Peter Mccourt

Peter Mccourt
University of Toronto | U of T · Department of Cell and Systems Biology

PhD

About

123
Publications
31,274
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,023
Citations
Additional affiliations
June 1993 - present
University of Toronto
Position
  • Professor (Full)

Publications

Publications (123)
Article
Full-text available
Strigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for sig...
Article
Full-text available
Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (ShHTLs) have been identified, discerning t...
Article
Since the early days of plant biology, small molecule hormones have held a central place in our understanding of development. A key feature of plant hormone action is the ability to regulate multiple developmental processes. Despite this pleiotropy, decades of genetic and molecular studies have shown that plant hormone signaling is often canalized...
Article
Significance Parasitic plants like witchweed cause huge losses in crop yield in Africa. A key part to the success of witchweed is to start its life cycle upon sensing small molecules called strigolactones, which are exuded from roots of host plants into the soil. Witchweed sense host-derived strigolactones through receptors called HTLs. It is thoug...
Article
Heat stress occurring at reproductive stages can result in significant and permanent damage to crop yields. However, previous genetic studies in understanding heat stress response and signaling were performed mostly on seedling and plants at early vegetative stages. Here we identify, using a developmentally defined, gain‐of‐function genetic screen...
Article
Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Strig...
Article
Full-text available
A step toward control of a noxious weed The parasitic plant Striga hermonthica causes extensive crop losses, particularly in Africa. Strigolactone hormones can be used to initiate germination of Striga seeds when no host crop is present, which causes the nascent Striga plants to die. Unfortunately, strigolactones are also used by crop plants to est...
Chapter
Strigolactones are a class of terpenoid-based plant hormones that are best known for their role in the suppression of axillary branching. However, strigolactones also play a role as stimulants for the germination of parasitic plants of the genera Striga and Orobanche. This dual role for strigolactones as endogenous hormones and interspecies signali...
Article
Full-text available
Strigolactones (SLs) are a collection of related small molecules that act as hormones in plant growth and development. Intriguingly, SLs also act as ecological communicators between plants and mycorrhizal fungi and between host plants and a collection of parasitic plant species. In the case of mycorrhizal fungi, SLs exude into the soil from host ro...
Article
Full-text available
Small-molecule hormones play central roles in plant development, ranging from cellular differentiation and organ formation to developmental response instruction in changing environments. A recently discovered collection of related small molecules collectively called strigolactones are of particular interest, as these hormones also function as ecolo...
Article
Full-text available
Strigolactones (SLs) are small molecules that act as endogenous hormones to regulate plant development as well as exogenous cues that help parasitic plants to infect their hosts. Given that parasitic plants are experimentally challenging systems, researchers are using two approaches to understand how they respond to host-derived SLs. The first invo...
Article
Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins1–3. Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. He...
Article
Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is t...
Article
Full-text available
The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive re...
Article
Full-text available
ALTERED MERISTEM PROGRAM1 (AMP1) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. How...
Article
I. II. III. IV. V. VI. VII. VIII. IX. X. XI. XII. XIII. Natural variation and genome-wide association studies XIV. XV. XVI. XVII. References SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 5...
Article
Full-text available
Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one...
Article
Full-text available
Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG)...
Patent
The novel constructs and methods of this invention improve tolerance in plants to environmental stresses and senescence. Nucleic acids encoding a plant farnesyl transferase are described, as are transgenic plants and seeds incorporating these nucleic acids and proteins. Also provided are non-naturally occurring mutations in the gene encoding farnes...
Article
Strigolactones are terpenoid-based plant hormones that act as communication signals within a plant, between plants and fungi, and between parasitic plants and their hosts. Here we show that an active enantiomer form of the strigolactone GR24, the germination stimulant karrikin, and a number of structurally related small molecules called cotylimides...
Article
Full-text available
In contrast to the dominant drug paradigm in which compounds were developed to “fit all,” new models focused around personalized medicine are appearing in which treatments are developed and customized for individual patients. The agricultural biotechnology industry (Ag-biotech) should also think about these new personalized models. For example, mos...
Article
Full-text available
The sesquiterpenoid abscisic acid (ABA) mediates an assortment of responses across a variety of kingdoms including both higher plants and animals. In plants, where most is known, a linear core ABA signaling pathway has been identified. However, the complexity of ABA-dependent gene expression suggests that ABA functions through an intricate network....
Article
Full-text available
Significance Occurrence of mature green seeds in oil-seed crops such as canola and soybean causes severe losses in revenue. Retention of chlorophyll in seeds can be an undesirable trait as it affects seed maturation, seed oil, and meal quality. We show that the abscisic acid (ABA, plant hormone) dependent transcription factor ABSCISIC ACID INSENSIT...
Article
Full-text available
Plant seeds naturally accumulate storage reserves (proteins, carbohydrates, lipids) that are mobilized during germination to provide energy and raw materials to support early seedling growth. Seeds have been exploited as bioreactors for the production to foreign materials, but stable, high level expression has been elusive, in part due to the intri...
Data
PHA lines 1, 3, 5 and 7 are single locus insertions. (TIFF)
Data
Validation of PHA1 backcross lines. (TIFF)
Data
Validation of PHA3 backcross lines. (TIFF)
Data
Validation of PHA7 backcross lines. (TIFF)
Data
Schematic representation of the 2.8 kb PHA EcoRI/HindIII fragment together with the HYG selectable marker. (TIFF)
Data
Analysis of T2 transgenic lines showing that most transformants harbor multiple inserts. (TIFF)
Data
Validation of PHA5 backcross lines. (TIFF)
Article
Full-text available
With their unique metabolism and the potential to produce large amounts of biomass, plants are an excellent bio-energy feedstock for a variety of industrial purposes. Here we developed a high-throughput strategy, using the model plant Arabidopsis thaliana, to identify mutants with improved sugar release from plant biomass. Molecular analysis indica...
Data
Absorption spectra of pure sugars at different concentrations after 5 min heating with anthrone reagent. (TIF)
Data
Acid hydrolysis of auxin response factor mutants of Arabidopsis. Leaf disc tissue from 21 day-old plants was assayed using 1 M H2SO4. Graphs show absorbance at 620 nm for ¼ of leaf disc hydrolysate; values are averages ± s.d. (n = 4–8). (TIF)
Data
Map based cloning of RAH genes. CAPS and/or SSLP markers (indicated by their position in Mb) were used to narrow down the interval and corresponding BAC. Number of recombinants at each position indicated. For fine mapping, we used 172 plants for DPE2, 201 plants for PID and 144 plants SEX4. (A) Two alleles, rah1 and rah22, of DISPROPORTIONATING ENZ...
Data
(A) Boxplot of 100 wild type Arabidopsis leaf discs subjected to 1 M H2SO4 treatment at room temperature for one hour. The bold horizontal line represents the median which has an absorbance reading of 0.1156 at 620 nm. Error bars show ± standard deviation. (B) Absorbance readings from anthrone acid hydrolysis are quantified against a glucose curve....
Data
Acid hydrolysis of mutants of the SAC domain family of Arabidopsis. The following T-DNA insertions were used: sac1-1 (SALK_070875), sac1-2 (SALK_020109), sac2-1 (SALK_099031), sac2-2 (SALK_091926), sac3-1 (SALK_023548), sac3-2 (SALK_049623), sac4-1 (SALK_119184), sac4-2 (SALK_005871), sac4-3 (SALK_056500), sac5-1 (SALK_012372), sac5-2 (SALK_125856)...
Data
Known cell wall mutants and their gene products. MUR11 was molecularly identified in this study and is highlighted in red. (XLS)
Data
Genotypes used in this study. (XLS)
Data
Monosaccharide composition of rah mutants by gas chromatography. (XLS)
Data
Acid hydrolysis and enzymatic assays of rah mutants. (XLS)
Article
Full-text available
Strigolactones (SLs) function as plant hormones that mediate a myriad of developmental responses in higher plants. SLs also act as an environmental signal to stimulate seed germination of parasitic plant species of genera Striga and Orobanche. In contrast to their hormonal roles, genetic mechanisms of how SLs stimulate parasitic seed germination ar...
Article
Full-text available
The embryonic temporal regulator FUSCA3 (FUS3) plays major roles in the establishment of embryonic leaf identity and the regulation of developmental timing. Loss-of-function mutations of this B3 domain transcription factor result in replacement of cotyledons with leaves and precocious germination, whereas constitutive misexpression causes the conve...
Data
Full-text available
Table S2 Genes downregulated by ectopic FUS3 activation. Values for fold changes in expression after 2 and 4 days (d) of FUS3 activation with dexamethasone (+DEX) are the averages of two replicates. Genes involved in hormone metabolism or response are in bold. Ethylene response genes that were downregulated less than twofold by FUS3 activation at b...
Data
Full-text available
Figure S1 Phenotypic analysis of wild-type plants exposed to dexamethasone (DEX). Wild-type seeds were germinated in 10 μM DEX for 2 days and then transferred to soil. The increase in the blade-to-petiole ratio and the appearance of the abaxial trichomes on leaf 5 is comparable to wild-type profiles shown in Figure 3. (A) Ratios of blade-to-petiole...
Data
Full-text available
Table S1 Genes upregulated by ectopic FUS3 activation. Values for fold changes in expression after 2 and 4 days (d) of FUS3 activation with dexamethasone (+DEX) are the averages of two replicates. The presence of RY promoter motifs (CATGCA) in the 500 bp (0.5 K), 1, 000 bp (1 K) and 3, 000 bp (3 K) upstream regions of each gene is included. p-value...
Article
Full-text available
Originally identified as an allelochemical involved in plant host-parasite interactions, strigolactones have more recently been shown to have much broader communication roles. Strigolactones function as a symbiotic communicator in plants and mycorrhizal fungi interactions and have also been shown to have hormonal roles in higher plants. This abilit...
Article
Full-text available
Strigolactones are host factors that stimulate seed germination of parasitic plant species such as Striga and Orobanche. This hormone is also important in shoot branching architecture and photomorphogenic development. Strigolactone biosynthetic and signaling mutants in model systems, unlike parasitic plants, only show seed germination phenotypes un...
Article
Next-generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time-consuming even in genetically tractable organisms. Here we present a de novo metho...
Article
Full-text available
Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to pe...
Article
Full-text available
Parasitic weeds of the genera Striga and Orobanche are considered the most damaging agricultural agents in the developing world. An essential step in parasitic seed germination is sensing a group of structurally related compounds called strigolactones that are released by host plants. Although this makes strigolactone synthesis and action a major t...
Article
The success of the genomics revolution to construct a genetic architecture of a variety of model organisms has placed functional biologists under pressure to show what each individual gene does in vivo. Traditionally, this task has fallen on geneticists who systematically perturb gene function and study the consequences. With the advent of large, e...
Article
Full-text available
Canola is one of the most important oilseed crops, and its seed yield and quality are significantly affected by environmental stresses such as drought. The phytohormone abscisic acid (ABA) is induced by drought and triggers stomatal closure to reduce transpiration, which accounts for >90% of water loss in plants. The ABA-mediated stomatal response...
Article
The recent discovery of an endogenous hormonal activity for strigolactones in shoot branching was surprising since these molecules were thought to mostly play roles as signaling molecules between organisms. Even in the context of plant hormones, strigolactones appear to be different in that their role in plant development is quite restricted. This...
Article
Full-text available
Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both py...
Article
With the advent of indexed mutagenized insertion lines in Arabidopsis, it is now possible to order small knockout collections of particular genes to probe a question of biological interest. This first requires querying Arabidopsis databases to identify lines of interest, ordering them and then verifying homozygous lines to make your collection. Onc...
Article
Full-text available
Arabidopsis chotto1 (cho1) mutants show resistance to (-)-R-ABA, an ABA analog, during germination and seedling growth. Here, we report cloning and characterization of the CHO1 gene. cho1 mutants showed only subtle resistance to (+)-S-ABA during germination. The cho1 mutation acts as a strong enhancer of the abi5 mutant, whereas the cho1 abi4 doubl...
Article
The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to...
Article
Full-text available
Plants utilize tightly regulated mechanisms to defend themselves against pathogens. Initial recognition results in activation of specific Resistance (R) proteins that trigger downstream immune responses, in which the signaling networks remain largely unknown. A point mutation in SUPPRESSOR OF NPR1 CONSTITUTIVE1 (SNC1), a RESISTANCE TO PERONOSPORA P...
Article
Full-text available
Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specif...
Article
Full-text available
This protocol describes a procedure for screening small molecules for bioactivity and a genetic approach to target identification using the nematode Caenorhabditis elegans as a model system. Libraries of small molecules are screened in 24-well plates that contain a solid agar substrate. On top of the agar mixture, one small-molecule species is depo...
Article
Despite the bewildering ability of higher plants to change their development with respect to the environment, there appear to be only a few hormones that function to organize growth and development. With the recent identification of three plant hormone receptors, the molecular identities of all the major plant receptors are now known. Some plant ho...
Article
Full-text available
Small-molecule inhibitors of protein function are powerful tools for biological analysis and can lead to the development of new drugs. However, a major bottleneck in generating useful small-molecule tools is target identification. Here we show that Caenorhabditis elegans can provide a platform for both the discovery of new bioactive compounds and t...
Article
Full-text available
Genetic analysis of plant development has begun to demonstrate the importance of hormone synthesis and transport in regulating morphogenesis. In the case of leaf development, for example, auxin pooling determines where a primordium will emerge and leads to the activation of transcription factors, which determine leaf identities by modulating abscis...
Article
The identification of a receptor for gibberellin, a plant signalling molecule, opens up new prospects for understanding plant growth and development. Not least, crop-selection programmes should benefit.
Article
Full-text available
Protecting crop yield under drought stress is a major challenge for modern agriculture. One biotechnological target for improving plant drought tolerance is the genetic manipulation of the stress response to the hormone abscisic acid (ABA). Previous genetic studies have implicated the involvement of the beta-subunit of Arabidopsis farnesyltransfera...
Article
Full-text available
In the post-genomic era, our understanding of signal transduction networks necessarily entails the use of genetics analysis. Nowhere is this revealed more clearly than the use of publicly available knockout collections, which are plundered daily by plant re- searchers in search of mutants to test their latest signaling fantasies (Rhee et al., 2003)...
Article
In order to investigate the role of the plant hormones gibberellin (GA) and abscisic acid (ABA) in seed development and germination the GA biosynthetic inhibitor, Uniconazol, was used to isolate mutants with abnormal germination profiles. In one of these mutants, the ability to germinate on Uniconazol is due to a mutation in the ABI3 gene. However,...
Article
The sesquiterpenoid hormone abscisic acid (ABA) regulates many aspects of plant growth and development. It has been difficult, however, to understand how this hormone functions in a myriad of events. Genetic analysis, particularly in Arabidopsis, has identified genes that modulate ABA responsiveness, but a molecular framework has not been developed...