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1. Introduction

The introduction of statistical models represented by directed acyclic
graphs (DAGSs) has proved fruitful in the construction of expert systems,
in allowing efficient updating algorithms that take advantage of
conditional independence relations (Pearl, 1988, Lauritzen et. al., 1993),
and in inferring causal structure from conditional independence relations
(Spirtes and Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl
and Verma, 1991, Cooper, 1992). As a framework for representing the
combination of causal and statistical hypotheses, DAG models have shed
light on a number of issues in statistics ranging from Simpson's Paradox to
experimental design (Spirtes, Glymour and Scheines, 1993). The relations
of DAGs with statistical constraints, and the equivalence and
distinguishability properties of DAG models, are now well understood,
and their characterization and computation involves three properties
connecting graphical structure and probability distributions: (i) a local

1 Research for this paper was supported by the National Science Foundation through
grant 9102169 and the Navy Personnel Research and Development Center and the Office
of Naval Research through contract number N00014-93-1-0568. | am indebted to Clark



directed Markov property, (ii) a global directed Markov property, (iii) and
factorizations of joint densities according to the structure of a graph
(Lauritizen, et al., 1990).

Recursive structural equation models are one kind of DAG model.
However, non-recursive structural equation models are not DAG models,
and are instead naturally represented by direatgelit graphs in which a
finite series of edges representing influence leads from a vertex
representing a variable back to that same vertex. Such graphs have been
used to model feedback systems in electrical engineering (Mason, 1953,
1956), and to represent economic processes (Haavelmo, 1943,
Goldberger, 1973). In contrast to the acyclic case, almost nothing general
is known about how directed cyclic graphs (DCGSs) represent conditional
independence constraints, or about their equivalence or identifiability
properties, or about characterizing classes of DCGs from conditional
independence relations or other statistical constraints. This paper
addresses the first of these problems, which is a prerequisite for the others.
The issues turn on how the relations among properties (i), (i) and (iii)
essential to the acyclic case generalize--or more typically fail to
generalize--to directed cyclic graphs and associated families of
distributions. It will be shown that when DCGs are interpreted by analogy
with DAGs as representing functional dependencies with independently
distributed noises or "error terms," the equivalence of the fundamental
global and local Markov conditions characteristc of DAGs no longer
holds, even in linear systems, and in non-linear systems both Markov
properties may fail. For linear systems associated with DCGs with
independent errors or noises, a characterisation of conditional
independence constraints is obtained, and it is shown that the result
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generalizes in a natural way to systems in which the error variables or
noises are statistically dependent. For non-linear systems with
independent errors a sufficient condition for conditional independence of
variables in associated distributions is obtained.

The remainder of this paper is organized as follows: Section 2 defines
relevant mathematical ideas and gives some necessary technical results on
DAGs and DCGs. Section 3 obtains results for non-recursive linear
structural equations models. Section 4 treats non-linear models of the
same kind.

2. Directed Graphs

| place sets of variables and defined terms in boldface, and individual
variables in italics. Adirected graph is an ordered pair of a finite set of
verticesV, and a set of directed edgeésA directed edge frolA to B is

an ordered pair of distinct vertice& 8> in V in whichA is thetail of the
edge and is thehead; the edge isut of A andintoB, andA is parent of

B andB is achild of A. A sequence of distinct edgds; s..Ex> in G is an
undirected path if and only if there exists a sequence of vertices
<V1,...Vn+1> such that for X i < n either &/},Vj+1> = B or Vj+1,V;> =

Ej. A pathU is acyclic if no vertex occurring on an edge in the path occurs
more than once. A sequence of distinct edgEs,.<E,> in G is a
directed path if and only if there exists a sequence of vertices
<V1,...Vh+1> such that for ki1 <n <V;j,Vj+1> =E;. If there is an acyclic
directed path fronA to B or B = A thenA is anancestor of B, andB is a
descendant of A. A directed graph iacyclic if and only if it contains no
directed cyclic path3.

for helpful conversations.
2An undirected path is often defined as a sequence of vertices rather than a sequence of



A directed acyclic graph (DAG) G with a set of vertice¥ can be given

two distinct interpretations. On the one hand, such graphs can be used to
represent causal relations between variables, where an edgé tmBn

in G means thaA is a direct cause d relative toV. A causal graph is a

DAG given such an interpretation. On the other hand, a DAG with a set of
verticesV can also represent a set of probability measures Wver
Following the terminology of Lauritzen et. al. (1990) say that a probability
measure over a set of variabMssatisfies thdocal directed Markov
property for a DAG G with verticesV if and only if for everyWinV, W

is independent ofV\(DescendantW,G) O Parents(W,G)) given

Parents(W,G), whereParents(W,G) is the set of parents o¥ in G, and
Descendants(W,G) is the set of descendants Wf in G. A DAG G
represents the set of probability measures which satisfy the local directed
Markov property forG. The use of DAGs to simultaneously represent a
set of causal hypotheses and a family of probability distributions extends
back to the path diagrams introduced by Sewell Wright (1934). Variants
of DAG models were introduced in the 1980's in Wermuth (1980),
Wermuth and Lauritzen (1983), Kiiveri, Speed, and Carlin (1984), Kiiveri
and Speed (1982), and Pearl (1988).

Lauritzen et. al. also defineghobal directed Markov property that is
equivalent to the local directed Markov property for DAGs. Several

edges. The two definitions are essentially equivalent for acyclic directed graphs, because
a pair of vertices can be identified with a unique edge in the graph. However, a cyclic
graph may contain more than one edge between a pair of vertices. In that case it is no
longer possible to identify a pair of vertices with a unique edge.

3t is often the case that some further restrictions are placed on the set of distributions
represented by a DAG. For example, one could also require the Minimality Condition,
i.e. that for any distributiof® represented bys, P does not satisfy the local directed
Markov Condition for any proper subgraph@®@f This condition, and others are discussed

in Pearl(1988) and Spirtes, Glymour, and Scheines(1993). We will not consider such
further restrictions here.



preliminary notions are required. LAN(X,G) be the set of ancestors of
members ofX in G. Let G(X) be the subgraph d& that contains only
vertices inX, with an edge fromi to B in X if and only if there is an edge

from A to B inG. GM moralizes a directed grapfs if and only ifGM is an
undirected graph with the same vertice$sasnd a pair of verticex and

Y are adjacent itcM if and only if eitherX andY are adjacent iiG, or
they have a common child {&. In an undirected grapB, X is separated
fromY givenZ if and only if every undirected path between a member of
X and a member of contains a member &. If X, Y andZ are disjoint
sets of variables andY ared-separated givenZ in a directed grapls

just whenX andY are separated givehin GM(An(X O Y O Z,G)). The

relation defined here was stated in Lauritzen, et. al. (1990). "d-separation
is a graphical relation introduced by Pearl (1986). Since Lauritzen et. al.
(1990) proved that their graphical relation is equivalent to Pearl's for
acyclic graphs, and the proof is readily extended to the cyclic case, | will
also use "d-separation” to refer to the graphical relation just described.
Now the definition: A probability measure over satisfies theglobal
directed Markov property for DAG G if and only if for any three
disjoint sets of variableX, Y, andZ included inV, if X is d-separated
fromY given Z, thenX is independent o¥ given Z. Lauritzen et. al.
(1990) shows that the global and local directed Markov properties are
equivalent in DAGs, even when the probability distributions represented
have no density function. In section 2, | show that the local and global
directed Markov properties are not equivalent for cyclic directed graphs.

The following lemmas relate the global directed Markov property to
factorizations of a density function. Denote a density function @vby
f(V), where for any subset of V, f(X) denotes the marginal &fv). If
f(V) is the density function for a probability measure over a set of



variablesVv, say thatf(V) factors according to directed graph G with
verticesV if and only if for every subseét of V,

f(An(X,G)) = |_| oy (V,Parents(V,G))
VOAN(X,G)

Equation 1

wheregy is a non-negative function. The following result was proved in
Lauritzen et. al. (1990).

Lemma 1: If V is a set of random variables with a probability measure
that has a density functidfV), thenf(V) factors according to DA® if
and only ifP satisfies the global directed Markov property Gr

As in the case of acyclic graphs, the existence of a factorization according
to a cyclic directed grap® does entail that a measure satisfies the global
directed Markov property fos. The proof given in Lauritzen et. al.
(1990) for the acyclic case carries over essentially unchanged for the
cyclic case.

Lemma 2: If V is a set of random variables with a probability measure
that has a density functioifV) andf(V) factors according to directed
(cyclic or acyclic) graplG, thenP satisfies the global directed Markov
property forG.

However, unlike the case of acyclic graphs, if a probability measure over
a set of variabl®/ satisfies the global directed Markov property for cyclic
graphG and has a density functidifv), it does not follow thaf(V)
factors according tG.



The following weaker result relating factorization of densities and the
global directed Markov property does hold for both cyclic and acyclic
directed graphs.

Lemma 3: If V is a set of random variables with a probability measure
that has a positive density functitfiY), andP satisfies the global directed
Markov property for directed (cyclic or acyclic) gra@hthenf(V) factors
according tdG.

3. Non-recursive Linear Structural Equation M odels

The problem considered in this section is to investigate the generalization
of the Markov properties to linear, non-recursive structural equation
models. First we must relate the social scientific terminology to graphical
representations, and clarify the questions.

Linear structural equation models (which, following the terminology of
Bollen (1989), will be referred to as linear SEMs) can also be represented
as directed graph models. In a linear SEM the random variables are
divided into two disjoint sets, the error terms and the non-error terms.
Corresponding to each non-error random variadbis a unique error term

év. A linear SEM contains a set of linear equations in which each non-
error random variabl® is written as a linear function of other non-error
random variables angl,. A linear SEM also specifies a joint distribution
over the error terms. So, for example, the following is a linear SEM,
wherea andb are real constantgx gy, andez are jointly independent
"error terms”, anc, Y, Z, are random variables:

X=aY+e&x
Y=b Z+e¢y
Z=¢&



&x , &y, & are jointly independent and normally distributed
Equation 2

The directed graph of a linear SEM with uncorrelated errors is written
with the convention that an edge does not appear if and only if the
corresponding entry in the coefficient matrix is zero; the graph does not
contain the error termgigure 1 is the DAG that represents the SEM
shown above. A linear SEM iecursive if and only if its directed graph

is acyclic.

z > Y >
Figure 1. Example of Recursive SEM

Initially I will consider only linear SEMs in which the error terms are
jointly independent, but we will see that in the linear case in an important
sense nothing is lost by this restriction: a linear SEM with dependent
errors generates the same restrictions on the covariance matrix as does
some linear SEM with extra variables and independent errors. Further,
such an SEM with extra variables can always be found with the same
graphical structure on the original variables as obtain in the original graph.

A linear SEM containing disjoint sets of variabkésY, andZ linearly
entails thatX is independent of givenZ if and only if X is independent

of Y givenZ for all values of the non-zero linear coefficients and all
distributions of the exogenous variables in which they have positive

variances. Lepxy.z be the partial correlation ef andY givenZ. A linear
SEM containingX, Y, andZ, whereX #Y and X andY are not inZ,

linearly entails thatpxy.z = 0 if and onlypxy.z = O for all values of the

non-zero linear coefficients and all distributions of the exogenous



variables in which they have positive variances and in wiighz is

defined. It follows from Kiiveri and Speed (1982) that if the error terms
are jointly independent, then any distribution that forms a linear, recursive
SEM with a directed grap8 satisfies the local directed Markov property
for G. One can therefore apply d-separation to the DAG in a linear,
recursive SEM to compute the conditional independencies and zero patrtial
correlations it linearly entails. The d-separation relation provides a
polynomial (in the number of vertices) time algorithm for deciding
whether a given vanishing partial correlation is linearly entailed by a
DAG.

Linear non-recursive structural equation models (linear SEMs) are
commonly used in the econometrics literature to represent feedback
processes that have reached equilibriu@arresponding to a set of non-
recursive linear equations is a cyclic graph, as the following example from
Whittaker (1990) illustrates.

X1 =¢&x1
X2 = &x2
X3 = B31X1 + B3aXa + &x3
Xa = Ba2Xo + B43X3 + Ex4
EX1, X2, €3, x4 are jointly independent and normally distributed
Equation 3

4Cox and Wermuth (1993), Wermuth and Lauritzen(1990) and (indirectly)
Frydenberg(1990) consider a class of non-recursive linear models thelloceak
recursive The block recursive models overlap the class of SEMs, but they are neither
properly included in that class, nor properly include it. Frydenberg (1990) presents
necessary and sufficient conditions for the equivalence of two block recursive models.
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X, ——# X3

Xy Xy

Figure 2: Example of Non-recursive SEM

In DAGs the global directed Markov property entails the local directed
Markov property, because a variableis d-separated from its non-
parental non-descendants given its parents. This is not always the case in
cyclic graphs. For example, in figure Xy is not d-separated from its non-
parental non-descendait given its parentsXo andXg, so the local
directed Markov property does not héld.

Theorem 1: The probability measur of a linear SEML (recursive or
non-recursive) with jointly independent error terms satisfies the global
directed Markov property for the directed (cyclic or acyclic) gr&adf L,

i.e. if X, Y, andZ are disjoint sets of variables GandX is d-separated
fromY givenZ in G, thenX andY are independent giveéhin P.8

5 Note that this use of cyclic directed graphs to represent feedback processes represents
an extension of the causal interpretation of directed graphs. The causal structure
corresponding td-igure 2is described by an infinite acyclic directed graph containing
each variable indexed by time. The cyclic graph can be viewed as a compact
representation of such a causal graph. | am indebted to C. Glymour for pointing out that
the local Markov condition fails in Whittaker's model. Indeed, thermiacyclic graph

(even with additional variables) that linearly entails all and only conditional
independence relations linearly entailed by Figuralthough Thomas Richardson has
pointed out that the directed cyclic graph of Figure 2quivalent to one in which in the

edges fronX1 to X3 andX2 to X4 are replaced, respectively, by edges fiémto X4 and

from X2 to X3

6 This theorem has been independently proved by Jan Koster of the Erasmus University
Rotterdam, in a paper which has not yet been published but has been submitted to
Statistical Science.
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Theorem 2: In a linear SEML with jointly independent error terms and
directed (cyclic or acyclic) grapB containing disjoint sets of variabl¥s

Y andZ, if X is not d-separated fro givenZ thenL does not linearly
entail thatX is independent of givenZ.

Applying Theorems 1 and 2 to the directed grapRigure 2, only two
conditional independence relations are entai¥dis independent oo,
andXj is independent ofo givenX3 andXy. .

Theorem 3: In a linear SEML with jointly independent error terms and
(cyclic or acyclic) directed grap@ containingX, Y andZ, whereX #Y
andZ does not contaiX or Y, X is d-separated frond givenZ if and only

if L linearly entails thapxy.z = 0.

As in the acyclic case, d-separation provides a polynomial time procedure
for deciding whether cyclic graphs entail a conditonal independence or
vanishing partial correlation

Theorem 3 can be used to relax the restriction that the error terms in an a
linear SEML be jointly independent. ifx andey are not independent in

linear SEML, there is a linear SEM' with independent error terms such
that the marginal distribution df' over the variables ih has the same
covariance matrix ak. Form the grapl&' of L' from the graplG of L in
the following way. Add a latent variableto G, and add edges fromto
XandY. InL', modify the equation foX by making it a linear functions of

the parents oK (includingT) in G', and replace&x by £'x; modify the

equation fory in an analogous way. There always exist linear coefficients
and distributions over and the new error terms such that the marginal

covariance matrix foL' is equal to the covariance matrixlgfande'x and
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gy are independent. The process can be repeated for each pair of variables

with correlated errors ih. Hence the zero partial correlations entailed by

L can be derived by applying Theorem 3 to the graph'.oFigure 3
illustrates this process. The set of variables the graph on the left is
{X1,X2,X3,X4}. The graph on the left correlates the errors betwegand

X2 (indicated by the undirected edges between them.) The graph on the
right has no correlated errors, but does have a latent vaiiabiat is a
parent ofX1; andXy. The two graphs linearly entail the same zero partial
correlations involving only variables M (in this case they both entail no
non-trivial zero partial correlations).

Xzg=a xXo+bh xXXg+& Xz=a xXo+bh XXz+¢&3
Xg=Cc xX1+d XxXg+& Xg=Cc xX1+d xX3+¢&

X1=¢€& X1=exT+¢&1
Xo =& Xo=f xT+¢&H
&1 andé& correlated €1 andég'2 uncorrelated
Equation 4
X1 X3 /X 1 X 3
X5 X4 X5 X4
Graph with Correlated Error Graph without Correlated Error

and Same Partial
Correlations Over V

Figure 3: Correlated Errors

3. Non-linear Structural Equation M odels
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A linear SEM is a special case of a SEM in which the equations relating a
given variable to other variables and a unique error term need not be
linear. In a SEM the random variables are divided into two disjoint sets,

the error terms and the non-error terms. Corresponding to each non-error

random variabléV is a unique error terray. A SEM contains a set of
equations in which each non-error random varia¥les written as a
measureable function of other non-error random variablessand he

convention is that in the directed graph of a SEM there is an edgeAfrom

to B if and only ifB is an argument in the function fBr As in the linear

case, | will still assume that density functions exist for both the probabilty
measure over the error terms and the non-error terms, that each non-error
termV can also be written as a function of the error terms of its ancestors

in G, that eacley is a function oV and its parents i (which will be the

case if the errors are additive or multiplicative), and that the Jacobean of
the transformation between the error terms and the non-error terms is
well-defined. Call such a set of equations and its associated graph a
pseudo-indeterministic SEM (because the equations are actually
deterministic if the unmeasured error terms are included, but appear
indeterministic when the error terms are not measured.) A directed graph
G pseudo-indeterministically entails thatX is independent of givenZ

if and only if in every pseudo-indeterministic SEM with graphX is
independent oY givenZ.

This section establishes that d-separation again provides a fast algorithm
for deciding whether a DAG pseudo-indeterministically entails a
conditional independence relation, but in a cyclic directed graph d-
separation may not pseudo-indeterministically entails a conditional
independence relation. Instead, a different condition, yielding a



polynomial time algorithm, is found to suffice for a cyclic direected graph
to pseudo-indeterministically entail a conditional independence relation.

By Theorem 2, d-separation is a necessary condition for a conditional
independence claim to be entailed by an SEM. The following remarks
show d-separation is also sufficient for acyclic SEMs, but not for cyclic

SEMS.

Theorem 4. If G is a DAG containing disjoint sets of variabkésY and
Z, X is d-separated from¥ given Z if and only L pseudo-
indeterministically entails thaf is independent of givenZ.

The following example gives a concrete illustration that there is a cyclic
graphG in which X is d-separated fronv given {£,W}, but G does not
pseudo-indeterminstically entail thdis independent of given {Z,W}.

X —pW

l

Y ——» 7

Figure4: Graph G

X=&x

Y =égy
Z=WxY+¢gz
W=Zx X+ ¢y

X, &x, &x, &x with independent standard normal distributions
Equation 5

The transformation frongx, &y &z, ew toX,Y, Z, Wis 1-1 except where

ex X &y = 1 because

14
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X=&x
Y=gy
_EfwXé&ytéz
 1-(ex x &y)
_EzXEx Téw
C1-(ex x &y)
Equation 6

The Jacobean of the transformation from gtseis 1/(1 +X x Y). Hence,
transforming the joint normal density of tkie yields

HX,Y, Z W)=

_ 2
4n2Epr‘ »<expe——-y exp%ii————z—)xexpeiffiff—zog

1+(X><Y)‘
Equation 7

X is not independent of given {Z,W} in this distribution because it is not
possible to factor it into a product of terms, no one of which contains both
Xandy.

However, it is possible to modify the graphical representation of the
functional relations in such a way that d-separation applied to the new
graph does entail conditional independence. In a directed Gagbtycle

is a cyclic directed path, in which each vertex occurs on exactly two
edges. A set of cycleS is acyclegroup if and only if it is a smallest set

of cycles such that for each cyd®; in C, C contains the transitive
closure of all of the cycles intersectiig, i.e. it contains all of the cycles
that intersectC;, all of the cycles that intersect cycles that inter§act
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etc. For example, in figure 7, there are two distinct cyclegroups: the first is
{C41,C2,C3}, and the second isdy, Cs}.

) C
C1 4
B D
A — »E
C
2 Cg
F
H
C3
G

Figure5: Cyclegroups

Let the set of all cycles i@ beCycles(G). If a vertexV or an edge ¥,W>
occurs in some sé&l of cycles, for brevity write/ 0 C or <V\W> O C

respectively, although strictly speaking neither a vertex nor an edge is a
member of a set of cycles. Form tbalapsed graph G' from G by the
following operations on each cyclegroup:

1. remove all of the edges between members of the cyclegroup;

2. arbitrarily number the vertices in the cyclegroup;

3. add an edge from each lower number vertex to each higher number
vertex;

4. for each parer of a member of the cyclegroup that is not itself in the
cyclegroup, add an edge frolto each member of the cyclegroup.



(The procedure does not define a unique collapsed graph due to the
arbitrariness of the numbering, but since all of the collapsed graphs share
the same d-separation relations, it does not matter.) Note that éves if

a cyclic graph, the collapsed graph is acyclic. The collapsed graph can be
generated in polynomial time.

Theorem 5: In an SEM with directed grap8 (cyclic or acyclic) and
collapsed grapls' containing disjoint sets of variabl¥s Y andZ, if X is
d-separated fron¥ given Z in G' then the SEM entails that is
independent oY givenZ.

A collapsed graph for the graph in figure 7 is shown in figure 8a, and a
collapsed graph for the graph in figure 4 is shown in figure 8b.

| do not know whether the follow conjecture holds:

Conjecture:Let G (cyclic or acyclic) have collapsed gra@hcontaining
disjoint sets of variableX, Y andZ. If G pseudo-indeterministically
entails thak is independent of givenZ, then inG' X is d-separated
fromY givenZ.

17



(b)

Figure 6: Collapsed Graphs

5. Conclusion

These results raise a number of interesting questions whose answers may
be of practical importance. Under what conditions, for example, are their
results about conditional independence comparable to the equivalence of
vanishing partial correlations in models with depndent errors and latent
variable models with independent errors? There are polynomial
algorithms (Verma and Pearl, 1990, Frydenberg, 1990) for determining
when two arbitrary directed acyclic graphs entail the same set of
conditional independence relations. Is there a polynomial algorithm for
determining when two arbitrary directed graphs (cyclic or acyclic) linearly
entail the same set of conditional independence relations? There are
polynomial algorithms (Spirtes and Verma, 1992) for determining when
two arbitrary directed acyclic graphs entail the same set of conditional
independence relations over a common subset of var@bls there a
polynomial algorithm for determining when two arbitrary directed graphs

18



(cyclic or acyclic) linearly entail the same set of conditional independence
relations over a common subset of variab@®®8 Assuming Markov
properties hold and completely characterize the condiitonal independence
facts in distributions considered, there are correct polynomial algorithms
for inferring features of (sparse) directed acyclic graphs from a probability
distribution when there are no latent common causes (see Spirtes and
Glymour, 1991, Cooper and Herskovitz, 1992). Are there comparable
correct, polynomial algorithms for inferring features of directed graphs
(cyclic or acyclic) from a probability distribution when there are no latent
common causes? There are similarly correct, but not polynomial,
algorithms for inferring features of directed acyclic graphs from a
probability distribution even when there may be latent common causes
(see Spirtes, 1992 and Spirtes, Glymour and Scheines, 1993). Are there
comparable algorithms for inferring features of directed graphs (cyclic or
acyclic) from a probability distribution even when there may be latent
common causes?
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Proofsfor Referees

Lemma 3: If V is a set of random variables with a probability measure
that has a positive density functitfiY), andP satisfies the global directed
Markov property for directed (cyclic or acyclic) gra@hthenf(V) factors
according tdG.

Proof. Assume that probability measure owérsatisfies the global
directed Markov property for directed (cyclic or acyclic) graphl will
now show that for any disjoint sets of variabRsS, andT included in

An(X OY 0O2Z,G), if R andS are separated giveh in GM(An(X O Y
0Z,G)), thenR and S are independent given. If R, S, andT are
included inAn(X O Y O Z,G), thenAn(R OO S OT,G) is included in
An(X O Y O Z,G). Any pair of verticesA andB adjacent irGW(An(R O
SO T,G)) is also adjacent iIGM(An(X O Y O Z,G)) becausés(An(R O
SO T,GQ)) is a subgraph oB(An(X O Y O Z,G)). HenceGM(An(R O S

0 T,G)) is a subgraph cBM(An(X O Y O Z,G)). It follows that ifR and

S are separated givéhin GM(An(X O Y O Z,G)) they are also separated
in GM(An(R O SO T,G)). But by the global directed Markov property, if

R andS are separated givéhin GM(An(R O SO T,G)) thenR andS are
independent givef. It follows from the Hammersly-Clifford Theorem

that the density functioffAn(X 00 Y 00 Z,G)) can be factored as

f(An(XOY OZ,G)) = [ov (V. Parents(v,G))
VOAN(XOYOZ,G)

Equation 8
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where eachyy is a positive function, i.e., the density function factors
according taG. 1

Theorem 1. The probability measure of a linear SEM. (recursive or
non-recursive) with jointly independent error terms satisfies the global
directed Markov property for the directed (cyclic or acyclic) gr&uf L,

i.e. if X, Y, andZ are disjoint sets of variables @andX is d-separated
fromY givenZ in G, thenX andY are independent givehin P.

Proof. LetErr(X) be the set of error terms corresponding to a set of non-
error variablesX. In order to distinguish the density function férfrom

the density function for the error terms we will dgeto represent the
density function (including marginal densities) for the latter & to

represent the density function of the forme/Ifs the set of variables in
G, then by hypothesis,

fere (Err(V)) = |_| fErr (€)
eErr(V)

Equation 9

It is possible to integrate out the error terms noEin(An(X,G)) and
obtain

ferr (Err(An(X,G))) = |_| ferr (€)
ELErr (An(X,G))

Equation 10

Because for each variab¥ein V, X is a linear function of its parents @
plus a unique error tergy, it follows thatex is a linear functiorgx of X

and the parents of in G. HenceErr (An(X,G)) is a function ofAn(X,G).
Following Haavelmo (1943) it is possible to derive the density function
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for the set of variable&n(X,G) by replacing eaclex in fgr(ex) by
gx(X,Parents(X)) and multiplying by the absolute value of the Jacobean:

fv (An(X,G)) = |_| ferr (9x (X, Parents(X,G))) x|J|
XOAN(X,G)

Equation 11

whereld is the Jacobian of the transformation. Because the transformation
is linear, the Jacobian is a constant. All of the terms in the multiplication
are non-negative because they are either a density function or a positive
constant. It follows from lemma 1 thatXfandY are d-separated giveh

thenX andY are independent giveh O

Lemma 4: In a directed grapls with verticesV, if X, Y, andZ are
disjoint subsets o¥, andX is d-connected t¥ givenZ in G, thenX is d-
connected t& givenZ in an acyclic directed subgraph®f

Proof. | will use the sense of d-connection defined in Pearl (1988) which
Lauritzen et. al. (1990) proved equivalent to their sense of d-connection
for acyclic graphs. The proof of the equivalence given by Lauritzen et. al
can easily be extended to cyclic graphs. VeiXeis acollider on an
acyclic undirected patbl in directed graplt if and only if there are two
adjacent edges ad directed intoX. According to Pearl's definition, for
three disjoint set¥X, Y, andZ, X andY ared-separated givenZ in G if

and only if there is no acyclic undirected pbklirom a member oX to a
member ofY such that every non-collider dsh is not inZ, and every
collider onU has a descendant4n For three disjoint sefs, Y, andZ, X
andY ared-connected given Z in G if and only if X andY are notd-

separ ated givenZ
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Suppose thdt is an undirected path that d-connetandY givenZ, and
C is a collider orJ. Letlength(C,Z) be 0 ifC is a member o, or the
length of a shortest directed path fr&@@nto a member oZ. Letsiz€U)
equal the number of collider dn plus the sum over all collideG onU
of lengtiC,Z). U is aminimal path that d-connectX andY givenZ, if
there is no other pat' that d-connectX andY givenZ such thasiz€U")
< sizgU). If there is a path that d-conneé{sandY given Z there is at
least one minimal path that d-connextandY givenZ.

SupposeX is d-connected t¥ givenZ. Then for someXin X andYin'Y,
Xis d-connected t& givenZ by some minimal path in G. First | will
show that no shortest acyclic directed patHrom a colliderCi on U to a
member ofZ intersectd) except aCj. Suppose this is false. | will show
that it follows that there is a path' that d-connectX andY givenZ such
thatsiz€U') < siz€U), contrary to the assumption thdtis minimal. See

figure 9.
N IR

—» 4 Y X W —» Ce— (WP

o)

U u'

Figure7

Form the patiJ' in the following way. IfDj intersectdJ at a vertex other
thanC; then letWy be the vertex oB; andU that is closest tX onU, and
Wy be the vertex o andU that is closest t& on U. Suppose without
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loss of generality thatVy is afterWy onD;. LetU' be the concatenation of
U(XWx), Di(Wy,Wy), andU(WA,Y) (whereU(X,Wx) denotes the subpath
of U betweenX andW.) It is now easy to show that d-connects< and
Y givenZ, andsizgU') < siz€U) becausdJ' contains no more colliders
thanU and a shortest directed path fraklx to a member oZ is shorter
thanDj. HenceU is not minimal, contrary to the assumption.

Next, | will show that ifU is minimal, then it does not contain a pair of
collidersC andD such that a shortest directed path filono a member of

Z intersects a shortest path frdnto a member oZ. Suppose this is
false. See figure 10.

X —9 C4— V—Pp Hg— X —P Ce— M—> BM—

NS
l l

Figure8

Let Dy be a shortest directed acyclic path fr@o a member oZ that
intersectdy, a shortest directed acyclic path fr@nto a member oE.
Let the vertex orD4 closest toC that is also oD beR. LetU' be the
concatenation otJ(X,C), D1(C,R), Do(C,R), andU(Y,D). It is now easy to
show thal)' d-connectsX andY givenZ andsiz€U") < siz€U) becauséJ’



contains fewer colliders thdd. HenceU is not minimal, contrary to the
assumption.

For each collideC on a minimal pathJ that d-connectX andY givenZ,

a shortest directed path fro® to a member of does not intersedt
except alC, and does not intersect a shortest directed path from any other
collider D to a member oZ. It follows that the subgraph consistinglbf

and a shortest directed acyclic path from each colliddy ém a member

of Z is acyclic.C]

Theorem 2: In a linear SEML with jointly independent error terms and
directed (cyclic or acyclic) grapB containing disjoint sets of variabl¥s

Y andZ, if X is not d-separated froivi givenZ therL. does not linearly
entail thatX is independent of givenZ.

Proof. Suppose then thAtis not d-separated from givenZ. By lemma

4, if X is not d-separated from givenZ in a cyclic graptG, then there is
some acyclic subgrap8' of G in which X is not d-separated from
given Z. Geiger and Pearl (1988) have shown that i§ not d-separated
fromY givenZ in a DAG, then there is some distribution represented by
the DAG in whichX is not independent of givenZ, and it has been
shown (Spirtes, Glymour and Scheines, 1993) that there is in particular a
linear normal distributior® in which X is not independent of givenZ.

If P satisfies the global directed Markov property @it also satisfies it

for G because every d-connecting pathGns a d-connecting path i@.
Hence there is some linear normal distribution representé&alibywhich

X is not independent of givenZ. 01

Theorem 3: In a linear SEML with jointly independent error terms and

(cyclic or acyclic) directed grap@ containingX, Y andZ, whereX Y

27



andZ does not contaiX or Y, X is d-separated frodf givenZ if and only

L linearly entails thapxy.z = 0.

Proof. (This proof for cyclic or acyclic graphs is based on the proof for
acyclic graphs in Verma and Pearl, 1990.) IL'dbe a linear SEM with the
same directed graph and that is the same hsxcept that the exogenous
variables are jointly normally distributed with the same variances as the
corresponding variables in By theorems 1 and 2, linearly entails that

Xis independent of givenZ if and only ifX is d-separated frorv given

Z in G. Hence for all values of the linear coefficients and all joint normal
distributions over the exogenous variables in which the exogenous

variables have positive variance gy z exists,pxy.z = 0 if and only if

X is d-separated fronY given Z in G. Because the value of a partial
correlation in a linear SEM depends only on the values of the linear
coefficients and the variances of the exogenous variablelsnearly

entailspxy.z = 0 if and only ifX is d-separated frond givenZ in G and

hencel also linearly entails thadxy z = O if and only ifX is d-separated

fromYgivenZ in G. O

Note that for an SEM with grap@, if V # X, then dey, / dXis non-zero

only if there is an edge frold to V in G (becausey is a function only of
V andV's parents irG.) Associate with each non-zero partial derivative
dey /X the edge fronX to V in G. A product of partial derivatives form

aloop in G if and only if the corresponding edges form a cycl&iTwo
loopsintersect if and only if their corresponding cycles intersect.

Let Jerr(v)->v be the Jacobean of the transformation fiem(V) to V,
andJy->grr(v) be the Jacobean of the transformation ko Err (V). A
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product of partial derivativeS occurring in a ternil in Jerr(v)->v is
minimally sufficient in T if for each variable occurring i, all of its
occurrences inl are inS, and no subset d& has this property. For
example, in

dSW % dfx o de % dSU % d&‘v
oX dY oW oU oV

Equation 12

the three minimally sufficient products are

osw N ey 9 o"sy’ Jey '~ and oey
oX JdY ow oU oV

Equation 13

Jerr(v)->v is equal to 1lv->grr(v), but it turns out to simplify the proofs
if at intermediate stages we work wilty.>grr(v) than if we work with
Jerr(v)->v. Jv->Err(v) is the determinant of a matrix in which the element

in theith row andjt" column isde, / dV;.

X is anancestral set for a directed grapks with verticesV if and only if
X = An(Y,G) for someY included inV.

Theorem 4: In an acylic graplt containing disjoint sets of variabl&s
Y andZ, G pseudo-indeterministically entails thétis d-separated from
Y givenZ if and onlyL entails thaX is independent of givenZ.

Proof. The first part of the proof is essentially the same as that of
Theorems 1 and 2, and shows that



f(An(X,G)) = |_| f(gx (X,Parents(X,G)) x|J|
XOAN(X,G)

Equation 14
In an acyclic graph, the Jacobian of the transformation is a single term

consisting of the product of the terms along the diagonal of the
transformation matrix:

J= %8y _ []mv (V. Parents(V,G))
VOAN(X,G) N VOAN(X,G)
Equation 15

(This is because for an acyclic graph the transformation matrix can be
arranged so that it is lower triangular.) Each teds) / dVis some

function my of V and its parents, becausg is a function ofV and its

parents. Hence by lemma 1 XfandY are d-separated giveh thenX
andY are independent giveh

Suppose thaX andY are not d-separated giveh Then by Theorem 2,
there is a linear SEM in whicK andY are not independent giveh

Since a linear SEM is a special case of an SEM, there is an SEM in which
X andY are not independent givéh O

Lemma 5: In an SEM with directed grapB with verticesV, if X is an
ancestral set foG, then each minimally sufficient product of terms
occurringT of Jx->grr(x) that is non-zero is either a loop @(X), or

de, /oV forVin X.

Proof. Each term idx->grr(x) is a product of partial derivatives in the
transformation matrix, one from each row, and one from each column,
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times a variable that is either equal to 1 or -1. Hence each variaKle in
appears exactly once in the numerator of some partial derivative in the
term, and exactly once in the denominator of some partial derivative in the
term. If de, /dV occurs inT, it is minimally sufficient.

Suppose then that some minimally sufficient product of partial derivatives
Soccurring inT is not equal tade,, /dV for anyV in X. ThenS does not

containde, /dV for V in X, because otherwise it would not be minimally

sufficient. Hence each partial derivative $is of the formde,, /dY

whereV £ Y. Such a term is non-zero only if there is an edge framV

in G. Becausé/ andY are both in ancestral skt if there is an edge from
Y to V in G, then there is an edge frovhto V in G(X). Since all of the
occurrences of the variables $are inS each variable occurs once in the
numerator and once in the denominator of a partial derivati& $o in
G(X) there is a path in which all of the variablesSiwccur once at the
head of an edge and once at the tail. It follows that there is a cy@(Xn
that corresponds to the product of partial derivatives in

A cycleset is a set of non-intersecting cycles. Bicleset(G) be the set
of all cyclesets irG. Let Vertices(C) be the set of vertices occuring in a
cyclesetC.

Lemma 6: In an SEM with directed grap@ with verticesV, if X is an
ancestral set fd6 then

0 d«‘:’y iN dEV L

5 _ d(C) x W EY
X —>Err(X) c[cycleget(G(X)) éwa 0c M% X\ vl;lticec(c) oV E
Equation 16
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where in each termd(C) is either equal to either 1 or -1.

Proof. For eaclt that is a set of loops iG(X) that do not intersect, let

§(C) = d(C) x %y o dey
%KWY> acC M%/DX\Vertlcas(C) E
Equation 17

| will show that that for each cycles€tin G(X) thatg(C) is a term injx-
>Err(X), €very non-zero term idy->grr(v) is equal tog(C) for some

cyclesetC in G(X), and ifC1 andC» are distinct cyclesets thgtC,) #
9(C2).

For eachC, a variable occurs once in the denominator of a partial
derivative ing(C), and once in the numerator of partial derivativg(D).
Hence one partial derivative from each row and each column of the
transformation matrix occurs ig(C). But every product of partial
derivatives which consists of one partial derivative from each column and
each row of the transformation matrix is a terndiagrr (x) (becausey.-
>Err(X) is the determinant of the transformation matrix). HegCq is a

term inJx->grr (x)-

Let C; be a set of cycles such that no pair of cycle§inntersect, and
similarly for Co. Suppose thaf1 # Co; theng(C1) # g(C») unless there is

some way to rearrange the edge€innto the cycles irC,. But because
no pair of cycles irC; intersect, each vertex that appear€inoccurs in
exactly two edges, once as the head, and once as the tail. Hence the edges

in C1 cannot be rearranged into the loop€£in andg(C1) # g(C»).
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By lemma 5, each minimally sufficient product of terms occurring of
Jx->grr(x) is either a loop ove,/dV for V in X. By definition, the
variables in distinct minimally sufficient product of terms do not overlap.
Hence T consists of a product of non-intersecting minimally sufficient
products of terms. Hence, for every non-zero ténmJx->grr (x) there is

a cycleseC such thal =g(C). O

Let Cyclegroup(G) be the set of all cyclegroups@ If C is a cyclegroup
in G, letCycleset(C) be the set of all cyclesets includeddn

Lemma 7: In an SEM with directed grapB, if X is an ancestral set for
G, then

IX—>Err(x) =
O O
% dEV %X
DCycI%(G(X)) N
O D O 0 [ il
0 |—| gj(D) % 08\/ % 0EY
H: OCyclegroup(G(X)) ED DCycIeset(C) DC\D N W.,Y> D oW
Equation 18
whered(D) is a variable equal either to 1 or -1.
Proof. By lemma 6,
D d«‘:’y [T dEV

IX=>Err(x) = |_|

d(C) x =V
C[Cycleset(G(X)) éw Y>[OC oW %/ X\ Vertlcec(C) E
Equation 19
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If V is not in a cycle iG(X) then it is not in any cycleset. Hence, by
lemma 5, every occurrence 4fin each non-zero term x->grr(x) is of

the form de,, /dV . Hence it is possible to factor

[ l_l @[
é/ OCycles(G(X)) N E
Equation 20

from each non-zero term in the previous equation, becadséaks not
occur in a cycle, it does not occur in any cycleset. This leads to

J><—>Err(X) =
SN Emy doxg E o, L
E/DCycles(G(X)) d\/ Hﬂ:mycleset(G(x)) HW,Y> oc dw%/mycles(G([)l\Vertices(C) d\/ E
Equation 21

The set of cyclegroups i@ partitions the set of cycles (8. Hence each
cycleset inG can be partitioned into a set of cyclesets, where each
cycleset contains only cycles from the same cyclegroup. In addition,
suppose thaC is a set of cyclesets, where each cyclesél tontains
cycles from only one cyclegroup, and each pair of cyclesd&fsdantains
cycles from different cyclegroups. Then the union of any two cyclesets in
C is also a cycleset. Hence



O
dEY (?EV
d(D) x
CECycI&eet(G(X)) éw Y>[C oW %/ [Cycles(G(X))\ C oV %

N 0 08\/ C?EY

N
d(D) x
CECycIegl:)lup(G(X))QDECyCIZ&eet(C) %/ EEl\D N %W Y>0OD oW
Equation 22

uE

O

Lemma 8: For an SEM with directed gragghwith verticesV, if X is an
ancestral set foB then

fy(X) =
0 0 o L
%/ |_| av (V, Parents(V,G(X))%x %C |_| dc (C, Parents(C,G(X))
[Cycl

OCycles(G(X)) egroup(G(X))
Equation 23

where eacly is a non-negative function.

Proof. The transformed density functiontofr (X) is equal to

O H
H(l_l fe (hy (X, Parents(X, G(X)))EX “]Err(X)—>X
OXx
Equation 24

whereex = hyx(X,Parents(X,G(X)). By lemma 7,
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‘]X—>Err(x) =
O oe, O
Hooddny v

oe, L]

O (]
S oodd B m@a"“’”aﬂ w%mow%%

Equation 25

Each term in

U n ‘%V L
%/ OCycles(G(X)) N E

Equation 26

is a function oV andParents(V,G(X)). Each term in

s 0 0 o) 0 g, D dey i
CE[:ycIegroup(G(X))BDIZCyclas.et(C)étj %/ OC\D v %W Y>0OD oW
Equation 27

contains only error terms associated with variablés,iand hence is a
function of C andParents(C,G(X)). Hence, there exist functions, such
that

‘]X—>Err(X) -

O 0 O C
g Hm(V,Parents(V,G(X))Exa |_|mC(C,ParentS(C,G(X)))E

OCycles(G(X)) OCyclegroup(G(X))

Equation 28
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Becauselgrr(x)->x = 10x->Err (x), JErr(X)->x can also be factored as in
Equation 28Combining this withEquation 24, there exist functions non-
negative functiongy such that

O O O C
fy(X) = %/ |_| ov(V, Parents(V,G(X))%x %: ﬂ ac(C, Parents(C,G(X)))E
OCycles(G(X)) OCyclegroup(G(X))
Equation 29

]

Theorem 5: In an SEML with directed (cyclic or acyclic) grap8 with
verticesV and collapsed grap@' containing disjoint sets of variabls
Y andZ, if X is d-separated frof givenZ in G' thenX is independent
of Y givenZ.

Proof. By lemma 8

fy(An(XOY 0Z,G)) =

0 0
ﬁ/ |_| gy (V,Parents(V,G(An(X O Y O Z,G))gx
OCycles(G(An(XJYDZ,G)))

0 C
%: |_| gC(C, Parents(C,G(An(X OY OZ,G))))
OCyclegroup(G(An(XOYOZ,G)))

Equation 30
This is a factorization according to the collapsed gr@ptand hence by

lemma 1, for three disjoint sets of variabdsY andZ, if X andY are d-
separated gived in G', thenX andY are independent giveh O



