About
215
Publications
13,890
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,386
Citations
Publications
Publications (215)
Recent reasoning methods (e.g., chain-of-thought, entailment reasoning) help users understand how language models (LMs) answer a single question, but they do little to reveal the LM's overall understanding, or "theory," about the question's $\textit{topic}$, making it still hard to trust the model. Our goal is to materialize such theories - here ca...
While prior work has explored whether large language models (LLMs) possess a "theory of mind" (ToM) - the ability to attribute mental states to oneself and others - there has been little work testing whether LLMs can implicitly apply such knowledge to predict behavior, or to judge whether an observed behavior is rational. Such skills are critical f...
Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be a boon to the research community, helping researchers validate, understand, and extend prior work. To advance towards this goal, we introduce SUPER, the...
Can the rapid advances in code generation, function calling, and data analysis using large language models (LLMs) help automate the search and verification of hypotheses purely from a set of provided datasets? To evaluate this question, we present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-drive...
Automated scientific discovery promises to accelerate progress across scientific domains. However, developing and evaluating an AI agent's capacity for end-to-end scientific reasoning is challenging as running real-world experiments is often prohibitively expensive or infeasible. In this work we introduce DISCOVERYWORLD, the first virtual environme...
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual pr...
While large language models (LLMs) are proficient at question-answering (QA), the dependencies between their answers and other "beliefs" they may have about the world are typically unstated, and may even be in conflict. Our goal is to uncover such dependencies and reduce inconsistencies among them, so that answers are supported by faithful, system-...
When large language models (LMs) are applied in zero- or few-shot settings to discriminative tasks such as multiple-choice questions, their attentiveness (i.e., probability mass) is spread across many vocabulary tokens that are not valid choices. Such a spread across multiple surface forms with identical meaning is thought to cause an underestimati...
In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model's weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational scienc...
Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised lea...
Like people, LLMs do not always generate the best text for a given generation problem on their first try (e.g., summaries, answers, explanations). Just as people then refine their text, we introduce SELF-REFINE, a framework for similarly improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an o...
When people think of everyday things like an "egg," they typically have a mental image associated with it. This commonsense knowledge helps us understand how these everyday things work and how to interact with them. For example, when someone tries to make a fried egg, they know that it has a shell and that it can be cracked open to reveal the egg w...
Mathematical reasoning skills are essential for general-purpose intelligent systems to perform tasks from grocery shopping to climate modeling. Towards evaluating and improving AI systems in this domain, we propose LILA, a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions: (i) mathematical abilities e.g.,...
Figurative language (e.g., "he flew like the wind") is challenging to understand, as it is hard to tell what implicit information is being conveyed from the surface form alone. We hypothesize that to perform this task well, the reader needs to mentally elaborate the scene being described to identify a sensible meaning of the language. We present DR...
Our goal is a question-answering (QA) system that can show how its answers are implied by its own internal beliefs via a systematic chain of reasoning. Such a capability would allow better understanding of why a model produced the answer it did. Our approach is to recursively combine a trained backward-chaining model, capable of generating a set of...
Few-shot prompting is a surprisingly powerful way to use Large Language Models (LLMs) to solve various tasks. However, this approach struggles as the task complexity increases or when the individual reasoning steps of the task themselves are hard to learn, especially when embedded in more complex tasks. To address this, we propose Decomposed Prompt...
We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A...
Mathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract thinking and logical reasoning. Recent large pre-trained language models such as GPT-3 have achieved remarkable progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). However, it is unknown if t...
When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reas...
Our goal is a teachable reasoning system for question-answering (QA), where a user can interact with faithful answer explanations, and correct errors so that the system improves over time. Our approach is three-fold: First, generated chains of reasoning show how answers are implied by the system's own internal beliefs. Second, users can interact wi...
The instruction learning paradigm -- where a model learns to perform new tasks from task descriptions alone -- has become popular in general-purpose model research. The capabilities of large transformer models as instruction learners, however, remain poorly understood. We use a controlled synthetic environment to characterize such capabilities. Spe...
Given the ubiquitous nature of numbers in text, reasoning with numbers to perform simple calculations is an important skill of AI systems. While many datasets and models have been developed to this end, state-of-the-art AI systems are brittle; failing to perform the underlying mathematical reasoning when they appear in a slightly different scenario...
Large LMs such as GPT-3, while powerful, are not immune to mistakes, but are prohibitively costly to retrain. One failure mode is misinterpreting a user's instruction (e.g., GPT-3 interpreting "What word is similar to good?" to mean a homonym, while the user intended a synonym). Our goal is to allow users to correct such errors directly through int...
To what extent do language models (LMs) build "mental models" of a scene when answering situated questions (e.g., questions about a specific ethical dilemma)? While cognitive science has shown that mental models play a fundamental role in human problem-solving, it is unclear whether the high question-answering performance of existing LMs is backed...
How can an end-user provide feedback if a deployed structured prediction model generates incorrect output? Our goal is to allow users to correct errors directly through interaction, without retraining, by giving feedback on the model's output. We create a dynamic memory architecture with a growing memory of feedbacks about errors in the output. Giv...
How can an end-user provide feedback if a deployed structured prediction model generates inconsistent output, ignoring the structural complexity of human language? This is an emerging topic with recent progress in synthetic or constrained settings, and the next big leap would require testing and tuning models in real-world settings. We present a ne...
Although pretrained language models (PTLMs) contain significant amounts of world knowledge, they can still produce inconsistent answers to questions when probed, even after specialized training. As a result, it can be hard to identify what the model actually "believes" about the world, making it susceptible to inconsistent behavior and simple error...
Despite the successes of pretrained language models, there are still few high-quality, general-purpose QA systems that are freely available. In response, we present Macaw, a versatile, generative question-answering (QA) system that we are making available to the community. Macaw is built on UnifiedQA, itself built on T5, and exhibits strong perform...
A class of explainable NLP models for reasoning tasks support their decisions by generating free-form or structured explanations, but what happens when these supporting structures contain errors? Our goal is to allow users to interactively correct explanation structures through natural language feedback. We introduce MERCURIE - an interactive syste...
Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by not just listing supporting textual evidence ("rationales"), but also showing how such evidence leads to the answer in a systematic way. If this could be done, new opportunities for understanding and debugging the system's reasoning would become possib...
Scripts - standardized event sequences describing typical everyday activities - have been shown to help understand narratives by providing expectations, resolving ambiguity, and filling in unstated information. However, to date they have proved hard to author or extract from text. In this work, we demonstrate for the first time that pre-trained neu...
Although pretrained language models (PTLMs) have been shown to contain significant amounts of world knowledge, they can still produce inconsistent answers to questions when probed, even after using specialized training techniques to reduce inconsistency. As a result, it can be hard to identify what the model actually "believes" about the world. Our...
Recently, models have been shown to predict the effects of unexpected situations, e.g., would cloudy skies help or hinder plant growth? Given a context, the goal of such situational reasoning is to elicit the consequences of a new situation (st) that arises in that context. We propose a method to iteratively build a graph of relevant consequences e...
We present the ARC-DA dataset, a direct-answer ("open response", "freeform") version of the ARC (AI2 Reasoning Challenge) multiple-choice dataset. While ARC has been influential in the community, its multiple-choice format is unrepresentative of real-world questions, and multiple choice formats can be particularly susceptible to artifacts. The ARC-...
Transformers have been shown to emulate logical deduction over natural language theories (logical rules expressed in natural language), reliably assigning true/false labels to candidate implications. However, their ability to generate implications of a theory has not yet been demonstrated, and methods for reconstructing proofs of answers are imperf...
AI has achieved remarkable mastery over games such as Chess, Go, and Poker, and even Jeopardy!, but the rich variety of standardized exams has remained a landmark challenge. Even as recently as 2016, the best AI system could achieve merely 59.3 percent on an 8th grade science exam. This article reports success on the Grade 8 New York Regents Scienc...
We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky,opaque, and clear. Previous formulations of this task provide the text and entities involv...
A common approach to solve complex tasks is by breaking them down into simple sub-problems that can then be solved by simpler modules. However, these approaches often need to be designed and trained specifically for each complex task. We propose a general approach, Text Modular Networks(TMNs), where the system learns to decompose any complex task i...
Beginning with McCarthy's Advice Taker (1959), AI has pursued the goal of providing a system with explicit, general knowledge and having the system reason over that knowledge. However, expressing the knowledge in a formal (logical or probabilistic) representation has been a major obstacle to this research. This paper investigates a modern approach...
We present a new knowledge-base of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old's...
To what extent can a neural network systematically reason over symbolic facts? Evidence suggests that large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control. Recently, it has been shown that Transformer-based models succeed in consistent reasoning over explicit symbolic facts, under a "clos...
This paper describes a new technique, called "knowledge patterns", for helping construct axiom-rich, formal ontologies, based on identifying and explicitly representing recurring patterns of knowledge (theory schemata) in the ontology, and then stating how those patterns map onto domain-specific concepts in the ontology. From a modeling perspective...
Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are n...
We present a new resource for the NLP community, namely a large (3.5M+ sentence) knowledge base of *generic statements*, e.g., "Trees remove carbon dioxide from the atmosphere", collected from multiple corpora. This is the first large resource to contain *naturally occurring* generic sentences, as opposed to extracted or crowdsourced triples, and t...
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition (QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirab...
AI has long pursued the goal of having systems reason over *explicitly provided* knowledge, but building suitable representations has proved challenging. Here we explore whether transformers can similarly learn to reason (or emulate reasoning), but using rules expressed in language, thus bypassing a formal representation. We provide the first demon...
Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition(QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirabl...
Multi-hop textual question answering requires combining information from multiple sentences. We focus on a natural setting where, unlike typical reading comprehension, only partial information is provided with each question. The model must retrieve and use additional knowledge to correctly answer the question. To tackle this challenge, we develop a...
Our goal is to better comprehend procedural text, e.g., a paragraph about photosynthesis, by not only predicting what happens, but why some actions need to happen before others. Our approach builds on a prior process comprehension framework for predicting actions' effects, to also identify subsequent steps that those effects enable. We present our...
We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of "What if...?" mul...
We introduce the first open-domain dataset, called QuaRTz, for reasoning about textual qualitative relationships. QuaRTz contains general qualitative statements, e.g., "A sunscreen with a higher SPF protects the skin longer.", twinned with 3864 crowdsourced situated questions, e.g., "Billy is wearing sunscreen with a lower SPF than Lucy. Who will b...