About
313
Publications
148,316
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
59,774
Citations
Introduction
Current institution
Additional affiliations
January 2007 - December 2013
August 2004 - July 2006
Publications
Publications (313)
We review how the international modelling community, encompassing integrated assessment models, global and regional Earth system and climate models, and impact models, has worked together over the past few decades to advance understanding of Earth system change and its impacts on society and the environment and thereby support international climate...
Climate Tipping Points are not instantaneous upon crossing critical thresholds in global warming, as is often assumed. Instead, it is possible to temporarily overshoot a threshold without causing tipping, provided the duration of the overshoot is short. In this Idea, we demonstrate that restricting the time over 1.5 °C would considerably reduce tip...
It has been shown that a theoretically derived relation between annual global mean temperature variability and climate sensitivity held in the CMIP5 climate model ensemble (, hereafter CHW18). This so-called emergent relationship was then used with observations to constrain the value of equilibrium climate sensitivity (ECS) to about 3 °C. Since thi...
Solar radiation modification (SRM) aims to artificially cool the Earth, counteracting warming from anthropogenic greenhouse gases by increasing the reflection of incoming sunlight. One SRM strategy is stratospheric aerosol injection (SAI), which mimics explosive volcanoes by injecting aerosols into the stratosphere. There are concerns that SAI coul...
Traditional bioclimatic classification schemes have several inherent shortcomings; they do not represent anthropogenic impact, they contain a bias for global north representation, and they lack flexibility regarding novel climates that may arise due to climate change. Here we present an alternative approach, using a machine learning approach. We co...
Achieving climate targets requires mitigation against climate change but also understanding of the response of land and ocean carbon systems. In this context, global soil carbon stocks and their response to environmental changes are key. This paper quantifies the global soil carbon feedbacks due to changes in atmospheric CO2, and the associated cli...
Assessment of climate reanalysis data for land (ECMWF Re-Analysis v5; ERA5-Land) covering the last seven decades reveals regions where extreme daily mean temperatures are rising faster than the average rate of temperature rise of the 6 months of highest background warmth. However, such extreme temperature acceleration is very heterogeneous, occurri...
Understanding the response of plant respiration to climate change is key to determining whether the global land carbon sink continues into the future or declines. Most global vegetation models use a classical growth-maintenance approach, which predicts that nocturnal plant respiration is controlled by temperature only. However, recently published o...
Vegetation and precipitation are known to fundamentally influence each other. However, this interdependence is not fully represented in climate models because the characteristics of land surface (canopy) conductance to water vapor and CO2 are determined independently of precipitation. Working within a coupled atmosphere and land modelling framework...
Earth System Models (ESMs) continue to diagnose a wide range of carbon budgets for each level of global warming. Here, we present emergent constraints on the carbon budget as a function of global warming, which combine the available ESM historical simulations and future projections for a range of scenarios, with observational estimates of global wa...
We review how the international modelling community, encompassing Integrated Assessment models, global and regional Earth system and climate models, and impact models, have worked together over the past few decades, to advance understanding of Earth system change and its impacts on society and the environment, and support international climate poli...
Achieving climate targets requires mitigation against climate change, but also understanding of the response of land and ocean carbon systems. In this context, global soil carbon stocks and its response to environmental changes is key. This paper quantifies the global soil carbon feedback to changes in atmospheric CO2, and associated climate change...
Carbon uptake by the land is a key determinant of future climate change. Unfortunately, Dynamic Global Vegetation Models have many unknown internal parameters which leads to significant uncertainty in projections of the future land carbon sink. By contrast, observed forest inventories in both Amazonia and the USA show strikingly common tree-size di...
Reliable estimates of soil carbon change are required to determine the carbon budgets consistent with the Paris Agreement climate targets. This study evaluates projections of soil carbon during the 21st century in Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth system models (ESMs) under a range of atmospheric composition scenarios. In...
Afforestation and reforestation to meet ‘Net Zero’ emissions targets are considered a necessary policy by many countries. Their potential benefits are usually assessed through forest carbon and growth models. The implementation of vegetation demography gives scope to represent forest management and other size-dependent processes within land surface...
The role of the land carbon cycle in climate change remains highly uncertain. A key source of the projection spread is related to the assumed response of photosynthesis to warming, especially in the tropics. The optimum temperature for photosynthesis determines whether warming positively or negatively impacts photosynthesis, thereby amplifying or s...
Over the last 2 decades, tipping points in open systems subject to changing external conditions have become a topic of a heated scientific debate due to the devastating consequences that they may have on natural and human systems. Tipping points are generally believed to be associated with a system bifurcation at some critical level of external con...
It was shown that a theoretically derived relation between annual global mean temperature variability and climate sensitivity held in the (then latest) state-of-the-art CMIP5 climate model ensemble (Cox et al (2018), hereafter CHW18). This so called emergent relationship was then used with observations to constrain the value of equilibrium climate...
Planning for the impacts of climate change requires accurate projections by Earth system models (ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric greenhouse gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the und...
Reliable estimates of soil carbon change are required to determine the carbon budgets consistent with the Paris climate targets. This study evaluates projections of soil carbon during the 21st century in CMIP6 Earth System Models (ESMs) under a range of atmospheric composition scenarios. In general, we find a reduced spread of changes in global soi...
The role of the land carbon cycle in climate change remains highly uncertain. A key source of projection spread is related to the assumed response of photosynthesis to warming, especially in the tropics. The optimum temperature for photosynthesis determines whether warming positively or negatively impacts photosynthesis, thereby amplifying or suppr...
Potential tipping points in the Earth System present challenges for society and ecosystems, especially as the global warming thresholds at which these may be triggered remain uncertain. Fortunately, a theory of `critical slowing down' has been developed which could warn of approaching tipping points. Applications of this theory often implicitly ass...
Climate change is predicted to lead to major changes in terrestrial ecosystems. However, substantial differences in climate model projections for given scenarios of greenhouse gas emissions continue to limit detailed assessment. Here we show, using a traditional Köppen–Geiger bioclimate classification system, that the latest CMIP6 Earth system mode...
The discovery of a near-proportionality between cumulative anthropogenic carbon dioxide emissions and global warming since pre-industrial times is arguably the most important policy-relevant simplification of climate change science in the last 25 years. Unfortunately, the latest CMIP6 Earth System Models continue to diagnose a wide range of carbon...
Accurate representations of stomatal conductance are required to predict the effects of climate change on terrestrial ecosystems. Stomatal optimisation theory, the idea that plants have evolved to maximise carbon gain under certain constraints, such as minimising water loss or preventing hydraulic damage, is a powerful approach to representing stom...
Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO2 concentration have previously been identified in Earth system models participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here, we examine whether two of these emergent constraints also hold for CMIP6. The spread of the sensiti...
Amazon forest dieback is seen as a potential tipping point under climate change. These concerns are partly based on an early coupled climate–carbon cycle simulation that produced unusually strong drying and warming in Amazonia. In contrast, the fifth-generation Earth system models (Phase 5 of the Coupled Model Intercomparison Project, CMIP5) produc...
Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO2 concentration have previously been identified in Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here we examine whether two of these emergent constraints also hold for CMIP6. The spread of the s...
Over the last two decades, tipping points have become a hot topic due to the devastating consequences that they may have on natural and human systems. Tipping points are typically associated with a system bifurcation when external forcing crosses a critical level, causing an abrupt transition to an alternative, and often less desirable, state. The...
The response of soil carbon represents one of the key uncertainties in future climate change. The ability of Earth system models (ESMs) to simulate present-day soil carbon is therefore vital for reliably estimating global carbon budgets required for Paris Agreement targets. In this study CMIP6 ESMs are evaluated against empirical datasets to assess...
Planning for the impacts of climate change requires accurate projections by Earth System Models (ESMs). ESMs, as developed by many research centres, estimate changes to weather and climate as atmospheric Greenhouse Gases (GHGs) rise, and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the und...
Vegetation is subject to multiple pressures in the 21st century, including changes in climate, atmospheric composition and human land-use. Changes in vegetation type, structure, and function also feed back to the climate through their impact on the surface-atmosphere fluxes of carbon and water. Dynamic Global Vegetation Models (DGVMs), are therefor...
Earth System Models project a wide range of rainfall changes in the Amazon rainforest, and hence changes in soil moisture and evapotranspiration. Hydrological changes are heterogeneous , meaning local measurements are too sparse to constrain projections of large-scale hydrological change. Here we show that changes in the amplitude of the temperatur...
Climate change is predicted to lead to major changes in terrestrial ecosystems. However, significant differences in climate model projections for given scenarios of greenhouse gas emissions, continue to hinder detailed assessment. Here we show, using a traditional Koppen-Geiger bioclimate classification system, that the latest CMIP6 Earth System Mo...
Amazon forest dieback is seen as a potential tipping point under climate change. These concerns are partly based-on an early coupled climate-carbon cycle simulation, that produced unusually strong drying and warming in Amazonia. In contrast, the 5th generation Earth System Models (CMIP5) produced few examples of Amazon dieback under climate change....
The response of soil carbon represents one of the key uncertainties in future climate change. The ability of Earth System Models (ESMs) to simulate present day soil carbon is therefore vital for reliable projections. In this study the most up-to-date CMIP6 ESMs are evaluated against empirical datasets to assess the ability of each model to simulate...
Despite major advances in climate science over the last 30 years, persistent uncertainties in projections of future climate change remain. Climate projections are produced with increasingly complex models that attempt to represent key processes in the Earth system, including atmospheric and oceanic circulations, convection, clouds, snow, sea ice, v...
Scenarios avoiding global warming greater than 1.5 or 2 ∘C, as stipulated in the Paris Agreement, may require the combined mitigation of anthropogenic greenhouse gas emissions alongside enhancing negative emissions through approaches such as afforestation–reforestation (AR) and biomass energy with carbon capture and storage (BECCS). We use the JULE...
Understanding future changes in the terrestrial carbon cycle is important for reliable projections of climate change and impacts on ecosystems. It is well known that nitrogen (N) could limit plants' response to increased atmospheric carbon dioxide and it is therefore important to include a representation of the N cycle in Earth system models. Here...
The ‘Compost Bomb’ instability refers to a proposed uncontrolled increase in soil temperature. This instability is caused when sufficiently rapid atmospheric warming increases soil heterotrophic respiration which, in turn, heats the soil further. This generates a runaway effect in which soil temperatures rise rapidly. We investigate this process, n...
Palaeorecords suggest that the climate system has tipping points, where small changes in forcing cause substantial and irreversible alteration to Earth system components called tipping elements. As atmospheric greenhouse gas concentrations continue to rise as a result of fossil fuel burning, human activity could also trigger tipping, and the impact...
This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "...
Human-driven changes to many features of the Earth system have become so ubiquitous and significant in magnitude that a new era for the planet—the ‘Anthropocene’—has been proposed (Crutzen and Stoermer Crutzen and Stoermer, Glob. Change Newsl. 41:12–13, 2001; Clark et al., Science 293:283–287, 2001). Many of these changes are large in magnitude at...
Despite major advances in climate science over the last 30 years, persistent uncertainties in projections of future climate change remain. Climate projections are produced with increasingly complex models which attempt to represent key processes in the Earth system, including atmospheric and oceanic circulations, convection, clouds, snow, sea-ice,...
Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) showed large uncertainties in simulating atmospheric CO2 concentrations. We utilize the Earth System Model Evaluation Tool (ESMValTool) to evaluate emission-driven CMIP5 and CMIP6 simulations with satellite data of column-average CO2 mole fractions...
Carbon cycle feedbacks represent large uncertainties in climate change projections, and the response of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil carbon depend on changes in litter and root inputs from plants and especially on reductions in the turnover time of soil carbon (τs) with warming....
A significant proportion of the uncertainty in climate projections arises from uncertainty in the representation of land carbon uptake. Dynamic global vegetation models (DGVMs) vary in their representations of regrowth and competition for resources, which results in differing responses to changes in atmospheric CO2 and climate. More advanced cohort...
Climate sensitivity to CO2 remains the key uncertainty in projections of future climate change. Transient climate response (TCR) is the metric of temperature sensitivity that is most relevant to warming in the next few decades and contributes the biggest uncertainty to estimates of the carbon budgets consistent with the Paris targets. Equilibrium c...
Understanding future changes in the terrestrial carbon cycle is important for reliable projections of climate change and impacts on ecosystems. It is known that nitrogen could limit plants' response to increased atmospheric carbon dioxide and is therefore important to include in Earth System Models. Here we present the implementation of the terrest...
Accurately representing the response of ecosystems to environmental change in land surface models (LSMs) is crucial to making accurate predictions of future climate. Many LSMs do not correctly capture plant respiration and growth fluxes, particularly in response to extreme climatic events. This is in part due to the unrealistic assumption that tota...
Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) showed large uncertainties in simulating atmospheric CO2 concentrations. By comparing the simulations with satellite observations, in this study we find slight improvements in the ESMs participating in the new Phase 6 (CMIP6) compared to CMIP5. We...
Scenarios avoiding global warming greater than 1.5 or 2 °C, as stipulated in the Paris Agreement, may require the combined mitigation of anthropogenic greenhouse gas emissions alongside enhancing negative emissions through approaches such as afforestation/reforestation (AR) and biomass energy with carbon capture and storage (BECCS). We use the JULE...
Predicting the response of forests to climate and land-use change depends on models that can simulate the time-varying distribution of different tree sizes within a forest – so-called forest demography models. A necessary condition for such models to be trustworthy is that they can reproduce the tree-size distributions that are observed within exis...
Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate.
We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to pre...
Abstract. The transient climate response (TCR) is the metric of temperature sensitivity that is most relevant to warming in the next few decades, and contributes the biggest uncertainty to estimates of the carbon budgets consistent with the Paris targets (Arora et al., 2019). In the IPCC 5th Assessment Report (AR5), the stated likely range of TCR w...
Purpose of Review
Feedbacks between CO2-induced climate change and the carbon cycle are now routinely represented in the Earth System Models (ESMs) that are used to make projections of future climate change. The inconclusion of climate-carbon cycle feedbacks in climate projections is an important advance, but has added a significant new source of u...
A significant proportion of the uncertainty in climate projections arises from uncertainty in the representation of land carbon uptake. Dynamic Global Vegetation Models (DGVMs) vary in their representations of regrowth and competition for resources, which results in differing responses to changes in atmospheric CO2 and climate. More advanced cohort...
Accurately representing the response of ecosystems to environmental change in land surface models (LSM) is crucial to making accurate predictions of future climate. Many LSMs do not correctly capture plant respiration and growth fluxes, particularly in response to extreme climatic events. This is in part due to the unrealistic assumption that total...
Understanding the relative abundance of trees of different sizes is an important part of predicting the response of forests to changes in climate, land-use and disturbance events. Two competing theories of forest size-distributions are demographic equilibrium theory (DET), based on scaling of mortality and growth with size, and metabolic scaling th...
Climate-related risks are dependent not only on the warming trend from GHGs, but also on the variability about the trend. However, assessment of the impacts of climate change tends to focus on the ultimate level of global warming¹, only occasionally on the rate of global warming, and rarely on variability about the trend. Here we show that models t...
The First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), Kansas, US, 1987–1989, made important contributions to the understanding of energy and CO2 exchanges between the land surface and the atmosphere, which heavily influenced the development of numerical land-surface modelling. Now, 30 years on, we demo...
We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to...
In recent years, an evaluation technique for Earth System Models (ESMs) has arisen—emergent constraints (ECs)—which rely on strong statistical relationships between aspects of current climate and future change across an ESM ensemble. Combining the EC relationship with observations could reduce uncertainty surrounding future change. Here, we articul...
The climate regime shift during the 1980s had a substantial impact on the terrestrial ecosystems and vegetation at different scales. However, the mechanisms driving vegetation changes, before and after the shift, remain unclear. In this study, we used a biophysical dynamic vegetation model to estimate large-scale trends in terms of carbon fixation,...
The concentration–carbon feedback (β), also called the CO2 fertilization effect, is a key unknown in climate–carbon-cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO2 is urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We conducted C-only,...
In the version of this Article originally published, a parallelization coding problem, which meant that a subset of model grid cells were subjected to erroneous updating of atmospheric gas concentrations, resulted in incorrect calculation of atmospheric CO2 for these grid cells, and therefore underestimation of the carbon uptake by land through veg...
There is as yet no theoretical framework to guide the search for emergent constraints. As a result, there are significant risks that indiscriminate data-mining of the multidimensional outputs from GCMs could lead to spurious correlations and less than robust constraints on future changes. To mitigate against this risk, Cox et al (hereafter CHW18) p...
The current generation of dynamic global vegetation models (DGVMs) lacks a mechanistic representation of vegetation responses to soil drought, impairing their ability to accurately predict Earth system responses to future climate scenarios and climatic anomalies, such as El Niño events. We propose a simple numerical approach to model plant response...
The First ISLSCP Field Experiment (FIFE), Kansas, US, 1987–1989, made important contributions to the understanding of energy and CO2 exchanges between the land-surface and the atmosphere, which heavily influenced the development of numerical land-surface modelling. Thirty years on, we demonstrate how the wealth of data collected at FIFE and its sub...
The distribution of tree sizes within a forest strongly influences how it will respond to disturbances and environmental changes such as future climate change and increases in atmospheric CO 2. This means that global vegetation models must include variation in tree size to accurately represent carbon sinks, such as that seen in North America. Here...
Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO 2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land are...
Global methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an inverted...
The distribution of tree sizes within a forest strongly influences how it will respond to disturbances and environmental changes such as future climate change and increases in atmospheric CO2. This means that global vegetation models must include variation in tree size to accurately represent carbon sinks, such as that seen in North America. Here w...
Dynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES w...
The climate regime shift during the 1980s had a substantial impact on the terrestrial ecosystems and vegetation at different scales. However, the mechanisms driving vegetation changes, before and after the shift, remain unclear. In this study, we used a biophysical-dynamic vegetation model to estimate large-scale trends in terms of carbon fixation,...
Fig. S1 Optimum temperatures (T
opt) for V
cmax and J
max and J
max to V
cmax ratio at 25°C.
Fig. S2 Simulated Rubisco and electron transport limited light‐saturated sunlit leaf photosynthesis under Geog+Acclim and Geog under 2100 conditions for a boreal gridbox.
Fig. S3 Regression coefficients (β) values of linear regression (Eqn 7) obtained bet...
The concentration-carbon feedback factor (β), also called the CO2 fertilization effect, is a key unknown in climate-carbon cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO2 is urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We calculated...
Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long‐term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used t...
To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the transient climate response to emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achi...
The Lancet Countdown tracks progress on health and climate change and provides an independent assessment of the health effects of climate change, the implementation of the Paris Agreement, and the health implications of these actions. It follows on from the work of the 2015 Lancet Commission on Health and Climate Change, which concluded that anthro...
Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized...
Dynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES w...
Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is...
Background
The emergent constraint approach has received interest recently as a way of utilizing multi-model General Circulation Model (GCM) ensembles to identify relationships between observable variations of climate and future projections of climate change. These relationships, in combination with observations of the real climate system, can be u...
The meeting of the United Nations Framework Convention on Climate Change (UNFCCC) in December 2015 committed parties at the convention to hold the rise in global average temperature to well below 2.0 ∘C above pre-industrial levels. It also committed the parties to pursue efforts to limit warming to 1.5 ∘C. This leads to two key questions. First, wh...
Marine primary production is a fundamental component of the Earth system, providing the main source of food and energy to the marine food web, and influencing the concentration of atmospheric CO 2 (refs,). Earth system model (ESM) projections of global marine primary production are highly uncertain with models projecting both increases and declines...
Permafrost, which covers 15 million km 2 of the land surface, is one of the components of the Earth system that is most sensitive to warming. Loss of permafrost would radically change high-latitude hydrology and biogeochemical cycling, and could therefore provide very significant feedbacks on climate change. The latest climate models all predict wa...
The UNFCCC Paris climate meeting of December 2015 committed to holding the rise in global average temperature to below 2.0 °C above pre-industrial levels. It also committed to pursue efforts to limit warming to 1.5 °C. This leads to two key questions. First, what extent of reductions in emissions will achieve either target? Second, given emissions...
The Lancet Countdown: tracking progress on health and climate change is an international, multidisciplinary research collaboration between academic institutions and practitioners across the world. It follows on from the work of the 2015 Lancet Commission, which concluded that the response to climate change could be “the greatest global health oppor...
Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilizat...