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Summary

� Fossil discoveries can transform our understanding of plant diversification over time and

space. Recently described fossils in many plant families have pushed their known records

farther back in time, pointing to alternative scenarios for their origin and spread.
� Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from

the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The

placement of the fossils was assessed using clustering and parsimony analyses based on 10

discrete and five continuous characters, which were also scored in 291 extant taxa.
� The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan

fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fos-

sils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least

from southern South America to northwestern North America by the early Eocene.
� Together with two other recently discovered Eocene berries, these fossils demonstrate that

the diverse berry clade and, in turn, the entire nightshade family, is much older and was much

more widespread in the past than previously thought.

Introduction

Our understanding of the history of plant diversification funda-
mentally relies on the fossil record. Fossilized plant remains allow
us to track shifts in vegetation across geological timescales (Palaz-
zesi & Barreda, 2012; Falcon-Lang et al., 2015), identify the ori-
gins of novel traits (Crepet & Feldman, 1991; Sun et al., 1998;
Friis et al., 2015), trace the history of biotic interactions (Cur-
rano et al., 2008), and estimate the timeline of evolutionary
events (Benton et al., 2000; Crepet et al., 2004). Even as methods
for making inferences about evolutionary history from extinct
and extant plant diversity have become more biologically realistic
and statically robust (e.g. Slater et al., 2012; Heath et al., 2014),
progress continues to be limited by the availability of fossil

material with sufficient preservation to allow precise taxonomic
placement. Accordingly, discoveries of new plant fossils have
often illuminated previously disputed timelines (Strother & Fos-
ter, 2021; Cui et al., 2022) and in some cases overturned widely
accepted notions about the timing of plant evolution (Bonacorsi
et al., 2020).

While fossils informative about early land and seed plant his-
tory have received a great deal of attention, recent fossil discov-
eries belonging to many extant families and genera have also led
to significant transformations in understanding plant diversifica-
tion in the Cenozoic. For example, the large Melastomatoid
clade, once hypothesized to have Laurasian origins in the early
Eocene (Renner et al., 2001), is now known to date back to the
middle to late Paleocene of Colombia (Carvalho et al., 2021),
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suggesting the lineage may instead be Gondwanan. Similarly, dis-
coveries of spectacular Asteraceae pollen and flowers from the
Late Cretaceous of West Antarctica and middle Eocene of Argen-
tina, respectively (Barreda et al., 2010, 2015), have pushed crown
ages of the family to 90Ma and implicated a Gondwanan origin
for the now cosmopolitan family (Mandel et al., 2019). Despite
these exciting findings, many presently widespread and diverse
families are characterized by scant fossil records, precluding
downstream studies of biogeography and diversification (Stuls &
Axsmith, 2011; Kessous et al., 2021).

Here, we investigate the fruit-fossil history of the nightshade
family, Solanaceae, a large, cosmopolitan and economically impor-
tant clade with a paucity of well-preserved fossil information. This
family comprises c. 2750 species, roughly 64% of which are native
to South America (Dupin et al., 2017). Its major lineages (subfami-
lies and tribes) are all estimated to have originated in South Amer-
ica, with subsequent dispersals over land and water leading to its
global distribution (Dupin et al., 2017). Nevertheless, understand-
ing of the timing of diversification for Solanaceae has been hindered
by the sparse and fragmentary fossil record, which was further con-
fused by many misidentified specimens (Millan & Crepet, 2014;
S€arkinen et al., 2018). The first divergence-time estimates, cali-
brated with the few reliable seed fossils, placed the stem age of the
family between 46 and 54Ma (S€arkinen et al., 2013, 2018). How-
ever, the subsequent discovery of two species of early Eocene
(52Ma) lantern-fruit fossils (genus Physalis L.) from caldera-lake
beds in Patagonian Argentina indicated that the family has a deeper
history in South America, when the continent was still part of
Gondwana, and could have originated in West Gondwana (Wilf
et al., 2017; Deanna et al., 2020). The occurrence of fossils from
the tomatillo clade with derived features, such as an inflated calyx
(Deanna et al., 2019), by 52Ma also suggested that the family Sola-
naceae was well diversified by that time (Wilf et al., 2017).

This study examines a broader set of Solanaceae fruit fossils,
including the first records from tropical South America (Colom-
bia) and North America (Colorado; Fig. 1). The taxonomic affi-
nities of these fossils span additional lineages from the berry clade
(Solanoideae, S€arkinen et al., 2013) and are all confidently dated
as Eocene (56–33.9Ma). We consider the implications of the
new fossils for the age and biogeographic history of Solanaceae,
given the wide distribution of these Eocene berries. In addition
to providing insight into the evolution of the nightshade family,
these new fossils hint at a previously rich solanaceous flora in
northern North America that has now largely disappeared.

Materials and Methods

Geological setting

The fossil material of Eophysaloides inflata sp. nov. was collected
on the western flank of the Eastern Cordillera in Santander,
Colombia, from a fossiliferous locality in lacustrine facies of the
Eocene Esmeraldas Formation. The age of the locality was deter-
mined based on a biostratigraphic pollen correlation and a che-
mostratigraphic analysis as middle to late Eocene (Mart�ınez
et al., 2021). This site is located in the Nuevo Mundo Syncline,

Middle Magdalena Valley Basin, in the area of the Topocoro
Dam near the road that leads from Bucaramanga to Barrancaber-
meja. The region was first explored in 2013 as part of a paleonto-
logical salvage project led by the Smithsonian Tropical Research
Institute, the Colombian Geological Survey, and Isagen, a power
generation company, during the construction of the dam. The
locality has the identification number STRI-430134; it is located
at 7°6030.24″N and 73°25045.12″W (WGS84), elevation 179 m,
and was not flooded after the filling of the dam reservoir. A geo-
logical map of the region and the stratigraphic details of the local-
ity can be found in Mart�ınez (2018) and Mart�ınez et al. (2021).
Approximately 400 specimens were collected from this locality,
mostly compressions and impressions of angiosperm leaves, but
also including seeds, fruits and flowers (Mart�ınez, 2017, 2018;
P�erez-Consuegra et al., 2017; Mart�ınez et al., 2021).

The provenance for all three specimens of Lycianthoides calycina
sp. nov. is the Parachute Creek Member of the lacustrine Eocene
Green River Formation in Colorado, western United States. The
stratigraphic framework for the Green River Formation and the
Parachute Creek Member, including 40Ar/–39Ar ages and other
geochronological constraints, can be found in Smith et al. (2008)
and Smith & Carroll (2015). The holotype, UCM 41276a,b, was
collected by David Kohls at the Claudia’s Place locality (UCM loc.
2009063; Garfield Co., CO, USA), near the base of the Parachute
Creek Member, 39°21007.5″N, 108°03017.0″W. The age of the
strata is c. 51Ma (Smith et al., 2008). Paratype UCM 41285 was
collected at the Anvil Points locality (UCM loc. 2005026; Garfield
Co.), c. 10–20m below the Mahogany Zone in the Parachute
Creek Member, by David Kohls and Dena Smith, 39°32008.05″N,
107°56057.83″W, age c. 49.5Ma (Smith et al., 2008). The second
paratype (DMNH EPI.57889a,b) was found by Ron Meyer and
collected by Bill Hawes and Kirk Johnson at Ron Meyer’s Scorpion
locality (DMNH loc. 304; Rio Blanco Co., Vermont, CO, USA)
near the base of the Parachute Creek Member, 39°43047.0″N,
107°58025.0″W, age c. 51.5Ma (Smith et al., 2008).

Calyx venation patterns

Fossil venation was observed using Zeiss Stemi SV8 and Wild
M400 stereomicroscopes. Photography was done with a Nikon
D200 camera in Colombia and a Canon XSi 450 with EFS 60
macrolens in the US, with varied low-angle lighting. All the fossil
materials from Colombia were studied at the Geosciences Labora-
tory of the Universidad de los Andes, in Bogot�a, Colombia, and all
the fossils from the USA were studied at the Florida Museum of
Natural History, University of Florida, Gainesville, FL, USA.
Calyces were described following the modified version of the stan-
dard terminology for leaf architecture (Hickey, 1973; Trivett &
Pigg, 1996; Ellis et al., 2009) as adapted for Solanaceae calyces,
according to Hamed &Mourad (2004) and D’Arcy (1986).

Morphospace analysis of extant and extinct Solanaceae
fruits

We assembled a dataset of 10 discrete and five continuous fruit-
ing characters for seven fossils and 291 extant species of
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Solanaceae from living material, herbarium specimens, and taxo-
nomic literature. The extant taxa included at least one species per
genus for the 99 genera of Solanaceae and several for large genera
(e.g. Solanum L.) to capture fruit and fruiting calyx diversity
across the family (Supporting Information Table S1). The fruit
macrofossils included the holotype and paratype of Physalis infi-
nemundi Wilf, the holotype of P. hunickenii Deanna, Wilf &
Gandolfo, the holotype of Eophysaloides inflata, and the holotype
and paratypes of Lycianthoides calycina. We applied a non-metric
multidimensional scaling (NMDS) analysis to assess the similar-
ity of the fossils to the extant taxa. This ordination approach,
although most common in community ecology (Minchin, 1987),
has become increasingly used for analyzing fossil diversity (Palaz-
zesi & Barreda, 2012; Bush & Brame, 2016) and taxonomic affi-
nities (Smith et al., 2017; Herrera-Fl�orez et al., 2020; Romero
et al., 2020) because it accommodates a mixture of discrete and
continuous variables as well as missing data. All data were
recorded in the PROTEUS database (Sauquet et al., 2017), link-
ing each record to an explicit source or voucher (Table S1). Using
the final matrix of 298 species, we carried out NMDS with the
metaMDS function and Gower’s Distance as the dissimilarity
metric in the VEGAN package in R (Oksanen et al., 2013). All

characters were treated as symmetric except fruit type, which was
considered ordered. We also ran a stress analysis to test how
many dimensions are needed to plot the data. Results were
plotted using the function ggplot from the R GGPLOT2 package
(Wickham et al., 2016).

Phylogenetic analysis

To complement the NDMS clustering analysis, we conducted a
phylogenetic analysis of the combined morphological and mole-
cular data. This combined dataset included all the extant Solana-
ceae species with available DNA sequences (265 of the 291
scored for NMDS) and the fossils already included in the mor-
phospace analysis. Morphological data were the same as for
NMDS, but the continuous traits were converted from mm to
cm given the limitations of the software. We built the DNA data-
set from Genbank using PyPHLAWD (Smith & Walker, 2018)
as in the previous family-level analysis of S€arkinen et al. (2013),
but expanded the dataset to include one additional nuclear gene
(LFY) and one additional plastid region (ndhF-rpl32; see list of
partitions in Table S2; Dataset S1). Sequence alignments were
performed using the MUSCLE algorithm (Edgar, 2004) in MEGA

Fig. 1 Middle Eocene paleogeographic
reconstruction of North and South America
showing the locations of new fossil
occurrences. Red square on left, area of the
Green River Formation where Lycianthoides
calycinawas collected (Garfield and Rio
Blanco Counties, CO, USA). Yellow square
on right, location of the Esmeraldas
Formation where Eophysaloides inflatawas
collected (Eastern Cordillera, Santander,
Colombia). Image taken from Paleoglobe for
the Lutetian, c. 44.5 million years ago, by
C. R. Scotese, PALEOMAP Project (Scotese &
Dreher, 2012). Photographs by R. Deanna
and C. Mart�ınez. Bars, 2 mm.
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v.11 (Tamura et al., 2021) and manually adjusted to exclude
ambiguous regions (see alignment in Dataset S1). We ran an
initial maximum likelihood search in RAXML v.8 (Stamata-
kis, 2014) on this molecular dataset to identify any long branches
or spurious relationships that could indicate errors in dataset con-
struction (Fig. S1). We used the GTR +GAMMA substitution
model for this partitioned maximum likelihood search and, to
assess nodal support, we applied the rapid bootstrap (BS) algo-
rithm with 1000 replicates (Fig. S1). After verifying recovery of
the expected family-level relationships, we analyzed the combined
dataset (Dataset S2) of DNA sequences and discrete and continu-
ous morphological characters with parsimony, as it is the only
method currently amenable to analysis of this combination of
character types. We performed a traditional search using TNT

v.1.5 (Goloboff et al., 2008), with 1000 random sequence addi-
tion replicates, TBR branch swapping, and 10 trees saved per
replicate. We rooted the tree with Ipomoea batatas, member of
the Convolvulaceae family, and calculated decay indices (Bre-
mer, 1994), relative Bremer support (Goloboff & Farris, 2001)
and bootstrap values with 1000 replicates as measures of support.
Finally, to identify synapomorphies uniting fossils and their clo-
sest living relatives, we also mapped each morphological character
onto the most parsimonious trees in TNT (Goloboff
et al., 2008).

Results

Systematics

Order – Solanales Bercht. & J. Presl, 1820
Family – Solanaceae Juss., 1789, nom. cons.
Subfamily – Solanoideae Burnett, 1835
Tribe – Physalideae Miers, 1849
Genus – EophysaloidesMart�ınez-A. & Deanna, gen. nov.

Type species Eophysaloides inflata Mart�ınez-A. & Deanna, gen.
et sp. nov.

Etymology Eo � early; physaloides, a genus now synonymized
with Withania Pauquy that includes species with inflated calyces
similar to the fossil.

Diagnosis Small and inflated fruiting calyx surrounding a fleshy
fruit (i.e. berry) that differs from extant and fossil Physalis in the
smaller size, non-invaginated calyx base, and non-angled sides of
the calyx. Also differs from Lycianthoides (see below) in its five-
lobed inflated calyx with conspicuous primary veins and second-
ary veins that fork before reaching the lobe sinus.

Species Eophysaloides inflata Mart�ınez-A. & Deanna, sp. nov.
(Fig. 2a–c).

Etymology The proposed specific epithet refers to the notably
inflated fruiting calyx in the fossil.

Holotype here designated STRI-SGC 36163. (Fig. 2a–c).

Type locality STRI-430134, Nuevo Mundo Syncline, Middle
Magdalena Valley Basin, in the area of the Topocoro Dam near
the road that leads from Bucaramanga to Barrancabermeja,
Colombia.

Age and distribution Middle to late Eocene Esmeraldas Forma-
tion, Colombia. Dated at c. 47.3–33.9Ma using biostratigraphic
and chemostratigraphic correlations (Mart�ınez et al., 2021).

Repository Museo Paleontol�ogico Jos�e Royo y G�omez, Colom-
bian Geological Survey (SGC), Bogot�a, Colombia.

Diagnosis As for the genus, due to monotypy (Art. 38.5, Tur-
land et al., 2018).

Description The species (Fig. 2a–c) is described based on one
specimen of a compressed berry visible beneath a preserved sur-
rounding calyx. The pedicel is 5.2 mm long and 0.6 mm wide,
with an L :W ratio of 8.66. The calyx is strongly inflated, not
basally invaginated, completely surrounding the berry, five-
lobed, partly open at apex, 10.8 mm long, and 8.5 mm wide
(L : W ratio 1.3 : 1). Calyx lobes are equally sized, with angular
sinuses and incised one-sixth the total calyx length, tips acute, tri-
angular. Venation consists of one robust primary meridional vein
per lobe, terminating at the lobe apex and alternating with sec-
ondary veins. Secondary veins emerge from the calyx base, are
visually distinct from the primaries and other vein orders, and
fork close to the lobe sinuses. Intersecondary veins arise near the
base, visually distinct from secondaries and tertiaries, dichotomiz-
ing into the random, irregular reticulum of tertiary through at
least fourth-order veins that fill most of the vein field. The berry
is ovoid, flattened, and coalified (i.e. converted into coal) from
fossilization, 6.2 mm long and 3.2 mm wide, occupying half of
the width of the inflated calyx; seeds not preserved.

Remarks We confirmed that the new genus and species
Eophysaloides inflata belongs to Solanaceae by first comparing
it with the 36 genera from 18 plant families that have inflated
calyces; this list was compiled by experts among the authors
and other angiosperm experts. Table S3 compares E. inflata
with each of these extant taxa and describes the differences that
exclude the fossil from these taxa. By comparison, E. inflata fits
well within the Solanaceae due to having a berry encased in
the inflated five-lobed membranous calyx, with an elongated
pedicel and strong venation. Within Solanaceae, the fruit mor-
phology resembles genera belonging to the Physalideae tribe,
in particular Calliphysalis Whitson and Brachistus Miers
(Fig. 2d–f). These genera share the presence of a berry loosely
enveloped by a five-lobed inflated calyx that stands out by its
non-invaginated base and distinctive venation pattern. The fos-
sil here described cannot be assigned to any single living genus
because Brachistus and Calliphysalis have morphological differ-
ences with the fossil and Eophysaloides is not nested in either
of them (see phylogenetic analysis below). Therefore, we
describe it as distinct at the generic level.
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Order – Solanales Bercht. & J. Presl, 1820
Family – Solanaceae Juss., 1789, nom. cons.
Subfamily – Solanoideae Burnett, 1835
Tribe – Capsiceae Dumort., 1827
Genus – Lycianthoides Deanna & Manchester, gen. nov.

Type species Lycianthoides calycina Deanna & Manchester, gen.
et sp. nov.

Etymology Lycianthoides refers to the morphological resem-
blance of the fossil to Lycianthes (Dunal) Hassl. and relatives in
the tribe Capsiceae (e.g. Capsicum L.).

Generic diagnosis As for the species, due to monotypy (Art.
38.5; Turland et al., 2018).

Species Lycianthoides calycina Deanna & Manchester, sp. nov.

Etymology The proposed specific epithet highlights the distinc-
tive calyx preserved in this fossil.

Holotype here designated UCM 41276a,b (Fig. 3a–c).

Paratypes UCM 41285 (Fig. 3d–f); DMNH EPI.57889a,b
(Fig. 3g,h).

Type localities Holotype: Claudia’s Place (UCM locality
20099063), Green River Formation, Garfield County, CO,
USA. Paratype UCM 41285: Anvil Points locality (UCM loc.
2005026), Green River Formation, Garfield County, CO, USA.
Paratype DMNH EPI.57889a,b: Ron Meyer’s Scorpion
(DMNH loc. 304), Green River Formation, Rio Blanco County,
CO, USA.

Age and distribution All specimens from the early Eocene
Green River Formation, western United States, from strata con-
strained to c. 49.5–51.5Ma from 40Ar/39Ar analyses (Smith
et al., 2008; Smith & Carroll, 2015).

Repositories. Holotype UCM 41276a,b and paratype UCM
41285 at the University of Colorado Museum (UCM), Paleonto-
logical Section, Boulder, CO, USA of America. Paratype
DMNH EPI.57889a,b at Denver Museum of Nature & Science,
Denver, CO, USA.

Specific diagnosis Lycianthoides calycina differs from the fossils
Physalis infinemundi, P. hunickenii, and Eophysaloides inflata in its
non-inflated calyx with prominent, finger-like appendages and its
venation pattern, wherein secondary veins extend from the base
of the calyx to the primary vein tips, giving rise to a reticulum of
thinner tertiary veins. Lycianthoides also differs from extant

Fig. 2 Eophysaloides inflata gen. et sp. nov.
and morphologically similar extant taxa. (a–
c) Holotype of E. inflata, STRI-SGC 36163.
(b) Photo-stack of E. inflata, STRI-SGC
36163. The thicker darkened portion,
indicated with a black arrow in the center of
(a, b), corresponds to a portion of the
coalified fossil berry. Differences between
(a, b) in contrast and color temperature are
to denote venation pattern. (c) E. inflata,
STRI-SGC 36163 (counterpart). Examples of
similar extant taxa include (d) Calliphysalis
carpenterii (Riddell) Whitson, USA, voucher
West n.n. (BM000994243), (e) Brachistus
nelsonii (Fernald) D’Arcy, J.L.Gentry &
Averett, Belize, voucher Pe~na et al. 945
(BM000776481), (f) Brachistus
stramonifoliusMiers, Mexico, voucher
Rzedowski 19 530 (CORD00014619). Like
E. inflata, these taxa present inflated, five-
lobed fruiting calyces with prominent
secondary veins but lacking invagination at
the base. (a–c) Photographs by C. Mart�ınez,
(d–f) by R. Deanna. Bars, 2 mm.
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Lycianthes and Capsicum in its smaller size and usually thinner
finger-like appendages (Fig. 3i–k).

Description The holotype (Fig. 3a–c) displays a typical
Lycianthes/Capsicum morphology (Fig. 3i). It comprises a

compressed calyx, length 2.7 mm, width 2.9 mm, with an esti-
mated L :W ratio of 0.9. The rounded shape of the calyx suggests
the presence of a developing fruit. The pedicel is partially pre-
served, 1.9 mm length, 0.3 mm width, with an estimated L :W
ratio of 5.6 and expands in width toward the calyx to 0.8 mm at

Fig. 3 Lycianthoides calycina gen. et sp. nov.
and morphologically similar extant taxa,
under microscopy with varying lighting. (a–c)
Holotype of L. calycina, UCM41276a (a, b),
UCM41276b (c). (d–f) Paratype of
L. calycina, UCM41285. (g) Paratype of
L. calycina, DMNH EPI.57889a. (h) DMNH
EPI.57889b. (i) Capsicum baccatum, Bolivia,
voucher Cocucci & S�ersic 5488
(CORD00082326). (j) Lycianthes
amatitlanensis Bitter, Guatemala, voucher
von T€urckheim 7753 (US01269193). (k)
L. venturana E.Dean, Mexico, voucher
Tenorio 11 426 (MEXU611648). Like
L. calycina, these taxa present strongly
veined but not inflated calyces with
distinctive finger-like teeth and a pedicel that
widens at the point of insertion. Arrow in
(a) indicates the secondary veins that came
from primary veins tips to the base of the
calyx, and arrows in (c, k) indicate the calyx
rim that extends beyond the insertion of the
teeth. (a–f, i) Photographs by R. Deanna,
(g, h) by S. Manchester, (j, k) by D. McNair.
Bars: (a–j) 2 mm; (k) 1 mm.
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the point of junction with the calyx. The calyx is not basally inva-
ginated, not inflated, widely open at the apex, and without lobes
but with 8–10 submarginal teeth (appendages), each 1.1–1.7 mm
long and 0.1 mm wide. Calyx appendages are unequally sized,
narrowly awl-shaped, inserted c. 0.7 mm from the calyx rim to
almost one-fourth the total calyx length. Venation includes one
robust primary meridional vein per appendage, terminating at
the apex. Secondary veins are visually distinct from the primaries
and other vein orders, emerge from the appendage apices and are
directed toward the base of the calyx. Tertiary veins are distinc-
tive, come from the secondary and form a distinct reticulum
between the calyx appendages.

Paratype UCM 41285 (Fig. 3d–f) also represents a compressed
calyx, very similar to the holotype, but with poorer preservation.
The calyx is 2.9 mm long and 2.5 mm wide, with an estimated
L : W ratio of 1.1. The pedicel is partially preserved, 4.9 mm long
and 0.8 mm wide, increasing in width toward the calyx to
1.1 mm at the junction. This specimen differs from the holotype
in the lack of preservation of secondary veins and the partial pre-
servation of the calyx appendages. Five conspicuous primary
veins run from the pedicel to the calyx margins. Secondary and
tertiary veins are not distinguishable.

Paratype DMNH EPI.57889a,b (Fig. 3g,h) is similar to the
other two specimens, consisting of a compressed calyx with
inconspicuous teeth. It differs in its much smaller size, length
1.1 mm, width 1.2 mm, with an estimated L :W ratio of 0.9.
The calyx base is not invaginated and the preservation of calyx
appendages is very poor. Neither primary nor secondary veins are
identifiable.

Remarks The new genus and species Lycianthoides calycina is
assignable to Solanaceae after a careful comparison with other
angiosperms and consultation with experts in other plant
families. We identified only three other angiosperm taxa with
similar calyx appendages starting above the calyx edge, and in
each case, other characters exclude the fossil from those families
(Table S3). The Solanaceae is the only family that has species
with the combination of a truncate calyx (having no lobes) and
tooth-like appendages, and the only extant species with these fea-
tures belong to Capsicum and Lycianthes (Figs. 3i–k). The three
fossils all share submarginal calyx appendages forming awl-
shaped teeth, the rounded shape of the calyx base, and the broad-
ening of the pedicel on the insertion with the calyx. The new fos-
sil taxon cannot be assigned to a particular living genus because
these traits are found in both Capsicum and Lycianthes and the
fossil is also morphologically different to both, thus we described
it in a new genus. Among the three specimens, there is variation
in preservation, especially of appendages and venation; the holo-
type is the specimen with the most conspicuous net-like venation.
However, all specimens possess the same calyx shape and pedicel
features, supporting their description as a single species.

Morphospace of fossil and extant nightshade fruits

In our NDMS analysis, all 15 morphological characters were
significantly informative (P = 0.001–0.005), except for the

presence of calyx appendages (Table S4). However, we retained
this character because of the importance of calyx appendages in
diagnosing members of the Capsicum/Lycianthes clade (Fig. 3).
A stress analysis (measuring goodness-of-fit) showed that two
dimensions produce a stress value < 0.2, which indicates that
the plot is interpretable (Fig. 4). As expected from earlier results
(Wilf et al., 2017; Deanna et al., 2020), the Physalis fossils
(Fig. 4a–c) from Patagonia grouped with extant Physalis, Alke-
kengi Mill., and Physaliastrum Makino (Fig. 4d,e), which share
an inflated calyx, invagination where the pedicel joins the fruit-
ing calyx, and similar venation patterns. The distances among
samples in ordination space support similarities between Eophy-
saloides inflata (Fig. 4f) and Brachistus (Fig. 4g) as well as the
monotypic Calliphysalis, whose common features include the
non-invaginated base of an inflated calyx and a distinctive vena-
tion pattern. Lycianthoides calycina from Colorado (Fig. 4h)
clusters with extant Lycianthes and Capsicum (Fig. 4i,j), genera
that share its submarginal awl-shaped appendages on a non-
inflated calyx with no lobes, in addition to conspicuous and
netlike venation.

Phylogenetic placement of fossils

The total evidence matrix included 3806 parsimony-informative
characters (10 morphological discrete, five morphological contin-
uous, 3791 molecular). Parsimony analysis in TNT recovered
two most parsimonious trees of 19 666 steps; one of these two is
shown as a phylogram in Fig. S2. As these two trees differed only
the position of one Solanum species, the strict consensus of these
two trees was almost fully resolved (Fig. 5a) and suggested similar
taxonomic affinities as the NMDS analyses (Fig. 5b,c). The decay
indices, relative Bremer, and Bootstrap supports were low for
most branches (Figs S3–S5), although several character changes
were identified that unite each fossil with different berry clade
lineages (Fig. S6). The Physalis fossils and Eophysaloides inflata
were inferred to belong in the Physalidinae subtribe of Physali-
deae due to the increase in the length of the fruiting calyx (0.5–
1.1 to 1.3–1.38 cm, character 0 in Fig. S6) and the increase in
the length of the calyx lobes (0.18–0.28 to 0.36–0.44 cm, charac-
ter 2 in Fig. S6). Within this clade, all Physalis fossils clustered
with Alkekengi officinarum because they share an invaginated and
angled calyx (characters 5 and 6, Fig. S6) and show large increases
in calyx length (1.55 to 2.16 cm), fruiting calyx length–width
ratio (0.11–0.12), and calyx lobe length (0.36–0.44 to 0.79 cm)
(characters 0, 1, and 2, Fig. S6). Eophysaloides grouped with Bra-
chistus nelsonii by the presence of calyx secondary veins forking
before lobe sinus (character 11, Fig. S6), which together with the
lack of invagination at the base of the calyx, presents a unique
character combination within the family. Although Lycianthoides
calycina does not appear to be monophyletic in the parsimony
analysis, possibly due to the missing data for the two paratypes,
all three specimens are placed within the Capsiceae tribe (Fig. 5)
by the absence of calyx lobes, the gain of calyx teeth, and the lack
of major calyx veins that terminate in lobe tips (characters 2, 8
and 9, Fig. S6). The loss of calyx lobes is homoplasious (e.g.
Tubocapsicum Makino and some Solanum have truncated
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calyces), but the submarginal teeth are a synapomorphy of Capsi-
ceae (character 8, Fig. S6).

Discussion

Fossils from three berry clade lineages lay out a new
timeline for nightshades

With the rich set of characters preserved in the suite of Eocene
fruit macrofossils, we have uncovered three distinct fossil lineages
belonging to different groups within the nightshade family. The
two previously described lantern fruit fossils from Argentina fall
clearly within the cluster (Fig. 4) containing extant Physalis and
two closely related genera (Physaliastrum and Alkekengi; see also

Wilf et al., 2017, Deanna et al., 2020, who both noted additional
similarities with Physalis), while the new Colombian fossil Eophy-
saloides inflata groups with other genera of tomatillo subtribe
Physalidinae (Brachistus and Calliphysalis). In addition to these
physaloid fossils, the newly discovered fossil from the Eocene of
Colorado, Lycianthoides calycina, belongs to the chilipepper tribe
Capsiceae, which includes the genera Lycianthes and Capsicum.
Taxa in this clade present distinctive calyces, often with a trun-
cated (entire) margin and with or without elongated and showy
marginal or submarginal appendages. Lycianthoides calycina clo-
sely resembles extant species from both the Americas and Asia in
the shape and size of these elongated appendages (Fig. 3).
Although the available fruit fossils are still outnumbered by the
putative Solanaceae seed fossils, the paucity of characters in seeds

Fig. 4 Non-metric multidimensional scaling
(NMDS) analysis of 15 morphological
characters from seven fossil reports and 291
extant species of Solanaceae, with three
resulting groupings of fossil and extant taxa
indicated. (a) Holotype of Physalis
infinemundi, MPEF-Pb 6434a. (b) Paratype
of P. infinemundi, MPEF-Pb 6435a.
(c) P. hunickenii holotype, MPEF-Pb 6443a.
(d) Physalis angulata, Peru, voucher Barboza
et al. 4982 (CORD). (e) Alkekengi
officinarum, USA, voucher Hill 25 957
(NY01455682). (f) Eophysaloides inflata
holotype, STRI-SGC 36163. (g) Brachistus
nelsonii, Belize, voucher Pe~na et al. 945
(BM000776481). (h) Lycianthoides calycina
holotype, UCM41276a. (i) Lycianthes
inaequilatera, Peru, voucher Iltis 303
(US2848803). (j) Capsicum longidentatum,
Brazil, voucher Agra et al. 7086 (CORD).
(a, b) Photographs by P. Wilf, (c, d, g, h, j) by
R. Deanna, (e) image courtesy of the C. V.
Starr Virtual Herbarium (http://sweetgum.
nybg.org/science/vh/), (f) by C. Mart�ınez,
(i) by D. McNair. Bars: (a–e) 5mm; (f–j)
2 mm. Characters: 0, fruiting calyx length;
1, fruiting calyx length : width ratio; 2, length
of calyx lobes; 3, calyx lobe length : width
ratio; 4, ratio between calyx total length to
lobes length; 5, presence/absence of
invaginated calyx base; 6, presence/absence
of angled calyx; 7, sinus rounded or angled;
8, presence/absence of calyx teeth;
9, presence/absence of calyx widest veins
distinctive of other vein orders that terminate
in lobe tips; 10, presence/absence of calyx
secondary veins distinct from other vein
orders that emerge from base; 11, presence/
absence of calyx secondary veins forking
before lobe sinus; 12, fruit type (berry,
capsule, diclesium, drupe, mericarp,
pyxidium or non-capsular dehiscent fruit);
13, presence/absence of inflated calyx;
14, calyx venation pattern (parallelodromous
or other type).
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has made it difficult to compare them with living taxa and to
assign them to particular clades of the family (S€arkinen
et al., 2013, 2018; Millan & Crepet, 2014). Thus, our study

represents a major advance in not only describing two new fossil
fruits, but also in leveraging their well-preserved features to infer
their placement within major lineages of the solanaceous berry
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Fig. 5 Maximum parsimony phylogenetic analysis. (a) Strict consensus of the two most parsimonious trees. (b) Strict consensus of the Capsiceae subtribe
including the relative Bremer support above the branches. (c) Strict consensus of the Physalidinae subtribe including the relative Bremer support above the
branches. All bolded names in red correspond to fossils. Grey shading and green dot in (a) correspond to the berry clade.
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clade. Given that the previously discovered Eocene fruit fossils
were both from a single site in Argentina (Wilf et al., 2017;
Deanna et al., 2020), the new fruit fossils from Colombia and
Colorado greatly expand the known geographic distribution of
the family during this time period.

Given their affinities, age, and distant locations, these fruit fos-
sils suggest a much older timeline for the diversification and glo-
bal dispersal of the nightshade family and its component berry
clade. Previous divergence time analyses estimated crown ages of
c. 10 and 15Ma for Physalidinae and Capsiceae, respectively,
and 26–68Ma for the entire Solanaceae family, depending on
the fossils and methods used (S€arkinen et al., 2013; Zamora-
Tavares et al., 2016; De-Silva et al., 2017; Ram�ırez-Barahona
et al., 2020). The fossil fruits described here trace to the Eocene,
including the early Eocene, indicating that the Capsiceae as well
as the Physalideae (Wilf et al., 2017; Deanna et al., 2020) are
three to four times older than previously estimated. Their distri-
bution (from modern-day South Argentina to Colombia and
Colorado), along with prior seed records from the Eocene of Eur-
ope and Oregon (Chandler, 1962; Manchester, 1994), shows
that the family was well diversified and geographically widespread
by the Eocene (56–33.9Ma). Although we lack older fruit fossils
that could validate the inferred ancestral state for the family (a
capsule, Knapp, 2002) and anchor the basal nodes, we suspect
that the crown age for the Solanaceae falls in the Paleocene (66–
56Ma) or the Late Cretaceous (100–66Ma), similar to other
Gondwanan plant families with high present-day diversity in the
Andes (Antonelli et al., 2009; Barreda et al., 2015; Mandel
et al., 2019; Carvalho et al., 2021; Serna-S�anchez et al., 2021).

The fossil discoveries described here lay the core foundation
for building a new time tree for the family with total-evidence
approaches. While there have been recent advances in model-
based divergence time estimation, in particular the development
of the fossilized birth–death model (Heath et al., 2014; Zhang
et al., 2016), current implementations do not accommodate
quantitative characters. Morphometrics are often key in fossil pla-
cement, especially for plant material with relatively few scorable
qualitative characters, like pollen and seeds (e.g. Gong
et al., 2010; Romero et al., 2020). We found that quantitative
characters, such as the size of the calyx and its lobes, were the
most informative for identifying relationships between the fruit
macrofossils and living material, although assessing the statistical
robustness of these relationships is limited by the parsimony fra-
mework we applied. Theoretical work is advancing toward incor-
porating morphometrics into model-based divergence time
estimation (Parins-Fukuchi, 2018a,b), suggesting that a total-
evidencing dating, including discrete and continuous characters
for extinct and extant taxa along with molecular sequence data,
will soon be available. The application of model-based total evi-
dence approaches to Solanaceae will provide a clearer picture of
the uncertainty around relationships between fossil and extant
taxa (e.g. Lee & Yates, 2018; May et al., 2021) and may suggest
alternative placement for the fossils described here. Nevertheless,
with previous analyses using the seed fossils and Physalis fruit fos-
sil only for node-dating, we expect that full integration of the fos-
sils into divergence time estimation will significantly push nodes

deeper in time across the phylogeny and may have implications
for the broader angiosperm timetree.

Fleshy-fruited nightshades suggest new routes for spread
during the Late Cretaceous

The wide distribution of Eocene nightshades and the possibility of
the family’s diversification in the Late Cretaceous and early Paleo-
gene open several new possibilities for the group’s potential routes
and mechanisms of spread around the globe. Using previous mole-
cular dating estimates, biogeographic studies have estimated a mini-
mum of 20 transoceanic dispersals, all from South America and
within the Neogene (Olmstead, 2013; Dupin et al., 2017). Because
the fruit fossils now show that the Solanaceae are much older and
diversified in part on Gondwana, transoceanic dispersals may not
be necessary to explain modern distributions. Today’s fleshy toma-
tillos and peppers are animal dispersed (Tewksbury & Nab-
han, 2001; Knapp, 2002), and this feature may have promoted
their spread, aligning with the well-known radiations of frugivores
and large-fruited angiosperms during the early Paleogene (66–
56Ma; Benton et al., 2022). Biotic exchange between the Americas
could have occurred via short distance over-water dispersals or
along the ephemeral chains of Late Cretaceous Caribbean volcanic
islands (100–66Ma; Iturralde-Vinent, 2006; Wilf et al., 2013;
Roncal et al., 2020). The Gondwana connections may have also
facilitated expansion into Australia and Asia, a scenario consistent
with the deep splits between Australasian and American lineages in
several nightshade clades (e.g. Nicotianoideae, Garcia & Olm-
stead, 2003; Capsiceae, Spalink et al., 2018).

Our discovery of a North American fruit fossil also points to
the potential for early dispersal of nightshades across the North-
ern Hemisphere through Holarctic land connections when those
areas were much warmer than today (Manchester, 1999; Brikia-
tis, 2014). The Solanaceae fossil seed record supports this north-
ern spread during the middle to late Paleogene (47.8–23Ma),
with specimens assigned to the berry clade spanning present-day
Oregon (43.8 Ma, Nut Beds Flora, Manchester, 1994), northern
Europe (c. 45Ma, Poole Formation, Chandler, 1962), and Rus-
sia (23–16Ma, Western Siberia, Dorofeev, 1963). Despite this
broad distribution in the Northern Hemisphere 40–50 million
years ago (Ma), the family remains comparatively depauperate in
temperate regions worldwide today, with only 13% of the extant
species diversity outside the tropics (Dupin et al., 2017). For
example, there are no native species of Capsicum or Lycianthes in
the region of the Rocky Mountains where Lycianthoides was
found. It is possible that the solanaceous flora of western North
America experienced the same fate as many other American ther-
mophilic groups that expanded in that region during the Eocene
but then retreated southward as the climate subsequently became
cooler and drier (Leopold & MacGinitie, 1972; Wing, 1987;
Meyer & Manchester, 1997; Daubenmire, 2012). Meanwhile,
the phases of Andean uplift in South America may have contribu-
ted to radiations within major berry lineages, such as the physa-
loids, solanums, and peppers, which our results indicate were all
present well before the modern orogeny began during the Neo-
gene (23–2.6Ma).
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