
Peter E. Keller- PhD (Psychology)
- Professor at Western Sydney University
Peter E. Keller
- PhD (Psychology)
- Professor at Western Sydney University
About
262
Publications
79,424
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,312
Citations
Introduction
Current institution
Publications
Publications (262)
During ensemble performance, musicians predict their own and their partners’ action outcomes to smoothly coordinate in real time. The neural auditory-motor system is thought to contribute to these predictions by running internal forward models that simulate self- and other-produced actions slightly ahead of time. What remains elusive, however, is w...
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which be...
Deficits in rhythm perception and production have been reported in a variety of psychiatric, neurodevelopmental and neurologic disorders. Since correlations between rhythmic abilities and cognitive functions have been demonstrated in neurotypical individuals, we here investigate whether and how rhythmic abilities are associated with cognitive funct...
Why are some individuals more musical than others? Neither cognitive testing nor classical localizationist neuroscience alone can provide a complete answer. Here, we test how the interplay of brain network organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. We analyze multimodal magnetic reson...
The brain is a dynamic system whose network organisation is often studied by focusing on specific frequency bands or anatomical regions, leading to fragmented insights, or by employing complex and elaborate methods that hinder straightforward interpretations. To address this issue, we introduce a novel method called FREQuency-resolved Network Estim...
We studied simultaneous EMG and midline EEG responses, the latter including over the cerebellum, in 10 standing subjects (35 ± 15 yrs; 5 females) following repeated taps to the sternum. We confirmed previous reports that this evokes short latency EMG responses in leg muscles, consistent with postural reflexes. EEG power had relatively more high fre...
Across different epochs and societies, humans occasionally gather to jointly make music. This universal form of collective behavior is as fascinating as it is fragmentedly understood. As the interest in joint music making (JMM) rapidly grows, we review the state-of-the-art of this emerging science, blending behavioral, neural, and computational con...
Parkinson's disease (PD) is a neurodegenerative disorder characterised by loss of dopaminergic neurons in the basal ganglia (BG), resulting in motor and cognitive deficits. Current treatments provide only symptomatic relief, necessitating the investigation of alternative therapies such as rhythmic auditory stimulation (RAS) to address gait deficits...
Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which be...
Music ensemble performance provides an ecologically valid context for investigating leadership dynamics in small group interactions. Musical texture, specifically the relative salience of simultaneously sounding ensemble parts, is a feature that can potentially alter leadership dynamics by introducing hierarchical relationships between individual p...
Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions...
The cerebellar and cerebral cortices are powerfully connected via reciprocal, crossed projections which mediate their coordination in motor, cognitive and affective processes. In the present paper we demonstrate non-invasive imaging of crossed cerebro-cerebellar connectivity by means of wavelet coherence. In a sample of six healthy adult subjects,...
Across different epochs and societies, humans occasionally gather to jointly make music. This universal form of collective behavior is as fascinating as it is poorly understood. As the interest in joint music making (JMM) rapidly grows, we review the state-of-the-art of this emerging science, blending behavioral, neural, and computational contribut...
Why are some humans more musical than others? Neither fully cognitive testing nor classical localizationist neuroscience alone can provide the whole picture. Here we test how the interplay of brain organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. Our network-based study tests how human conn...
Music is a human communicative art whose evolutionary origins may lie in capacities that support cooperation and/or competition. A mixed account favouring simultaneous cooperation and competition draws on analogous interactive displays produced by collectively signalling non-human animals (e.g. crickets and frogs). In these displays, rhythmically c...
We report an experiment to investigate the role of the cerebellum and cerebrum in motor learning of timed movements. Eleven healthy human subjects were recruited to perform two experiments, the first was a classical eye-blink conditioning procedure with an auditory tone as conditional stimulus (CS) and vestibular unconditional stimulus (US) in the...
Coordinating our actions with others changes how we behave and feel. Here, we provide evidence that interacting with others rests on a balance between self-other integration and segregation. Using a group walking paradigm, participants were instructed to synchronize with a metronome while listening to the sounds of 8 virtual partners. By manipulati...
A growing body of research has been studying cognitive benefits that arise from music training in childhood or adulthood. Many studies focus specifically on the cognitive transfer of music training to language skill, with the aim of preventing language deficits and disorders and improving speech. However, predicted transfer effects are not always d...
We report an experiment that tested the vestibular syncopation rhythm hypothesis, which holds that the rhythmic effect of syncopation is a form of vestibular reflexive/automated response to a postural perturbation, for example during locomotion. Electrophysiological signals were recorded from the cerebral cortex and cerebellum during processing of...
We report an experiment to investigate the role of the cerebellum and cerebrum in motor learning of timed movements. Eleven healthy human subjects were recruited to perform two experiments, the first a classical eye-blink conditioning procedure with an auditory tone as conditional stimulus (CS) and vestibular unconditional stimulus (US) in the form...
Studies of rhythm processing and of reward have progressed separately, with little connection between the two. However, consistent links between rhythm and reward are beginning to surface, with research suggesting that synchronization to rhythm is rewarding, and that this rewarding element may in turn also boost this synchronization. The current mi...
Ancient and culturally universal, dance pervades many areas of life and has multiple benefits. In this article, we provide a conceptual framework and systematic review, as a guide for researching the neuroscience of dance. We identified relevant articles following PRISMA guidelines, and summarised and evaluated all original results. We identified a...
We report the results of an experiment in which electrophysiological activity was recorded from the human cerebellum and cerebrum in a sample of 14 healthy subjects before, during and after a classical eye blink conditioning procedure with an auditory tone as conditional stimulus and a maxillary nerve unconditional stimulus. The primary aim was to...
Rhythmic patterns in interactive contexts characterize human behaviours such as conversational turn-taking. These timed patterns are also present in other animals, and often described as rhythm. Understanding fine-grained temporal adjustments in interaction requires complementary quantitative methodologies. Here, we showcase how vocal interactive r...
Human interaction often requires the precise yet flexible interpersonal coordination of rhythmic behavior, as in group music making. The present fMRI study investigates the functional brain networks that may facilitate such behavior by enabling temporal adaptation (error correction), prediction, and the monitoring and integration of information abo...
Human movement synchronisation with moving objects strongly relies on visual input. However, auditory information also plays an important role, since real environments are intrinsically multimodal. We used electroencephalography (EEG) frequency tagging to investigate the selective neural processing and integration of visual and auditory information...
Periodicity is a fundamental property of biological systems, including human movement systems. Periodic movements support displacements of the body in the environment as well as interactions and communication between individuals. Here we use electroencephalography (EEG) to investigate the neural tracking of visual periodic motion, and more specific...
Music listening often entails spontaneous perception and body movement to a periodic pulse‐like meter. There is increasing evidence that this cross‐cultural ability relates to neural processes that selectively enhance metric periodicities, even when these periodicities are not prominent in the acoustic stimulus. However, whether these neural proces...
Joint music performance requires flexible sensorimotor coordination between self and other. Cognitive and sensory parameters of joint action—such as shared knowledge or temporal (a)synchrony—influence this coordination by shifting the balance between self-other segregation and integration. To investigate the neural bases of these parameters and the...
Movement dataset reviews exist but are limited in coverage, both in terms of size and research discipline. While topic-specific reviews clearly have their merit, it is critical to have a comprehensive overview based on a systematic survey across disciplines. This enables higher visibility of datasets available to the research communities and can fo...
Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the mus...
Volume 2 of the Oxford Handbook of Music Performance is designed around four distinct parts: Enhancements, Health and Wellbeing, Science, and Innovations. Chapters on the popular Feldenkrais method and Alexander technique open the volume, and these lead to chapters on peak performance and mindfulness, stage behavior, impression management and chari...
Instrumental ensemble playing is a creative process involving real-time interpersonal coordination of sounds, gestures, and musical ideas by two or more musicians. In this chapter, we discuss the psychological mechanisms supporting ensemble coordination. Musicians’ abilities to anticipate, attend, and adapt to intentional and unintentional variabil...
The present paper outlines an approach based on joint action to overcome the Out Of The Loop (OOTL) phenomenon in HRI. Our proposed solution involves endowing artificial agents, specifically robots, with the same temporal adaptation and anticipation mechanisms that underlie mutual influence in human-human interactions. Specifically, we argue that i...
Humans have a natural tendency to move to music, which has been linked to the tight coupling between the auditory and motor system and the active role of the motor system in the perception of musical rhythms. High-groove music is particularly successful at inducing spontaneous movement, due to the engagement of (motor) prediction processes. However...
Listening to samba percussion often elicits feelings of pleasure and the desire to move with the beat—an experience sometimes referred to as “feeling the groove”- as well as social connectedness. Here we investigated the effects of performance timing in a Brazilian samba percussion ensemble on listeners’ experienced pleasantness and the desire to m...
Despite acknowledging that musicality evolved to serve multiple adaptive functions in human evolution, Savage et al. promote social bonding to an overarching super-function. Yet, no unifying neurobiological framework is offered. We propose that oxytocin constitutes a socio-allostatic agent whose modulation of sensing, learning, prediction, and beha...
When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in p...
Human communication entails subtle non-verbal modes of expression, which can be analyzed quantitatively using computational approaches and thus support human sciences. In this paper we present huSync, a computational framework and system that utilizes trajectory information extracted using pose estimation algorithms from video sequences to quantify...
Complex sequential behaviors, such as speaking or playing music, entail flexible rule-based chaining of single acts. However, it remains unclear how the brain translates abstract structural rules into movements. We combined music production with multimodal neuroimaging to dissociate high-level structural and low-level motor planning. Pianists playe...
Despite acknowledging that musicality evolved to serve multiple adaptive functions in human evolution, Savage et al. promote social bonding to an overarching super-function. Yet, no unifying neurobiological framework is offered. We propose that oxytocin constitutes a socio-allostatic agent whose modulation of sensing, learning, prediction, and beha...
Humans perceive and spontaneously move to one or several levels of periodic pulses (a meter, for short) when listening to musical rhythm, even when the sensory input does not provide prominent periodic cues to their temporal location. Here, we review a multi-levelled framework to understanding how external rhythmic inputs are mapped onto internally...
Interpersonal coordination in musical ensembles often involves multisensory cues, with visual information about body movements supplementing co-performers’ sounds. Previous research on the influence of movement amplitude of a visual stimulus on basic sensorimotor synchronization has shown mixed results. Uninstructed visuomotor synchronization seems...
The ability to distinguish between an individual's own actions and those of another person is a requirement for successful joint action, particularly in domains such as group music making where precise interpersonal coordination ensures perceptual overlap in the effects of co-performers' actions. We tested the hypothesis that such coordination bene...
We report an experiment to investigate possible vestibular effects on finger tapping to an auditory anapaest rhythm. In a sample of 10 subjects, index finger acceleration and tapping force were recorded along with extensor/flexor activity and the associated electroencephalographic activity measured at central and cerebellar surface electrodes. In a...
People have a natural and intrinsic ability to coordinate body movements with rhythms surrounding them, known as sensorimotor synchronisation. This can be observed in daily environments, when dancing or singing along with music, or spontaneously walking, talking or applauding in synchrony with one another. However, the neurophysiological mechanisms...
During joint action, the sense of agency enables interaction partners to implement corrective and adaptive behaviour in response to performance errors. When agency becomes ambiguous (e.g., when action similarity encourages perceptual self-other overlap), confusion as to who produced what may disrupt this process. The current experiment investigated...
Human rhythmic movements spontaneously synchronize with auditory rhythms at various frequency ratios. The emergence of more complex relationships—for instance, frequency ratios of 1:2 and 1:3—is enhanced by adding a congruent accentuation pattern (binary for 1:2 and ternary for 1:3), resulting in a 1:1 movement–accentuation relationship. However, t...
Interpersonal musical entrainment—temporal synchronization and coordination between individuals in musical contexts—is a ubiquitous phenomenon related to music’s social functions of promoting group bonding and cohesion. Mechanisms other than sensorimotor synchronization are rarely discussed, while little is known about cultural variability or about...
Humans spontaneously synchronize their movements with external auditory rhythms such as a metronome or music. Although such synchronization preferentially occurs toward a simple 1:1 movement–sound frequency ratio, the parameters facilitating spontaneous synchronization to more complex frequency ratios remain largely unclear. The present study inves...
Complex sequential behaviours, such as speaking or playing music, often entail the flexible, rule-based chaining of single acts. However, it remains unclear how the brain translates abstract structural rules into concrete series of movements. Here we demonstrate a multi-level contribution of anatomically distinct cognitive and motor networks to the...
When listening to music, humans spontaneously perceive and synchronize movement to periodic pulses of meter. A growing body of evidence suggests that this widespread ability is related to neural processes that selectively enhance meter periodicities. However, to what extent these neural processes are affected by the attentional state of the listene...
Investigating cues that underpin perceptual judgments of interpersonal coordination has important implications for understanding sociocognitive evaluations of the quality of human interactions. With a focus on musical interpersonal coordination, we conducted 2 experiments investigating the impact of music style, modality of stimulus presentation, r...
Because work songs are ubiquitous around the world, singing while working and performing a task with a coactor is presumably beneficial for both joint action and individual task performance. The present study investigated the impact of interpersonal rhythmic vocal interaction on interpersonal phase relations and on individual motor timing performan...
Human movements often spontaneously fall into synchrony with auditory and visual environmental rhythms. Related behavioral studies have shown that motor responses are automatically and unintentionally coupled with external rhythmic stimuli. However, the neurophysiological processes underlying such motor entrainment remain largely unknown. Here we i...
Interpersonal coordination is exemplified in ensemble musicians, who coordinate their actions deliberately in order to achieve temporal synchronisation in their performances. However, musicians also move parts of their bodies unintentionally or spontaneously, sometimes in ways that do not directly produce sound from their instruments. Musicians' mo...
When listening to music, people often perceive and move along with a periodic meter. However, the dynamics of mapping between meter perception and the acoustic cues to meter periodicities in the sensory input remain largely unknown. To capture these dynamics, we recorded the EEG while non-musician and musician participants listened to nonrepeating...
Human movements spontaneously entrain to auditory rhythms, which can help to stabilise movements in time and space. The properties of auditory rhythms supporting the occurrence of this phenomenon, however, remain largely unclear. Here, we investigate in two experiments the effects of pitch and tempo on spontaneous movement entrainment and stabilisa...
Research has demonstrated that the human cognitive system allocates attention most efficiently to a stimulus that occurs in synchrony with an established rhythmic background. However, our environment is dynamic and constantly changing. What happens when rhythms to which our cognitive system adapted disappear? We addressed this question using a visu...
Motor simulation has been implicated in how musicians anticipate the rhythm of another musician’s action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2)...
Sensorimotor synchronization is a general skill that musicians have developed to the highest levels of performance, including synchronization in timing and articulation. This study investigated neurocognitive processes that enable such high levels of performance, specifically testing the relevance of 1) motor resonance and sharing high levels of mo...
People commonly move along with auditory rhythms in the environment. Although the processes underlying such sensorimotor synchronisation have been extensively investigated in the previous research, the properties of auditory rhythms that facilitate the synchronisation remain largely unclear. This study explored the possible benefits of a continuity...
Humans coordinate their movements with one another in a range of everyday activities and skill domains. Optimal joint performance requires the continuous anticipation of and adaptation to each other's movements, especially when actions are spontaneous rather than pre-planned. Here we employ dual-EEG and frequency-tagging techniques to investigate h...
Coordinated behavior promotes collaboration among humans. To shed light upon this relationship, we investigated whether and how interpersonal coordination is promoted by empathic perspective taking (EPT). In a joint music-making task, pairs of participants rotated electronic music-boxes, producing two streams of musical sounds that were meant to be...
Interpersonal coordination of movements often involves precise synchronization of action timing, particularly in expert domains such as ensemble music performance. According to the adaptation and anticipation model (ADAM) of sensorimo-tor synchronization, precise yet flexible interpersonal coordination is supported by reactive error correction mech...
When listening to musical rhythm, people tend to spontaneously perceive and move along with a periodic pulse-like meter. Moreover, perception and entrainment to the meter show remarkable stability in the face of dynamically changing rhythmic structure of music, even when acoustic cues to meter frequencies are degraded in the rhythmic input. Here we...
When people engage in rhythmic joint actions, from simple clapping games to elaborate joint music making, they tend to increase their tempo unconsciously. Despite the rich literature on rhythmic performance in humans, the mechanisms underlying joint rushing are still unknown. We propose that joint rushing arises from the concurrent activity of two...
For precise interpersonal coordination, some degree of merging a sense of self with other is required. In group music making, one may want to be in “sync” with one's ensemble and, if playing a similar instrument, one can assume a degree of temporal and acoustic overlap. However, to what extent is self-other merging optimal? An incorrect balance of...
Humans spontaneously synchronize their movements with external auditory rhythms such as a metronome or music. Although such synchronization preferentially occurs toward simple 1:1 movement-stimulus frequency ratio, the extent to which spontaneous synchronization can also occur toward more complex frequency ratios remains largely unclear. The presen...
Rhythmic movements produced by humans become spontaneously entrained to auditory rhythms in the environment. Evidence suggests that synchronisation to external auditory rhythms can contribute to the stabilisation of movements in time and space, opening new perspectives for motor training and rehabilitation. Here we compared the effects of single (1...
Audio-motor coordination is a fundamental requirement in the learning and execution of sequential actions such as music performance. Predictive motor control mechanisms determine the sequential content and timing of upcoming tones and thereby facilitate accurate performance. To study the role of auditory-motor predictions at early stages of acquiri...
Music presents a complex case of movement timing, as one to several dozen musicians coordinate their actions at short time-scales. This process is often directed by a conductor who provides a visual beat and guides the ensemble through tempo changes. The current experiment tested the ways in which audio-motor coordination is influenced by visual cu...
Interpersonal sensorimotor synchronisation requires individuals to anticipate and adapt to their partner's movement timing. Research has demonstrated that the intentionality of a co-actor affects joint action planning, however, less is known about whether co-actor intentionality affects sensorimotor synchronisation. Explicit and implicit knowledge...
Significance
Bass sounds play a special role in conveying the rhythm and stimulating motor entrainment to the beat of music. However, the biological roots of this culturally widespread musical practice remain mysterious, despite its fundamental relevance in the sciences and arts, and also for music-assisted clinical rehabilitation of motor disorder...
Perceptual coupling between people can lead to the spontaneous synchronisation of their rhythmic movements. In the current study, we hypothesised that the sight of a co-actor generates anchoring (local stabilisation around specific spatiotemporal points within movement cycles), and that such anchoring supports the occurrence and stability of sponta...
The tendency for groove-based music to induce body movements has been linked to multiple acoustical factors. However, it is unclear how or whether tempo affects groove, although tempo significantly affects other aspects of music perception. To address this issue, the present study investigated effects of tempo, specific rhythmic organizations of pa...
The combination of frequency-tagging with electroencephalography (EEG) has recently proved fruitful for understanding the perception of beat and meter in musical rhythm, a common behavior shared by humans of all cultures. EEG frequency-tagging allows the objective measurement of input–output transforms to investigate beat perception, its modulation...
Human interaction involves the exchange of temporally coordinated, multimodal cues. Our work focused on interaction in the visual domain, using music performance as a case for analysis due to its temporally diverse and hierarchical structures. We made use of two improvising duo datasets—(i) performances of a jazz standard with a regular pulse and (...
The spontaneous ability to entrain to meter periodicities is central to music perception and production across cultures. There is increasing evidence that this ability involves selective neural responses to meter-related frequencies. This phenomenon has been observed in the human auditory cortex, yet it could be the product of evolutionarily older...
Note: This is a pre-print of an article published in the journal "Psychological Research". The final authenticated version is available online at: https://doi.org/10.1007/s00426-018-0987-6.A full-text view-only version of the published paper can be freely accessed at: http://rdcu.be/FOZeAbstract:Motor simulation has been implicated in how musicians...
In this chapter, the relationship between music and action is examined from two perspectives: one where individuals learn to play an instrument, and another where music induces movement in a listener. For both perspectives, we review experimental research, mostly consisting of neuroscientific studies, as well as select behavioral investigations. We...
It is well established that musical training induces sensorimotor plasticity. However, there are remarkable differences in how musicians train for proficient stage performance. The present EEG study outlines for the first time clear-cut neurobiological differences between classical and jazz musicians at high and low levels of action planning, revea...
The current study investigated whether visual coupling between two people producing dance-related movements (requiring whole-body auditory-motor coordination) results in interpersonal entrainment and modulates individual auditory-motor coordination dynamics. Paired participants performed two kinds of coordination tasks – either knee flexion or exte...
Human interaction through music is a vital part of social life across cultures. Influential accounts of the evolutionary origins of music favor cooperative functions related to social cohesion or competitive functions linked to sexual selection. However, work on non-human “chorusing” displays, as produced by congregations of male insects and frogs...