Peter Voorhees LovellOregon Health & Science University | OHSU · Department of Behavioral Neuroscience
Peter Voorhees Lovell
PhD
About
69
Publications
30,281
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,291
Citations
Introduction
Additional affiliations
August 2001 - September 2002
September 2002 - present
June 1996 - June 2001
Publications
Publications (69)
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somati...
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na ⁺ current inactivation kinetics, and large resurgent Na...
The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display: 1) robust high-frequency firing, 2) ultra-narrow spike waveforms, 3) superfast Na+ current inactivation kinetics and 4) large re...
Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here, we show that the ephrin-B3 protein in birds lack...
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evalu...
Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here we show that the ephrin-B3 protein in birds lacks...
How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nuc...
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are only available for a few non-microbial species. To address this issue, the international Genome 10K (G10K) consortium has worked over a five-year period to evaluate an...
An in-depth understanding of the genetics and evolution of brain function and behavior requires detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of g...
Background:
Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains und...
The arcopallium, a key avian forebrain region, receives inputs from numerous brain areas and is a major source of descending sensory and motor projections. While there is evidence of arcopallial subdivisions, the internal organization or the arcopallium is not well understood. The arcopallium is also considered the avian homologue of mammalian deep...
Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC)...
Objectives:
Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. How...
Background:
The ability to imitate the vocalizations of other organisms, a trait known as vocal learning, is shared by only a few organisms, including humans, where it subserves the acquisition of speech and language, and 3 groups of birds. In songbirds, vocal learning requires the coordinated activity of a set of specialized brain nuclei referred...
While the analysis of Bornelöv et al. is informative, they provide evidence for the existence of only 3% of the reported avian missing genes set, and thus do not significantly challenge our main findings that specific groups of syntenic protein-coding genes are missing in birds.
This is a response to the Correspondence article: https://www.dx.doi.o...
The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly...
The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3) built from combined long single molecule sequencing technology, finished BACs, and improved physical ma...
Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal prop...
The dopamine transporter (DAT) is a major regulator of synaptic dopamine (DA) availability. It plays key roles in motor control and motor learning, memory formation, and reward-seeking behavior, is a major target of cocaine and methamphetamines, and has been assumed to be conserved among vertebrates. We have found, however, that birds, crocodiles,...
Hron et al. provide transcriptome evidence that three (1.1 %) of the 274 genes reported by Lovell et al. as missing in birds may actually be ‘hidden’ as a result of high GC content. Although this factor may explain some gene absences from genomic assemblies, we believe it is insufficient to account for the extensive syntenic losses described in Lov...
Background
Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood.
Results
Using comparative ge...
BACKGROUND: Songbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this be...
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific...
To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergen...
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in spec...
The zebra finch Taeniopygia guttata castanotis is a songbird commonly used in the laboratory, particularly for studies of vocal learning, neurobiology, and physiology. Within the laboratory, it is important to adopt careful husbandry practices that allow for normal development of the birds. For example, their song is a learned trait, passed cultura...
In situ hybridization (ISH) is a sensitive technique for documenting the tissue distribution of mRNAs. Advanced nonradioactive ISH methods that are based on the use of digoxigenin (DIG)-labeled probes and chromogenic detection have better spatial resolution than emulsion autoradiography techniques and, when paired with high-resolution digital imagi...
We describe a set of new comprehensive, high-quality, high-resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata), and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accur...
Background:
A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. He...
Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals,
and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples
from six species of songbird under a range of experimental conditions, and 488 of these samples were...
Vocal learning and the presence of telencephalic circuitry that controls the production and acquisition of learned vocalizations are distinct characteristics of songbirds (oscine Passeriformes). In the search for genomic features that may be associated with the evolution and function of this brain circuitry, we performed an extensive analysis of th...
At present, there are three independent lineages of birds—songbirds, parrots, and hummingbirds—that are known to learn their vocalizations. Each of these clades possesses a 'song circuit,' a system of interconnected forebrain nuclei that control this vocal learning behavior. The anatomical, physiological, and (to a lesser extent) molecular features...
Serotonin (5-HT) is a neuromodulator that is important for neural development, learning and memory, mood, and perception. Dysfunction of the serotonin system is central to depression and other clinically important mood disorders and has been linked with learning deficits. In mammals, 5-HT release from the raphe nuclei in the brainstem can modulate...
Simply hearing the song produced by another bird of the same species triggers the regulation of microRNAs (miRNAs) in high-order auditory parts of the zebra finch brain. Some of the identified miRNAs appear to be unique to birds, possibly to songbirds. These findings, reported in BMC Genomics, highlight the complexities of gene regulation associate...
The gene encoding cholecystokinin (Cck) is abundantly expressed in the mammalian brain and has been associated with such functions as feeding termination and satiety, locomotion and self-stimulation, the modulation of anxiety-like behaviors, and learning and memory. Here we describe the brain expression and song regulation of Cck in the brain of th...
The songbird model is widely established in a number of laboratories for the investigation of the neurobiology and development of vocal learning. While vocal learning is rare in the animal kingdom, it is a trait that songbirds share with humans. The neuroanatomical and physiological organization of the brain circuitry that controls learned vocaliza...
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we pre...
Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniot...
Primary FDR<0.05 HVC Markers.
(0.08 MB PDF)
Secondary List of Differential Expressed HVC Markers.
(0.06 MB PDF)
Previously Confirmed Markers of HVC.
(0.04 MB PDF)
Extended search Genelist (ND).
(0.06 MB PDF)
Microarray validations by in situ hybridization
(0.08 MB PDF)
Vitamin A, an essential nutrient, is required in its acidic form (retinoic acid) for normal embryogenesis and neuronal development, typically within well-defined concentration ranges. In zebra finches, a songbird species, localized retinoic acid synthesis in the brain is important for the development of song, a learned behavior sharing significant...
SoNG20K. Annotation of the SoNG 20 K array. standard GAL file format describing each spot on the 20 K microarray, 20215 rows × 6 columns. Rows 1–55 describe block organization. Rows 56-20215 describe the 20160 features (spots) on the array (see Table 4). Columns 1–3 define feature position. Column four gives the unique identifier for the feature. C...
SoNGcall. CALL FOR PROPOSALS for USE OF MICROARRAY RESOURCES. Document distributed on Oct. 15, 2004, describing the overall goals and administrative organization of the Songbird Neurogenomics Initiative.
Vocal learning is a rare and complex behavioral trait that serves as a basis for the acquisition of human spoken language. In songbirds, vocal learning and production depend on a set of specialized brain nuclei known as the song system.
Using high-throughput functional genomics we have identified approximately 200 novel molecular markers of adult z...
Songbirds hold great promise for biomedical, environmental and evolutionary research. A complete draft sequence of the zebra finch genome is imminent, yet a need remains for application of genomic resources within a research community traditionally focused on ethology and neurobiological methods. In response, we developed a core set of genomic tool...
The learning and production of vocalizations in songbirds are controlled by a system of interconnected brain nuclei organized into a direct vocal motor pathway and an anterior forebrain (pallium-basal ganglia-thalamo-pallial) loop. Here we show that the thalamo-pallial ("thalamo-cortical") projection (from the medial part of the dorsolateral thalam...
Songbirds evolved a complex set of dimorphic telencephalic nuclei that are essential for the learning and production of song. These nuclei, which together make up the oscine song control system, present several neurochemical properties that distinguish them from the rest of the telencephalon. Here we show that the expression of the gene encoding th...
Membrane-associated receptors for rapid, steroidal neuromodulation remain elusive. Estradiol has been reported to facilitate activation of voltage- and Ca(2+)-dependent BK potassium channels encoded by Slo, if associated with beta1 subunits. We show here that 1) multiple members of the beta family confer sensitivity to multiple steroids on BK chann...
The oscine song system, a set of interconnected brain nuclei involved in song production and learning, is one of the first and clearest examples of brain sexual dimorphism in a vertebrate, being typically well-developed in males, but not females. Here we present evidence for a sexual dimorphism in the caudomedial nidopallidum (NCM), an auditory are...
Although adrenal glucocorticoids cortisol and corticosterone (CORT) have numerous "genomic" effects on adrenomedullary chromaffin cells, acute modulatory actions remain largely unknown, despite rapid stress-related changes in secretion. We report that 1 microM glucocorticoids rapidly modulate gating of chromaffin cell BK channels and action potenti...
Much interest has been shown in the use of multi-template reverse transcription-polymerase chain reaction (RT-PCR) as a quantitative instrument for low-abundance mRNAs. A desire to achieve finely-graded quantification of the stress- and hormone-related regulation of one splicing decision in an ion channel gene motivated us to test the reliability o...
The discovery that the hypothalamic-pituitary-adrenocortical (HPA) endocrine stress axis controls an alternative splicing decision in chromaffin Slo-encoded BK (big potassium) channels raised the possibility that activation of the HPA could serve as a mechanism to tune the intrinsic electrical properties of epinephrine-secreting adrenal chromaffin...
Both bovine and rat adrenal chromaffin cells have served as pioneering model systems in cellular neurophysiology, including in the study of large conductance calcium- and voltage-dependent K(+) (BK) channels. We now report that while BK channels dominate the outward current profile of both species, specific gating properties vary widely across cell...