t,θ−tω,K(θ−tω)).

For convenience, we recall some notation related to the fractional derivative and
fractional Sobolev spaces. Firstly, we present the definition and some properties

of (−4)α through Fourier transforms ([18]). The negative powers (−4)
β
2 (that is,

(−4)−
β
2 ), Reβ>0, can be represented by Riesz potentials

(Iβϕ)(x) =
1

γ(β)

∫
R3

|x−y|−3+βϕ(y)dy,

where γ(β) =π3/22βΓ(β2 )/Γ( 3
2−

β
2 ). We consider the Fourier transform

Φ(ξ) =

∫
R3

φ(x)e−i(x·ξ)dz,

so (−4)
β
2 can be defined as

F{(−4)
β
2 ϕ}= |k|βΦ,

(−4)
β
2 ϕ=F−1{|k|βΦ}=

1

(2π)3

∫
R3

|k|βΦeik·xdk,
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where 4=∂2/∂x2
1 +∂2/∂x2

2 +∂2/∂x2
3.

Let H2α(R3) denote the complete Sobolev space of order α under the norm:

‖u‖2H2α(R3) =

∫
R3

(1+ |k|4α)|û(k)|2dk.

By virtue of the definition of (−4)α, we have the following formula for integration
by parts.

Lemma 2.9. If f,g∈H2α(Rn), then the following equation holds.∫
Rn

(−4)αf ·gdx=

∫
Rn

(−4)α1f ·(−4)α2gdx, (2.1)

where α1,α2 are nonnegative constant and satisfy α1 +α2 =α.

Proof. By the definition of (−4)α and Parseval formula, we have∫
Rn

(−4)αf ·gdx=

∫
Rn
F−1{|k|2αf̂}·gdx=

∫
Rn
F−1{|k|2αf̂}·F−1ĝdx

=
1

(2π)n

∫
Rn
|k|2αf̂ · ĝdk=

1

(2π)n

∫
Rn
|k|2α1 f̂ · |k|2α2 ĝdk

=

∫
Rn
F−1{|k|2α1 f̂}·F−1{|k|2α2 ĝ}dx=

∫
Rn

(−4)α1f ·(−4)α2gdx.

In addition, the following Gagliardo-Nirenberg inequality([27]) is also frequently
used.

Lemma 2.10. Let u belong to Lq(Rn) and its derivatives of order m, Dmu, belong
to Lr(Rn), 1≤ q,r≤∞. For the derivatives Dju, 0≤ j <m, the following inequalities
hold

‖Dju‖Lp ≤ c‖Dmu‖θLr‖u‖1−θLq , (2.2)

where

1

p
=
j

n
+θ(

1

r
−m
n

)+(1−θ)1

q
,

for all θ in the interval

j

m
≤θ≤1,

(the constant c depending only on n,m,j,q,r,θ), with the following exceptional case
1. If j= 0,rm<n,q=∞, then we make the additional assumption that either u

tends to zero at infinite or u∈Lq̃ for some finite q̃ >0.
2. If 1<r<∞, and m−j−n/r is a nonnegative integer, then (2.2) holds only for

θ satisfying j/m≤θ<1.

In the forthcoming discussions, we denote by ‖·‖ and (·, ·) the norm and the inner
product in L2(R3) and use ‖·‖p to denote the norm in Lp(R3). Otherwise, the letters
c,cj(j= 1,2, ·· ·) are generic positive constants which may change their values from
line to line or even in the same line.
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3. Stochastic fractional complex Ginzburg-Landau equation In the
sequel, we consider the probability space (Ω,F ,P) where

Ω ={ω∈C(R,R) :ω(0) = 0},

F is the Borel σ-algebra induced by the compact-open topology of Ω, and P the
corresponding Wiener measure on (Ω,F). Define a shift on ω by

θtω(·) =ω(·+ t)−ω(t), ω∈Ω, t∈R.

Then (Ω,F ,(θt)t∈R) is a metric dynamical system.
In this section, we discuss the existence of a continuous random dynamical sys-

tem for the stochastic fractional complex Ginzburg-Landau equation perturbed by a
multiplicative white noise in the Stratonovich sense. Thanks to the special linear mul-
tiplicative noise, the stochastic fractional Ginzburg-Landau equation can be reduced
to an equation with random coefficients by a suitable change of variable. To this end,
we consider the stationary process

z(t) =z(t,ω) =z(θtω) =−
∫ 0

−∞
eτ (θtω)(τ)dτ, t∈R,

satisfies the stochastic differential equation:

dz+zdt=dW (t).

Moreover, for any t,s,

z(t,θsω) =z(t+s,ω), P-a.s..

Here the exceptional set may be a priori depending on t and s. In fact, we suppose that
z has a continuous modification. Once this modification is chosen, the exceptional
set is independent of t. It is known that the random variable z(ω) is tempered (see
[1, 7, 14]), there exists a θt-invariant set Ω̃⊆Ω of full P measure such that for every
ω∈ Ω̃, z(θtω) is continuous in t; and

lim
t→±∞

|z(θtω)|
|t|

= 0, for all ω∈ Ω̃, (3.1)

and

lim
t→±∞

1

t

∫ t

0

z(θtω)dt= 0, for all ω∈ Ω̃. (3.2)

We rewrite the unknown v(t) as v(t) =e−βz(θtω)u(t) to obtain the following ran-
dom differential equation

vt=−(1+iν)(−4)αv+e−βz(θtω)f(eβz(θtω)v)+(βz(θtω)−ρ)v (3.3)

with the initial data

v(x,0) =v0(x) =e−βz(ω)u0(x), x∈R3. (3.4)

Next, we construct a random dynamical system modeling the stochastic fractional
Ginzburg-Landau equation.
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By the Galerkin method, one can show that if f satisfies (1.3)-(1.6), then in
the case of a bounded domain with Dirichlet boundary conditions, for P-a.e. ω∈Ω
and for all v0∈H1, equation (3.3) has a unique solution v(·,ω,v0)∈C([0,∞),H1)∩
L2((0,T );H1+α) with v(0,ω,v0) =v0 for every T >0. This is similar to [21]. Then,
following the approach in [25], we take the domain to be a sequence of balls with radius
approaching ∞ to deduce the existence of a weak solution of equation (3.3) on R3.
Furthermore, we obtain that v(t,ω,v0) is unique and continuous with respect to v0 in
H1(R3) for all t≥0. Let u(t,ω,u0) =eβz(θtω)v(t,ω,e−βz(ω)u0)). Then the process u is
the solution of problem (1.1)-(1.2). We now define a mapping φ :R+×Ω×H1(R3)→
H1(R3) by

φ(t,ω,u0) =u(t,ω,u0) =eβz(θtω)v(t,ω,e−βz(ω)u0),

for u0∈H1(R3), t≥0 and for all ω∈Ω. It is easy to check that φ satisfies the three
conditions in Definition 2.2. Therefore, φ is a continuous random dynamical system
associated with problem (3.3) on H1(R3).

Let

ϕ(t,ω,v0) =v(t,ω,v0) for v0∈H1(R3), t≥0 and for all ω∈Ω.

Then ϕ is a continuous random dynamical system associated with problem (1.1) on
H1(R3). It is worth noticing that, the two random dynamical systems are equivalent.
It is easy to check that φ has a random attractor provided ϕ possesses a random
attractor. Then, we only need to consider the random dynamical system ϕ.

4. Uniform estimates of solutions In this section, we deduce uniform esti-
mates on the solutions of the stochastic fractional complex Ginzburg-Landau equation
on R3 when t→∞. These estimates are necessary for proving the existence of bounded
absorbing sets and the asymptotic compactness of the random dynamical system as-
sociated with the equation. In particular, we will show that the solutions for large
space variables are uniformly small when time is sufficiently large.

From now on, we always suppose that D is the collection of all tempered random
subsets of H1(R3). First, we derive the following uniform on v in D.
Lemma 4.1. Suppose that (1.3) holds. Let B={B(ω)}∈D and v0(ω)∈B(ω), and
let %0>0 be fixed and 0<δ<2ρ. Then for P-a.e. ω∈Ω, there exists T0B (ω)>0 such
that for any t≥T0B (ω), one has

δ

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖v(t,θ−tω,v0(θ−tω))‖2≤%2
0.

(4.1)

Proof. Taking the inner product in L2 of (3.3) with v and taking the real part,
we obtain

1

2

d

dt
‖v‖2 +‖(−4)

α
2 v‖2 =e−βz(θtω)Re

∫
R3

f(eβz(θtω)v)v̄dx+(βz(θtω)−ρ)‖v‖2. (4.2)

By condition (1.3), we have

e−βz(θtω)Re

∫
R3

f(eβz(θtω)v)v̄dx≤−β1e
−2βz(θtω)‖eβz(θtω)v‖2σ+2

2σ+2 +e−2βz(θtω)‖γ1(x)‖L1 .
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Then (4.2) can be rewritten as

d

dt
‖v‖2 +2‖(−4)

α
2 v‖2 +2β1e

−2βz(θtω)‖eβz(θtω)v‖2σ+2
2σ+2

≤2(βz(θtω)−ρ)‖v‖2 +2e−2βz(θtω)‖γ1(x)‖1.
(4.3)

Therefore,

d

dt
‖v‖2 +δ‖v‖2≤ (2βz(θtω)−2ρ+δ)‖v‖2 +2e−2βz(θtω)‖γ1(x)‖1. (4.4)

Here, ρ>0, so there exists δ>0 such that 2ρ>δ>0. Multiplying (4.4) by

e−2β
∫ t
0
z(θsω)ds+(2ρ−δ)t, and integrating over (0,t), we infer that

‖v(t,ω,v0(ω))‖2 +δ

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)‖v(s,ω,v0(ω))‖2ds

≤e2β
∫ t
0
z(θsω)ds+(δ−2ρ)t‖v0(ω)‖2

+2

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)−2βz(θsω)‖γ1(x)‖1ds

≤e2β
∫ t
0
z(θsω)ds+(δ−2ρ)t‖v0(ω)‖2 +2c1

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)−2βz(θsω)ds.

(4.5)

Substituting ω by θ−tω, then we deduce from (4.5),

δ

∫ t

0

e2β
∫ t
s
z(θτ−tω)dτ+(2ρ−δ)(s−t)‖v(s,θ−tω,v0(θ−tω))‖2ds

+‖v(t,θ−tω,v0(θ−tω))‖2

≤e2β
∫ t
0
z(θs−tω)ds+(δ−2ρ)t‖v0(θ−tω)‖2

+2c1

∫ t

0

e2β
∫ t
s
z(θτ−tω)dτ+(2ρ−δ)(s−t)−2βz(θs−tω)ds.

Applying the transformation of variables, one has

δ

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖v(t,θ−tω,v0(θ−tω))‖2

≤e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖v0(θ−tω)‖2 +2c1

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s−2βz(θsω)ds.

(4.6)

{B(ω)}∈D is tempered, so for any v0(θ−tω)∈B(θ−tω),

lim
t→+∞

e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖v0(θ−tω)‖2 = lim

t→+∞
e2β

∫ 0
−t z(θsω)ds+(δ−2ρ)t−2βz(θtω)

=0.
(4.7)

Therefore, there exists T0B (ω)>0 such that for any t≥T0B (ω),

e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖v0(θ−tω)‖2 +2c1

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s−2βz(θsω)ds

≤%2
0,

(4.8)
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which along with (4.6) shows that, for any t≥T0B (ω),

δ

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖v(t,θ−tω,v0(θ−tω))‖2≤%2
0.

(4.9)

The proof is complete.
Lemma 4.2. Suppose (1.4) and βσ≤2|λσ|. Let B={B(ω)}∈D and v0(ω)∈B(ω),
let %1>0 be fixed. Then for P-a.e. ω∈Ω, there exists T1B (ω)>0 such that for any
t≥T1B (ω), we have∫ 0

−t
e2β

∫ 0
s
z(θsω)dτ+(2ρ−δ)s‖(−4)

α+1
2 v(s+ t,θ−tω,v0(θ−tω))‖2ds

+
δ

2

∫ 0

−t
e2β

∫ 0
s
z(θsω)dτ+(2ρ−δ)s‖∇v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖∇v(t,θ−tω,v0(θ−tω))‖2≤%2
1.

(4.10)

Proof. Taking the inner product in L2 of (3.3) with −4v and taking the real
part, we obtain

d

dt
‖∇v‖2+2‖(−4)

α+1
2 v‖2

=−2e−2βz(θtω)Re
(
f(eβz(θtω)v),4(eβz(θtω)v)

)
+2(βz(θtω)−ρ)‖∇v‖2.

(4.11)

Now, we will estimate the first term on the right-hand side of (4.11). For convenience,
we set ψ=eβz(θtω)v. Integrating by parts and using (1.4) and (1.6), then applying
the Young’s inequality, we find

−Re
(
f(eβz(θtω)v),4(eβz(θtω)v)

)
=−Re(f(ψ),4ψ)

= Re

∫
R3

(
fψ(ψ)|∇ψ|2 +fψ̄(ψ)∇ψ̄∇ψ̄

)
dx+Re

∫
R3

fx∇ψ̄dx

≤
∫
R3

(
−βσ|ψ|2σ|∇ψ|2 + |ψ|2(σ−1)(λσ(ψ∇ψ̄)2 + λ̄σ(ψ̄∇ψ)2)

)
dx

+

∫
R3

|γ2(x)||∇v|eβz(θtω)dx

≤
∫
R3

|ψ|2(σ−1)
(
−βσ|ψ|2|∇ψ|2 +λσ(ψ∇ψ̄)2 + λ̄σ(ψ̄∇ψ)2

)
dx

+
δ

4
‖∇v‖2 +c2e

2βz(θtω)

=

∫
R3

|ψ|2(σ−1)tr(YMY H)dx+
δ

4
‖∇v‖2 +c2e

2βz(θtω),

(4.12)

where

Y =

(
ψ̄∇ψ
ψ∇ψ̄

)H
, M =

(
−βσ2 λσ
λ̄σ −βσ2

)
,
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and Y H is the conjugate transpose of the matrix Y . We observe that the condition
βσ≤2|λσ| implies that the matrix M is nonpositive definite. One can rewrite (4.11)
as

d

dt
‖∇v‖2 +2‖(−4)

α+1
2 v‖2 +

δ

2
‖∇v‖2≤(2βz(θtω)−2ρ+δ)‖∇v‖2

+2c2e
2βz(θtω).

(4.13)

Multiplying (4.13) by e−2β
∫ t
0
z(θsω)ds+(2ρ−δ)t and integrating over (0,t), we infer that

‖∇v(t,ω,v0(ω))‖2 +

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)‖(−4)

α+1
2 v(s,ω,v0(ω))‖2ds

+
δ

2

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)‖∇v(s,ω,v0(ω))‖2ds

≤e2β
∫ t
0
z(θsω)ds+(δ−2ρ)t‖∇v0(ω)‖2

+2c2

∫ t

0

e2β
∫ t
s
z(θτω)dτ+(2ρ−δ)(s−t)+2βz(θsω)ds.

(4.14)

Substituting θ−tω for ω, then we deduce from (4.13) that,∫ t

0

e2β
∫ t
s
z(θτ−tω)dτ+(2ρ−δ)(s−t)‖(−4)

α+1
2 v(s,θ−tω,v0(θ−tω))‖2ds

+
δ

2

∫ t

0

e2β
∫ t
s
z(θτ−tω)dτ+(2ρ−δ)(s−t)‖∇v(s,θ−tω,v0(θ−tω))‖2ds

+‖∇v(t,θ−tω,v0(θ−tω))‖2

≤e2β
∫ t
0
z(θs−tω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2

+2c2

∫ t

0

e2β
∫ t
s
z(θτ−tω)dτ+(2ρ−δ)(s−t)+2βz(θs−tω)ds.

Changing the variables in the integrals, one has∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)

α+1
2 v(s+ t,θ−tω,v0(θ−tω))‖2ds

+
δ

2

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖∇v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖∇v(t,θ−tω,v0(θ−tω))‖2

≤e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2

+2c2

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s+2βz(θsω)ds.

(4.15)

{B(ω)}∈D is tempered, so for any v0(θ−tω)∈B(θ−tω),

lim
t→+∞

e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2 = lim

t→+∞
e2β

∫ 0
−t z(θsω)ds+(δ−2ρ)t+2βz(θtω)

=0.

(4.16)
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Therefore, there exists T1B (ω)>0 such that for any t≥T1B (ω),

e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2 +2c2

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s+2βz(θsω)ds

≤%2
1,

(4.17)

which along with (4.15) shows that, for any t≥T1B (ω),∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)

α+1
2 v(s+ t,θ−tω,v0(θ−tω))‖2ds

+
δ

2

∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖∇v(s+ t,θ−tω,v0(θ−tω))‖2ds

+‖∇v(t,θ−tω,v0(θ−tω))‖2≤%2
1.

We complete the proof.
Lemma 4.3. Suppose that (1.5) holds. Let B={B(ω)}∈D and v0(ω)∈B(ω). Then
for P-a.e. ω∈Ω, there exists T1B (ω)>0 such that for any t≥T1B (ω), one has

‖(−4)
1+α
2 v(t+1,θ−t−1ω,v0(θ−t−1ω))‖2≤%2

1 +r2
0 +r2

1 +r2
2 ,%

2
2. (4.18)

Proof. Taking the inner product of (3.3) with (−4)1+αv and taking the real part,
we obtain

d

dt
‖(−4)

1+α
2 v‖2 +2‖(−4)α+ 1

2 v‖2

=−2(ρ−βz(θtω))‖(−4)
1+α
2 v‖2 +2e−βz(θtω)Re

(
f(eβz(θtω)v),(−4)1+αv

)
.

(4.19)

We estimate the second term of the right-hand side of (4.19). For convenience, we
set ψ=eβz(θtω)v. Integrating by parts, applying (1.5) and (1.6), and using the Hölder
and Young inequalities, we obtain

2e−βz(θtω)Re
(
f(eβz(θtω)v),(−4)1+αv

)
= 2e−2βz(θtω)Re

(
f(eβz(θtω)v),(−4)1+α(eβz(θtω)v)

)
= 2e−2βz(θtω)Re

(
f(ψ),(−4)1+αψ

)
≤2e−2βz(θtω)|(fψ(ψ)∇ψ+fψ̄(ψ)∇ψ̄+fx,(−4)

1
2 +αψ)|

≤4β2e
−2βz(θtω)

∫
R3

|∇ψ||(−4)
1
2 +αψ|dx+2e−βz(θtω)

∫
R3

|fx||(−4)
1
2 +αv|dx

≤4β2e
−2βz(θtω)‖(−4)

1
2 +αψ‖‖∇ψ‖+2e−βz(θtω)‖(−4)

1
2 +αv‖‖γ2(x)‖

= 4β2‖(−4)
1
2 +αv‖‖∇v‖+2e−βz(θtω)‖(−4)

1
2 +αv‖‖γ2(x)‖

≤‖(−4)
1
2 +αv‖2 +8β2

2‖∇v‖2 +c3e
−2βz(θtω).

(4.20)

Substituting (4.20) into (4.19), we deduce that

d

dt
‖(−4)

1+α
2 v‖2 +2(ρ−βz(θtω))‖(−4)

1+α
2 v‖2 +‖(−4)

1
2 +αv‖2

≤8β2
2‖∇v‖2 +c3e

−2βz(θtω).

(4.21)
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This implies that

d

dt
‖(−4)

1+α
2 v‖2+(2ρ−δ−2βz(θtω))‖(−4)

1+α
2 v‖2+‖(−4)

1
2 +αv‖2

≤8β2
2‖∇v‖2+c3e−2βz(θtω).

(4.22)

Taking t≥T1B (ω) and s∈ (t,t+1), multiplying (4.22) by e−2β
∫ t
0
z(θsω)ds+(2ρ−δ)t, and

integrating (4.21) over (s,t+1), we get

‖(−4)
1+α
2 v(t+1,ω,v0(ω))‖2

+

∫ t+1

s

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,ω,v0(ω))‖2dτ

≤e2β
∫ t+1
s

z(θτω)dτ+(δ−2ρ)(t+1−s)‖(−4)
1+α
2 v(s,ω,v0(ω))‖2

+8β2
2

∫ t+1

s

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,ω,v0(ω))‖2dτ

+c3

∫ t+1

s

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτω)dτ.

(4.23)

Integrating (4.23) with respect to s over (t,t+1), then applying Gagliardo-Nirenberg
inequality, we obtain

‖(−4)
1+α
2 v(t+1,ω,v0(ω))‖2

+

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,ω,v0(ω))‖2dτ

≤
∫ t+1

t

e2β
∫ t+1
s

z(θτω)dτ+(δ−2ρ)(t+1−s)‖(−4)
1+α
2 v(s,ω,v0(ω))‖2ds

+8β2
2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,ω,v0(ω))‖2dτ

+c3

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτω)dτ

≤ 1

2

∫ t+1

t

e2β
∫ t+1
s

z(θτω)dτ+(δ−2ρ)(t+1−s)‖(−4)
1
2 +αv(s,ω,v0(ω))‖2ds

+c4

∫ t+1

t

e2β
∫ t+1
s

z(θτω)dτ+(δ−2ρ)(t+1−s)‖v(s,ω,v0(ω))‖2ds

+8β2
2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,ω,v0(ω))‖2dτ

+c3

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτω)dτ.

(4.24)
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It follows that

‖(−4)
1+α
2 v(t+1,ω,v0(ω))‖2

+
1

2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,ω,v0(ω))‖2dτ

≤ c4
∫ t+1

t

e2β
∫ t+1
s

z(θτω)dτ+(δ−2ρ)(t+1−s)‖v(s,ω,v0(ω))‖2ds

+8β2
2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,ω,v0(ω))‖2dτ

+c3

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτω)dτ.

(4.25)

Replacing ω by θ−t−1ω, we infer

‖(−4)
1+α
2 v(t+1,θ−t−1ω,v0(θ−t−1ω))‖2

+
1

2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,θ−t−1ω,v0(θ−t−1ω))‖2dτ

≤ c4
∫ t+1

t

e2β
∫ t+1
s

z(θτ−t−1ω)dτ+(δ−2ρ)(t+1−s)‖v(s,θ−t−1ω,v0(θ−t−1ω))‖2ds

+8β2
2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,θ−t−1ω,v0(θ−t−1ω))‖2dτ

+c3

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτ−t−1ω)dτ.

(4.26)

Now, we estimate the three terms on the right-hand side of (4.24). For the first term,
by Lemma 4.1, for any t≥T1B (ω), one has

c4

∫ t+1

t

e2β
∫ t+1
s

z(θτ−t−1ω)dτ+(δ−2ρ)(t+1−s)‖v(s,θ−t−1ω,v0(θ−t−1ω))‖2ds

≤ c4%2
0

∫ 0

−1

e2β
∫ 0
τ
z(θsω)ds+(2ρ−δ)τdτ , r2

0.

(4.27)

For the second term, by Lemma 4.2, for any t≥T1B (ω), one has

8β2
2

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)‖∇v(τ,θ−t−1ω,v0(θ−t−1ω))‖2dτ

≤8β2
2%

2
1

∫ 0

−1

e2β
∫ 0
τ
z(θsω)ds+(2ρ−δ)τdτ , r2

1.

(4.28)

For the third term, we have

c3

∫ t+1

t

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)−2βz(θτ−t−1ω)dτ

≤ c3
∫ 0

−1

e2β
∫ 0
τ
z(θsω)ds+(2ρ−δ)τ−2βz(θτω)dτ , r2

2.

(4.29)
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Substituting (4.27), (4.28) and (4.29) into (4.24) gives

‖(−4)
1+α
2 v(t+1,θ−t−1ω,v0(θ−t−1ω))‖2≤%2

1 +r2
0 +r2

1 +r2
2 ,%

2
2, (4.30)

which completes the proof.
Lemma 4.4. Let B={B(ω)}∈D and v0(ω)∈B(ω). Then for P-a.e. ω∈Ω, there
exist T ∗=T ∗B(ω)>0 and R∗=R∗(ω,ε) such that for any t≥T ∗B(ω), one has∫

|x|≥R∗
|v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.31)

Proof. Take a smooth function χ such that 0≤χ(s)≤1 for all s≥0 and

χ(s) =

{
0, if 0≤s≤1,

1, if s≥2.
(4.32)

There exists a positive constant c such that |χ′(s)|≤ c for all s≥0. Taking the real

part of the inner product of (3.3) with χ(x
2

k2 )v, we obtain

1

2

d

dt

∫
R3

χ

(
x2

k2

)
|v|2dx+(ρ−βz(θtω))

∫
R3

χ

(
x2

k2

)
|v|2dx

=−Re(1+iν)

∫
R3

(−4)αvχ

(
x2

k2

)
v̄dx+e−βz(θtω)Re

∫
R3

f(eβz(θtω)v)χ

(
x2

k2

)
v̄dx.

(4.33)

We estimate each term on the right-hand side of (4.32). For the first term, integrating
by parts and applying the Hölder, Gagliardo-Nirenberg and Young inequalities, we
have

−Re(1+iν)

∫
R3

(−4)αvχ

(
x2

k2

)
v̄dx

≤|1+iν|
∫
R3

|(−4)α−
1
2 v|
(
χ

(
x2

k2

)
|∇v|+χ′

(
x2

k2

)
2|x|
k2
|v|
)
dx

≤|1+iν|
(
‖(−4)α−

1
2 v‖‖∇v‖+

∫
k≤|x|≤

√
2k

|(−4)α−
1
2 v|
∣∣∣∣χ′(x2

k2

)∣∣∣∣ 2|x|k2
|v|dx

)
≤|1+iν|

(
‖(−4)α−

1
2 v‖‖∇v‖+

2
√

2

k

∫
k≤|x|≤

√
2k

|(−4)α−
1
2 v|
∣∣∣∣χ′(x2

k2

)∣∣∣∣ |v|dx)
≤|1+iν|

(
‖(−4)α−

1
2 v‖‖∇v‖+

c

k

∫
k≤|x|≤

√
2k

|(−4)α−
1
2 v||v|dx

)
≤ c
(
‖v‖2 +‖∇v‖2

)
+
c

k

(
‖∇v‖2 +‖v‖2

)
.

(4.34)

For the second term, applying (1.3), one has

e−βz(θtω)Re

∫
R3

f(eβz(θtω)v)χ

(
x2

k2

)
v̄dx≤e−2βz(θtω)

∫
R3

γ1(x)χ

(
x2

k2

)
dx

−β1e
−2βz(θtω)

∫
R3

|eβz(θtω)v|2σ+2χ

(
x2

k2

)
dx

≤e−2βz(θtω)

∫
R3

|γ1(x)|χ
(
x2

k2

)
dx.

(4.35)
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Using (4.34) and (4.35), (4.32) can be rewritten as

d

dt

∫
R3

χ

(
x2

k2

)
|v|2dx+(2ρ−δ−2βz(θtω))

∫
R3

χ

(
x2

k2

)
|v|2dx

≤ c
(
‖v‖2 +‖∇v‖2

)
+
c

k

(
‖∇v‖2 +‖v‖2

)
+e−2βz(θtω)

∫
R3

|γ1(x)|χ
(
x2

k2

)
dx.

(4.36)

Multiplying (4.36) by e−2β
∫ t
0
z(θsω)ds+(2ρ−δ)t and integrating over (T1,t), we have∫

R3

χ

(
x2

k2

)
|v(t,ω,v0(ω))|2dx

≤e2β
∫ t
T1
z(θsω)ds+(δ−2ρ)(t−T1)

∫
R3

χ

(
x2

k2

)
|v(T1,ω,v0(ω))|2dx

+

∫ t

T1

e2β
∫ t
s
z(θτω)dτ+(δ−2ρ)(t−s)−2βz(θsω)

∫
R3

|γ1(x)|χ
(
x2

k2

)
dxds

+c

∫ t

T1

e2β
∫ t
s
z(θτω)dτ+(δ−2ρ)(t−s)(‖v(s,ω,v0(ω))‖2 +‖∇v(s,ω,v0(ω))‖2

)
ds

+
c

k

∫ t

T1

e2β
∫ t
s
z(θτω)dτ+(δ−2ρ)(t−s)(‖∇v(s,ω,v0(ω))‖2 +‖v(s,ω,v0(ω))‖2

)
ds.

(4.37)

Replacing ω by θ−tω, in (4.37), we deduce that for all t≥T1,∫
R3

χ

(
x2

k2

)
|v(t,θ−tω,v0(θ−tω))|2dx

≤e2β
∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

χ

(
x2

k2

)
|v(T1,θ−tω,v0(θ−tω))|2dx

+

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)−2βz(θs−tω)

∫
R3

|γ1(x)|χ
(
x2

k2

)
dxds

+c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)W(s)ds

+
c

k

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)W(s)ds,

(4.38)

where

W(x) =‖v(x,θ−tω,v0(θ−tω))‖2 +‖∇v(x,θ−tω,v0(θ−tω))‖2.

In what follows, we estimate each term on the right-hand side of (4.38). For the
first term, replacing t by T1 and ω by θ−tω in (4.5), we have

e
2β

∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

χ

(
x2

k2

)
|v(T1,θ−tω,v0(θ−tω))|2dx

≤e2β
∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

|v(T1,θ−tω,v0(θ−tω))|2dx

≤e2β
∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

e2β
∫ T1
0 z(θs−tω)ds+(1−2ρ)T1‖v0(θ−tω)‖2

=e2β
∫ t
0
z(θs−tω)ds+(δ−2ρ)t‖v0(θ−tω)‖2

=e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖v0(θ−tω)‖2.

(4.39)
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We find that, given ε>0, there exists T2 =T2(B,ω,ε)>T1 such that for all t≥T2,

e
2β

∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

χ

(
x2

k2

)
|v(T1,θ−tω,v0(θ−tω))|2dx≤ ε

4
. (4.40)

For the second term, note that γ1(x)∈L1(R3), so there exists R1 =R1(ε) such that
for all k≥R1, we have ∫

|x|≥k
|γ1(x)|χ

(
x2

k2

)
dx≤ cε. (4.41)

Given ε0>0, there exists T3 =T3(ω)>0 such that for s<−T3, we have∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)−2βz(θs−tω)ds

=

∫ 0

T1−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s−2βz(θsω)ds

≤
∫ 0

T1−T3

e2β
∫ 0
s
z(θτω)dτ+(2ρ−δ)s−2βz(θsω)ds+

∫ T1−T3

T1−t
es(2ρ−δ+ε0)ds

≤ c(ω)+c1(ω).

(4.42)

So there exists R1 =R1(ε,ω) such that for all t≥T3 and k≥R1,∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)−2βz(θs−tω)

∫
R3

|γ1(x)|χ
(
x2

k2

)
dxds≤ ε

4
. (4.43)

For the third term, by (4.6) and (4.15), one has

c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)W(s)ds

≤ c
∫ 0

T1−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)sW(s+ t)ds

≤ ce2β
∫ 0
T1−t z(θsω)ds+(2ρ−δ)(T1−t)(‖v0(θ−tω)‖2 +‖∇v0(θ−tω)‖2).

(4.44)

Since {B(ω)}∈D is tempered, for any v0(θ−tω)∈B(θ−tω),

lim
t→+∞

e
2β

∫ 0
T1−t z(θsω)ds+(2ρ−δ)(T1−t)(‖v0(θ−tω)‖2 +‖∇v0(θ−tω)‖2) = 0. (4.45)

Therefore, there exists T4 =T4(B,ω,ε)>T1 such that for any t≥T4,

c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)W(s)ds

≤e2β
∫ 0
T1−t z(θsω)ds+(δ−2ρ)(T1−t)(‖v0(θ−tω)‖2 +‖∇v0(θ−tω)‖2)≤ ε

4
.

(4.46)

Similarly, there exists R2 =R2(ω,ε) such that for all t≥T4 and k≥R2,

c

k

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)W(s)ds≤ ε

4
. (4.47)
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Let T ∗=T ∗(B,ω,ε) = max{T1,T2,T3,T4}. Then by (4.40), (4.46) and (4.47), for all
t≥T ∗ and k≥R∗= max{R1,R2}, one has∫

R3

χ

(
x2

k2

)
|v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.48)

This implies that for all t≥T ∗ and k≥R∗, we have∫
|x|≥k

|v(t,θ−tω,v0(θ−tω))|2dx≤
∫
R3

χ

(
x2

k2

)
|v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.49)

The proof is complete.
Lemma 4.5. Let B={B(ω)}∈D and v0(ω)∈B(ω). Then for P-a.e. ω∈Ω, there
exists T ∗∗=T ∗∗B (ω)>0 such that for any t≥T ∗∗B (ω), one has∫

|x|≥k
|∇v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.50)

Proof. Differentiating (3.3) with respect to x= (x1,x2,x3), then taking the real

part of the inner product with χ(x
2

k2 )∇v gives

1

2

d

dt

∫
R3

χ

(
x2

k2

)
|∇v|2dx+(ρ−βz(θtω))

∫
R3

χ

(
x2

k2

)
|∇v|2dx

=−Re(1+iν)

∫
R3

((−4)α(∇v))χ

(
x2

k2

)
∇v̄dx

+e−βz(θtω)Re

∫
R3

∇f(eβz(θtω)v)χ

(
x2

k2

)
∇v̄dx.

(4.51)

Now, we estimate the right-hand side of (4.51). For the first term, we have

−Re(1+iν)

∫
R3

((−4)α(∇v))χ

(
x2

k2

)
∇v̄dx≤|1+iν|‖(−4)α+ 1

2 v‖‖∇v‖

≤ c
(
‖(−4)α+ 1

2 v‖2 +‖∇v‖2
)
.

(4.52)

For the second term, one has

e−βz(θtω)Re

∫
R3

∇f(eβz(θtω)v)χ

(
x2

k2

)
∇v̄dx

≤2β2

∫
R3

|∇v|2χ
(
x2

k2

)
dx+e−βz(θtω)

∫
R3

|γ2(x)||∇v|χ
(
x2

k2

)
dx

≤ (2β2 +
1

2
)‖∇v‖2 +

1

2
e−2βz(θtω)

∫
R3

|γ2(x)|2|χ2

(
x2

k2

)
dx.

(4.53)

Substituting (4.52) and (4.53) into (4.51), we deduce that

d

dt

∫
R3

χ

(
x2

k2

)
|∇v|2dx+(2ρ−δ−2βz(θtω))

∫
R3

χ

(
x2

k2

)
|∇v|2dx

≤ c
(
‖(−4)α+ 1

2 v‖2 +‖∇v‖2
)

+
1

2
e−2βz(θtω)

∫
R3

|γ2(x)|2|χ2

(
x2

k2

)
dx.

(4.54)
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Multiplying (4.54) by e−2β
∫ t
0
z(θsω)ds+(2ρ−δ)t and integrating over (T1,t) gives for all

t≥T1,∫
R3

χ

(
x2

k2

)
|∇v(t,ω,v0(ω))|2dx

≤e2β
∫ t
T1
z(θsω)ds+(δ−2ρ)(t−T1)

∫
R3

χ

(
x2

k2

)
|∇v(T1,ω,v0(ω))|2dx

+c

∫ t

T1

e2β
∫ t
s
z(θτω)dτ+(δ−2ρ)(t−s)

(
‖(−4)α+ 1

2 v(s,ω,v0(ω))‖2 +‖∇v(s,ω,v0(ω))‖2
)
ds

+
1

2

∫ t

T1

e2β
∫ t
s
z(θτω)dτ+(δ−2ρ)(t−s)−2βz(θsω)

∫
R3

|γ2(x)|2|χ2

(
x2

k2

)
dxds.

(4.55)

Replacing ω by θ−tω and applying (4.37), for all t≥T1, one has

∫
R3

χ

(
x2

k2

)
|∇v(t,θ−tω,v0(θ−tω))|2dx

≤e2β
∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

|∇v(T1,θ−tω,v0(θ−tω))|2dx

+c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)‖(−4)α+ 1

2 v(s,θ−tω,v0(θ−tω))‖2ds

+c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)‖∇v(s,θ−tω,v0(θ−tω))‖2ds

+
1

2

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)−2βz(θs−tω)

∫
R3

|γ2(x)|2χ2

(
x2

k2

)
dxds.

(4.56)

We estimate each term on the right-hand side of (4.56). For the first term, replacing
t by T1 and ω by θ−tω in (4.14), we have

e
2β

∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

|∇v(T1,θ−tω,v0(θ−tω))|2dx

≤e2β
∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

e2β
∫ T1
0 z(θs−tω)ds+(δ−2ρ)T1‖∇v0(θ−tω)‖2

=e2β
∫ t
0
z(θs−tω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2

=e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖∇v0(θ−tω)‖2.

(4.57)

Since {B(ω)}∈D is tempered, for any v0(θ−tω)∈B(θ−tω),

lim
t→+∞

e2β
∫ 0
−t z(θsω)ds+(δ−2ρ)t‖∇v0(θ−t−1ω)‖2 = 0. (4.58)

Therefore, given ε>0, there exists T5 =T5(B,ω,ε)>T1 such that for all t≥T5,

e
2β

∫ t
T1
z(θs−tω)ds+(δ−2ρ)(t−T1)

∫
R3

|∇v(T1,θ−tω,v0(θ−tω))|2dx≤ ε
4
. (4.59)
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For the second term, one has

c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)‖(−4)α+ 1

2 v(s,θ−tω,v0(θ−tω))‖2ds

≤ c
∫ 0

T1−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)α+ 1

2 v(s+ t,θ−tω,v0(θ−tω))‖2ds

≤ c
∫ 0

−t
e2β

∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)α+ 1

2 v(s+ t,θ−tω,v0(θ−tω))‖2ds.

(4.60)

Replacing ω by θ−t−1ω in (4.23), dropping the first term on the left-hand side, and
integrating with respect to s over (T1,t+1), we obtain∫ t+1

T1

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,θ−t−1ω,v0(θ−t−1ω))‖2dτ

≤
∫ t+1

T1

e2β
∫ t+1
s

z(θτ−t−1ω)dτ+(δ−2ρ)(t+1−s)‖(−4)
1+α
2 v(s,θ−t−1ω,v0(θ−t−1ω))‖2ds

+8β2
2

∫ t+1

T1

e2β
∫ t+1
s

z(θτ−t−1ω)dτ+(δ−2ρ)(t+1−s)‖∇v(s,θ−t−1ω,v0(θ−t−1ω))‖2ds

=

∫ 0

T1−t−1

e2β
∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)

1+α
2 v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds

+8β2
2

∫ 0

T1−t−1

e2β
∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖∇v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds

≤
∫ 0

−t−1

e2β
∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖(−4)

1+α
2 v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds

+8β2
2

∫ 0

−t−1

e2β
∫ 0
s
z(θτω)dτ+(2ρ−δ)s‖∇v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds.

(4.61)

By (4.15), for all t≥T1B (ω)−1, we have∫ 0

−t−1

e2β
∫ 0
s
z(θsω)dτ+(2ρ−δ)s‖(−4)

α+1
2 v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds

+δ

∫ 0

−t−1

e2β
∫ 0
s
z(θsω)dτ+(2ρ−δ)s‖∇v(s+ t+1,θ−t−1ω,v0(θ−t−1ω))‖2ds

≤e2β
∫ 0
−t−1

z(θsω)ds+(δ−2ρ)(t+1)‖∇v0(θ−t−1ω)‖2.

(4.62)

Substituting (4.62) into (4.61), one has∫ t+1

T1

e2β
∫ t+1
τ

z(θτ1−t−1ω)dτ1+(δ−2ρ)(t+1−τ)‖(−4)
1
2 +αv(τ,θ−t−1ω,v0(θ−t−1ω))‖2dτ

≤
(

1+
8β2

2

δ

)
e2β

∫ 0
−t−1

z(θsω)ds+(δ−2ρ)(t+1)‖∇v0(θ−t−1ω)‖2.

(4.63)

Again, since {B(ω)}∈D is tempered, by a similar argument, there exists T6 =
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T6(B,ω,ε)>T1B (ω) such that for any t≥T6,(
1+

8β2
2

δ

)
e

2β
∫ 0
T1−t z(θsω)ds+(δ−2ρ)(T1−t)(‖v0(θ−tω)‖2 +‖∇v0(θ−tω)‖2)≤ ε

4
. (4.64)

So, we infer that

c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)‖(−4)α+ 1

2 v(s,θ−tω,v0(θ−tω))‖2ds≤ ε
4
. (4.65)

For the third term, by (4.46), there exists T4 =T4(B,ω,ε)>T1 such that for any
t≥T4,

c

∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)‖∇v(s,θ−tω,v0(θ−tω))‖2ds≤ ε

4
. (4.66)

For the last term, note that γ2(x)∈L2(R3). In a manner similar to the argument
for (4.43), there exists R∗1 =R∗1(ε) such that for all t≥T3 and k≥R∗1,∫ t

T1

e2β
∫ t
s
z(θτ−tω)dτ+(δ−2ρ)(t−s)−2βz(θs−tω)

∫
R3

|γ2(x)|2χ2

(
x2

k2

)
dxds≤ ε

4
. (4.67)

Let T ∗∗=T ∗∗(B,ω,ε) = max{T3,T4,T5,T6}. Then by (4.59), (4.65) and (4.66), for
all t≥T ∗∗ and k≥R∗1, one has∫

R3

χ

(
x2

k2

)
|∇v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.68)

This implies that for all t≥T ∗∗ and k≥R∗1,∫
|x|≥k

|∇v(t,θ−tω,v0(θ−tω))|2dx≤
∫
R3

χ

(
x2

k2

)
|∇v(t,θ−tω,v0(θ−tω))|2dx≤ε. (4.69)

This completes the proof.
By Lemmas 4.4 and 4.5, we have

Corollary 4.6. Let B={B(ω)}∈D and v0(ω)∈B(ω). Then for P-a.e. ω∈Ω, there
exists T ?B = max{T ∗B(ω),T ∗∗B (ω)} and R∗=R∗(ω,ε) such that for any t≥T ?B(ω), one
has

‖v(t,θ−tω,v0(θ−tω))‖2H1(|x|≥R∗)≤ε. (4.70)

5. Random attractor In this section, we prove the existence of a random
attractor for the random dynamical system generated by (3.3) on R3. From Lemma
4.2, ϕ has a closed random absorbing set in D. The D-pullback asymptotic compact-
ness of ϕ is demonstrated below using the uniform estimates obtained in the previous
sections.
Lemma 5.1. Assume (1.3)–(1.5) and βσ≤2|λσ|. Then the random dynamical system
ϕ is D-pullback asymptotically compact in H1(R3); that is, for P-a.e. ω∈Ω, the
sequence ϕ(tn,θ−tnω,v0,n(θ−tnω)) has a convergent subsequence in H1(R3) provided
tn→∞, B={B(ω)}∈D and v0,n(θ−tnω)∈B(θ−tnω).
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Proof. Let tn→∞, B={B(ω)}∈D and v0,n(θ−tnω)∈B(θ−tnω). Applying
Lemma 4.1 and 4.2, for P-a.e. ω∈Ω, we have

{ϕ(tn,θ−tnω,v0,n(θ−tnω))}∞n=1 is bounded in H1(R3).

Therefore, there exists η(ω)∈H1(R3) and a subsequence, for convenience, still denoted
by {ϕ(tn,θ−tnω,v0,n(θ−tnω))}, such that

ϕ(tn,θ−tnω,v0,n(θ−tnω))→η weakly in H1(R3). (5.1)

Given ε>0, by Corollary 4.6, there is T ?B = max{T ∗B(ω),T ∗∗B (ω)} and R∗=R∗(ω,ε)
such that for any t≥T ?B(ω),

‖ϕ(t,θ−tω,v0(θ−tω))‖2H1(|x|≥R∗)≤ε. (5.2)

Since tn→∞, there exists N1 =N1(B,ω,ε) such that tn≥T ?B for all n≥N1. Then, by
(5.2), we have for all n≥N1,

‖ϕ(tn,θ−tnω,v0,n(θ−tnω))‖2H1(|x|≥R∗)≤ε, (5.3)

and hence,

||η||2H1(|x|≥R∗)≤ε. (5.4)

Applying Lemmas 4.1 and 4.3, there exists T2B = max{T0B (ω),T1B (ω)} such that for
all t≥T2B ,

‖ϕ(t,θ−tω,v0(θ−tω))‖2H1+α(R3)≤%
2
0 +%2

2 ,%
2
3. (5.5)

Let N2 =N2(B,ω) be large enough such that tn≥T2B for n≥N2. It follows from (5.5)
that, for all n≥N2,

‖ϕ(tn,θ−tnω,v0,n(θ−tnω))‖2H1+α(R3)≤%
2
3. (5.6)

Let BR∗ ={x∈R3 : |x|≤R∗} be a ball. By the compactness of the embedding
H1+α(BR∗) ↪→H1(BR∗), from (5.6), we deduce that, up to a subsequence depending
on R∗, ϕ(tn,θ−tnω,v0,n(θ−tnω))→η strongly in H1(B̂R∗), which implies that there
exists N3 =N3(B,ω,ε)≥N2 such that for all n≥N3,

‖ϕ(tn,θ−tnω,v0,n(θ−tnω))−η‖2H1(BR∗ )≤ε.

Let N?= max{N1,N3}. Then, from (5.2), (5.3) and (5.4), we have for all n≥N?,

‖ϕ(tn,θ−tnω,v0,n(θ−tnω))−η‖2H1(R3)

≤‖ϕ(tn,θ−tnω,v0,n(θ−tnω))−η‖2|x|≤R∗ +‖ϕ(tn,θ−tnω,v0,n(θ−tnω))||2|x|≥R∗

+ ||η||2|x|≥R∗

≤5ε,

which implies that

ϕ(tn,θ−tnω,v0,n(θ−tnω))→η strongly in H1(R3).

This completes the proof.
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By Proposition 2.8, we have
Theorem 5.2. Assume (1.3)–(1.5) and βσ≤2|λσ|. Then the random dynamical
system ϕ associated with the fractional Ginzburg-Landau equation with multiplicative
noise (1.1) has a unique D-random attractor in H1(R3).
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[21] H. Lu, P. W. Bates, S. Lü and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau
equation, (to appear, J. Differential Equations).



H. Lu, P. W. Bates, S. Lü and M. Zhang 23
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