Peter Schilke

Peter Schilke
University of Cologne | UOC · I. Institute of Physics

Prof.

About

514
Publications
26,975
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,404
Citations
Citations since 2016
124 Research Items
7793 Citations
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
201620172018201920202021202202004006008001,0001,2001,400
Introduction
I am interested in high-mass star formation and astrochemistry. I mostly work with millimeter/submillimeter data, am involved in the HEXOS and CHESS Herschel/HIFI GT KP, and am trying to get ALMA time.

Publications

Publications (514)
Preprint
Full-text available
The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact HII (UCHII) regions were identified in SgrB2's central hot cores, SgrB2(M) and SgrB2(N). Our aim is to characterize the properties of the HII regions in the entire SgrB2 cloud. Comparing the HI...
Article
The Large Magellanic Cloud (LMC) is the nearest laboratory for detailed studies on the formation and survival of complex organic molecules (COMs), including biologically important ones, in low-metallicity environments—typical of earlier cosmological epochs. We report the results of 1.2 mm continuum and molecular line observations of three fields in...
Preprint
Full-text available
We report the first detection of deuterated water (HDO) toward an extragalactic hot core. The HDO 2$_{11}$-2$_{12}$ line has been detected toward hot cores N105-2A and 2B in the N105 star-forming region in the low-metallicity Large Magellanic Cloud (LMC) dwarf galaxy with the Atacama Large Millimeter/submillimeter Array (ALMA). We have compared the...
Article
Full-text available
The HyGAL Stratospheric Observatory for Infrared Astronomy legacy program surveys six hydride molecules—ArH ⁺ , OH ⁺ , H 2 O ⁺ , SH, OH, and CH—and two atomic constituents—C ⁺ and O—within the diffuse interstellar medium (ISM) by means of absorption-line spectroscopy toward 25 bright Galactic background continuum sources. This detailed spectroscopi...
Article
Context. Complex organic molecules (COMs) are often observed toward embedded Class 0 and I protostars. However, not all Class 0 and I protostars exhibit COM emission. Aims. The aim is to study variations in methanol (CH 3 OH) emission and use this as an observational tracer of hot cores to test if the absence of CH 3 OH emission can be linked to so...
Preprint
Full-text available
The HyGAL SOFIA legacy program surveys six hydride molecules -- ArH+, OH+, H2O+, SH, OH, and CH -- and two atomic constituents -- C+ and O -- within the diffuse interstellar medium (ISM) by means of absorption-line spectroscopy toward 25 bright Galactic background continuum sources. This detailed spectroscopic study is designed to exploit the uniqu...
Preprint
Complex organic molecules (COMs) are often observed toward embedded Class 0 and I protostars. However, not all Class 0 and I protostars exhibit COMs emission. In this work, variations in methanol (CH$_3$OH) emission are studied to test if absence of CH$_3$OH emission can be linked to source properties. Combining both new and archival observations w...
Article
Context. To better understand the formation of high-mass stars, it is fundamental to investigate how matter accretes onto young massive stars, how it is ejected, and how all this differs from the low-mass case. The massive protocluster G31.41+0.31 is the ideal target to study all these processes because observations at millimeter and centimeter wav...
Article
Full-text available
Context. The interstellar medium is observed to be organized in filamentary structures, and in neutral (H I ) and ionized (H II ) bubbles. The expanding nature of these bubbles shapes the surrounding medium and possibly plays a role in the formation and evolution of the interstellar filaments. The impact of the expansion of these bubbles on the int...
Preprint
Full-text available
Context. To better understand the formation of high-mass stars, it is fundamental to investigate how matter accretes onto young massive stars, how it is ejected, and how all this differs from the low-mass case. The massive protocluster G31.41+0.31 is the ideal target to study all these processes because observations at millimeter and centimeter wav...
Preprint
Full-text available
The Large Magellanic Cloud (LMC) is the nearest laboratory for detailed studies on the formation and survival of complex organic molecules (COMs), including biologically important ones, in low-metallicity environments--typical for earlier cosmological epochs. We report the results of 1.2 mm continuum and molecular line observations of three fields...
Preprint
Full-text available
[Abridged] The interstellar medium is observed to be organised in filamentary structures, as well as neutral (HI) and ionized (HII) bubbles. The expanding nature of these bubbles makes them shape their surroundings and possibly play a role in the formation and evolution of interstellar filaments. We present APEX $^{13}$CO and C$^{18}$O(2-1) observa...
Article
Context. Increasing evidence suggests that, similar to their low-mass counterparts, high-mass stars form through a disk-mediated accretion process. At the same time, formation of high-mass stars still necessitates high accretion rates, and hence, high gas densities, which in turn can cause disks to become unstable against gravitational fragmentatio...
Article
Full-text available
We report the discovery of a velocity coherent, kiloparsec-scale molecular structure toward the Galactic center region with an angular extent of 30° and an aspect ratio of 60:1. The kinematic distance of the CO structure ranges between 4.4 and 6.5 kpc. Analysis of the velocity data and comparison with the existing spiral arm models support that a m...
Preprint
Full-text available
We report the discovery of a velocity coherent, kpc-scale molecular structure towards the Galactic center region with an angular extent of 30deg and an aspect ratio of 60:1. The kinematic distance of the CO structure ranges between 4.4 to 6.5 kpc. Analysis of the velocity data and comparison with the existing spiral arm models support that a major...
Preprint
Full-text available
Increasing evidence suggests that, similar to their low-mass counterparts, high-mass stars form through a disk-mediated accretion process. At the same time, formation of high-mass stars still necessitates high accretion rates, and hence, high gas densities, which in turn can cause disks to become unstable against gravitational fragmentation. We stu...
Article
Context. Peptide-like bond molecules, which can take part in the formation of proteins in a primitive Earth environment, have been detected only towards a few hot cores and hot corinos up to now. Aims. We present a study of HNCO, HC(O)NH 2 , CH 3 NCO, CH 3 C(O)NH 2 , CH 3 NHCHO, CH 3 CH 2 NCO, NH 2 C(O)NH 2 , NH 2 C(O)CN, and HOCH 2 C(O)NH 2 toward...
Preprint
Full-text available
Peptide-like bond molecules, which can take part to the formation of proteins in a primitive Earth environment, have been detected up to now only towards a few sources. We present a study of HNCO, HC(O)NH$_{2}$, CH$_{3}$NCO, CH$_{3}$C(O)NH$_{2}$, CH$_{3}$NHCHO, CH$_{3}$CH$_{2}$NCO, NH$_{2}$C(O)NH$_{2}$, NH$_{2}$C(O)CN, and HOCH$_{2}$C(O)NH$_{2}$ to...
Preprint
Full-text available
We present a detailed overview of the science goals and predictions for the Prime-Cam receiver being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6-m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of i...
Preprint
Full-text available
We have revisited the chemistry of chlorine-bearing species in the diffuse interstellar medium with new observations of the HCl$^+$ molecular ion and new astrochemical models. Using the GREAT instrument on board SOFIA, we observed the $^2\Pi_{3/2}\, J = 5/2 - 3/2$ transition of HCl$^+$ near 1444 GHz toward the bright THz continuum source W49N. We d...
Article
Context. We present a full analysis of a broadband spectral line survey of Sagittarius B2 (Main), one of the most chemically rich regions in the Galaxy located within the giant molecular cloud complex Sgr B2 in the central molecular zone. Aims. Our goal is to derive the molecular abundances and temperatures of the high-mass star-forming region Sgr...
Article
We present the 360° catalogue of physical properties of Hi-GAL compact sources, detected between 70 and 500 $\mu$m. This release not only completes the analogous catalogue previously produced by the Hi-GAL collaboration for −71° ≲ ℓ ≲ 67°, but also meaningfully improves it because of a new set of heliocentric distances, 120 808 in total. About a th...
Article
Context. The formation of high-mass star-forming regions from their parental gas cloud and the subsequent fragmentation processes lie at the heart of star formation research. Aims. We aim to study the dynamical and fragmentation properties at very early evolutionary stages of high-mass star formation. Methods. Employing the NOrthern Extended Millim...
Preprint
We present a full analysis of a broadband spectral line survey of Sagittarius B2 (Main), one of the most chemically rich regions in the Galaxy located within the giant molecular cloud complex Sgr B2 in the Central Molecular Zone. Our goal is to derive the molecular abundances and temperatures of the high-mass star-forming region Sgr B2(M) and thus...
Preprint
Full-text available
We present the $360^\circ$ catalogue of physical properties of Hi-GAL compact sources, detected between 70 and 500 $\mu$m. This release not only completes the analogous catalogue previously produced by the Hi-GAL collaboration for $-71^\circ \lesssim \ell \lesssim 67^\circ$, but also meaningfully improves it thanks to a new set of heliocentric dist...
Preprint
Context: The formation of high-mass star-forming regions from their parental gas cloud and the subsequent fragmentation processes lie at the heart of star formation research. Aims: We aim to study the dynamical and fragmentation properties at very early evolutionary stages of high-mass star formation. Methods: Employing the NOrthern Extended Millim...
Article
Full-text available
Aims: Current star formation research centers the characterization of the physical and chemical properties of massive stars, which are in the process of formation, at the spatial resolution of individual high-mass cores. Methods: We use sub-arcsecond resolution (~0.′′4) observations with the NOrthern Extended Millimeter Array at 1.37 mm to study th...
Article
Context. ALMA observations at 1.4 mm and ~0.′′2 (~750 au) angular resolution of the Main core in the high-mass star-forming region G31.41+0.31 have revealed a puzzling scenario. On the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic...
Preprint
Context. ALMA observations at 1.4 mm and 0.2'' (750au) angular resolution of the Main core in the high-mass star forming region G31.41+0.31 have revealed a puzzling scenario: on the one hand, the continuum emission looks very homogeneous and the core appears to undergo solid-body rotation, suggesting a monolithic core stabilized by the magnetic fie...
Article
Applying dendrogram analysis to the CARMA-NRO C ¹⁸ O ( J = 1–0) data having an angular resolution of ∼8″, we identified 692 dense cores in the Orion Nebula Cluster region. Using this core sample, we compare the core and initial stellar mass functions in the same area to quantify the step from cores to stars. About 22% of the identified cores are gr...
Article
With this research note, we are releasing the CARMA-NRO Orion Survey data first presented in Kong et al., enhanced with additional coverage of the L1641-C region to the south of the integral-shaped filament. We are including position–position–velocity cubes for the molecular lines ¹² CO(1–0), ¹³ CO(1–0), and C ¹⁸ O(1–0). The original paper includes...
Preprint
Applying dendrogram analysis to the CARMA-NRO C$^{18}$O ($J$=1--0) data having an angular resolution of $\sim$ 8", we identified 692 dense cores in the Orion Nebula Cluster (ONC) region. Using this core sample, we compare the core and initial stellar mass functions in the same area to quantify the step from cores to stars. About 22 \% of the identi...
Preprint
Full-text available
We use sub-arcsecond resolution ($\sim$0.4$''$) observations with NOEMA at 1.37 mm to study the dust emission and molecular gas of 18 high-mass star-forming regions. We combine the derived physical and chemical properties of individual cores in these regions to estimate their ages. The temperature structure of these regions are determined by fittin...
Article
A unique filament is identified in the Herschel maps of the Orion A giant molecular cloud. The filament, which we name the Stick, is ruler-straight and at an early evolutionary stage. Transverse position–velocity diagrams show two velocity components closing in on the Stick. The filament shows consecutive rings/forks in C ¹⁸ O (1−0) channel maps, w...
Article
Context. Recent theoretical and observational studies debate the similarities of the formation process of high- (>8 M ⊙ ) and low-mass stars. The formation of low-mass stars is directly associated with the presence of disks and jets. Theoretical models predict that stars with masses up to 140 M ⊙ can be formed through disk-mediated accretion in dis...
Preprint
Full-text available
By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as identified by SEDIGISM, and use these giant molecular cloud (GMC) masses, the bolometric luminosities,...
Preprint
Full-text available
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg^2 of the Galactic plane between l = -60 deg and l = +31 deg in several molecular transitions, including 13CO(2-1) and C18O(2-1), thus probing the moderately dense (~10^3 cm^-3) component of the interstellar medium...
Preprint
Full-text available
We use the 13CO(2-1) emission from the SEDIGISM high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the SCIMES algorithm. This work compiles a cloud catalogue with a total of 10663 molecular clouds, 10300 of which we were able to assign distances and...
Article
Context: One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are n...
Preprint
Full-text available
Recent theoretical and observational studies debate the similarities between the formation process of high-mass (>8 Msun) and low-mass stars. The formation of low-mass star formation is directly associated with the presence of disks and jets. According to this scenario, radio jets are expected to be common in high-mass star-forming regions. We aim...
Article
The high resolution vibrational spectrum of ethyl cyanide (C2H5CN) has been investigated in the far-IR using synchrotron-based Fourier transform spectroscopy. The assignment was performed using the Automated Spectral Assignment Procedure (ASAP) allowing accurate rotational energy levels of the four lowest fundamental vibrations of the species, name...
Article
Full-text available
Io’s atmosphere is predominately SO2 that is sustained by a combination of volcanic outgassing and sublimation. The loss from the atmosphere is the main mass source for Jupiter’s large magnetosphere. Numerous previous studies attributed various transient phenomena in Io’s environment and Jupiter’s magnetosphere to a sudden change in the mass loss f...
Preprint
A unique filament is identified in the {\it Herschel} maps of the Orion A giant molecular cloud. The filament, which, we name the Stick, is ruler-straight and at an early evolutionary stage. Transverse position-velocity diagrams show two velocity components closing in on the Stick. The filament shows consecutive rings/forks in C$^{18}$O(1-0) channe...
Article
Full-text available
This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of th...
Article
Full-text available
This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of th...
Article
Context. One of the goals of astrochemistry is to understand the degree of chemical complexity that can be reached in star-forming regions, along with the identification of precursors of the building blocks of life in the interstellar medium. To answer such questions, unbiased spectral surveys with large bandwidth and high spectral resolution are n...
Preprint
Understanding the degree of chemical complexity that can be reached in star-forming regions, together with the identification of precursors of the building blocks of life in the interstellar medium, is one of the goals of astrochemistry. Unbiased spectral surveys with large bandwidth and high spectral resolution are thus needed, to resolve line ble...
Article
Full-text available
The SEDIGISM (Structure, Excitation and Dynamics of the Inner Galactic Interstellar Medium) survey used the APEX telescope to map 84 deg2 of the Galactic plane between ℓ = −60○ and ℓ = +31○ in several molecular transitions, including 13CO (2 – 1) and C18O (2 – 1), thus probing the moderately dense (∼103 cm−3) component of the interstellar medium. W...
Article
By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as identified by SEDIGISM, and use these giant molecular cloud (GMC) masses, the bolometric luminosities,...
Article
We use the 13CO (2-1) emission from the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic InterStellar Medium) high-resolution spectral-line survey of the inner Galaxy, to extract the molecular cloud population with a large dynamic range in spatial scales, using the Spectral Clustering for Interstellar Molecular Emission Segmentat...
Preprint
Full-text available
We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky...
Article
Full-text available
Aims. We aim to characterise certain physical properties of high-mass star-forming sites in the NGC 6334 molecular cloud, such as the core mass function (CMF), spatial distribution of cores, and mass segregation. Methods. We used the Atacama Large Millimeter/sub-millimeter Array (ALMA) to image the embedded clusters NGC 6334-I and NGC 6334-I(N) in...
Preprint
Full-text available
We have studied the high-mass star-forming complex NGC 6334 with ALMA in the continuum emission at a frequency of 87.6 GHz, achieving a spatial resolution of 1300 au. Detecting 142 compact sources distributed over the whole observed area, we then used machine learning algorithms to group the compact cores in different clusters. A total of four main...
Article
Full-text available
Aims. In order to understand the observed molecular diversity in high-mass star-forming regions, we have to determine the underlying physical and chemical structure of those regions at high angular resolution and over a range of evolutionary stages. Methods. We present a detailed observational and modeling study of the hot core VLA 3 in the high-ma...
Preprint
We present a detailed observational and modeling study of the hot core VLA 3 in the high-mass star-forming region AFGL 2591, which is a target region of the NOrthern Extended Millimeter Array (NOEMA) large program CORE. Using NOEMA observations at 1.37 mm with an angular resolution of ~0."42 (1 400 au at 3.33 kpc), we derived the physical and chemi...
Article
We have investigated the formation and kinematics of submillimeter (submm) continuum cores in the Orion A molecular cloud. A comparison between submm continuum and near-infrared extinction shows a continuum core detection threshold of A_V ~ 5–10 mag. The threshold is similar to the star formation extinction threshold of A_V ~ 7 mag proposed by rece...
Article
Full-text available
Context: The formation process of high-mass stars (>8 M⊙) is poorly constrained, particularly the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. Aims: We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-m...
Article
Full-text available
Context. The giant molecular cloud Sagittarius B2 (hereafter Sgr B2) is the most massive region with ongoing high-mass star formation in the Galaxy. In the southern region of the 40-pc large envelope of Sgr B2, we encounter the Sgr B2(DS) region, which hosts more than 60 high-mass protostellar cores distributed in an arc shape around an extended H...
Preprint
The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. In the southern region of the 40-pc large envelope of SgrB2, we encounter the SgrB2(DS) region which hosts more than 60 high-mass protostellar cores distributed in an arc shape around an extended HII region. We...