
Pete John Bunting- PhD, BEng
- Reader at Aberystwyth University
Pete John Bunting
- PhD, BEng
- Reader at Aberystwyth University
About
131
Publications
66,543
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,105
Citations
Introduction
Current institution
Additional affiliations
September 2012 - October 2015
August 2007 - September 2011
August 2007 - September 2011
Publications
Publications (131)
Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measu...
The ability to accurately map tropical wetland dynamics can significantly contribute to a number of areas, including food and water security, protection and enhancement of ecosystems, flood hazard management, and our understanding of natural greenhouse gas emissions. Yet currently, there is not a tractable solution for mapping tropical forested wet...
This dataset presents global soil organic carbon stocks in mangrove forests at 30 m resolution, predicted for 2020. We used spatiotemporal ensemble machine learning to produce predictions of soil organic carbon content and bulk density (BD) to 1 m soil depth, which were then aggregated to calculate soil organic carbon stocks. This was done by using...
Current mangrove mapping efforts, such as the Global Mangrove Watch (GMW), have focused on providing one-off or annual maps of mangrove forests, while such maps may be most useful for reporting regional, national and sub-national extent of mangrove forests, they may be of more limited use for the day-to-day management of mangroves and for supportin...
Mapping the spatial and temporal dynamics of tropical herbaceous wetlands is vital for a wide range of applications. Inundated vegetation can account for over three-quarters of the total inundated area, yet widely used EO mapping approaches are limited to the detection of open water bodies. This paper presents a new wetland mapping approach, RadWet...
Estimating the distribution, extent and change of coastal ecosystems is essential for monitoring global change. However, spatial models developed to estimate the distribution of land cover types require accurate and up-to-date reference data to support model development, model training and data validations. Owing to the labor-intensive tasks requir...
“Blue carbon” wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration ( $$ET$$ ET ). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is a...
To comprehensively support national and international initiatives for sustainable development, land cover products need to be reliably and routinely generated within operational frameworks. Coupled with consistent semantics and taxonomies, ensuring confidence in mapping land cover for multiple time periods, facilitates informed decision-making at s...
Wetlands are among the most vulnerable, threatened, valuable, diverse, and heterogeneous ecosystems existing on our planet. While they provide invaluable ecosystem services to our society, they have been declining globally for many centuries. Monitoring of these changes is necessary for implementing efficient conservation policies and sustainable m...
A globally relevant and standardized taxonomy and framework for consistently describing land cover change based on evidence is presented, which makes use of structured land cover taxonomies and is underpinned by the Driver-Pressure-State-Impact-Response (DPSIR) framework. The Global Change Taxonomy currently lists 246 classes based on the notation...
Mangroves are a globally important ecosystem that provides a wide range of ecosystem system services, such as carbon capture and storage, coastal protection and fisheries enhancement. Mangroves have significantly reduced in global extent over the last 50 years, primarily as a result of deforestation caused by the expansion of agriculture and aquacu...
Tidal wetlands are expected to respond dynamically to global environmental change, but the extent to which wetland losses have been offset by gains remains poorly understood. We developed a global analysis of satellite data to simultaneously monitor change in three highly interconnected intertidal ecosystem types—tidal flats, tidal marshes, and man...
Ocean color in remotely sensed imagery is indicative of water depth and can be combined with in situ data to estimate benthic depth and model bathymetric surfaces. However, this has yet to be fully exploited at the regional scale due to the limitations faced in collecting sufficient in situ data for model calibration and validation. Here, we provid...
There is an urgent need to halt and reverse loss of mangroves and seagrass to protect and increase the ecosystem services they provide to coastal communities, such as enhancing coastal resilience and contributing to climate stability.1,2 Ambitious targets for their recovery can inspire public and private investment in conservation,3 but the expecte...
This study presents an updated global mangrove forest baseline for 2010: Global Mangrove Watch (GMW) v2.5. The previous GMW maps (v2.0) of the mangrove extent are currently considered the most comprehensive available global products, however areas were identified as missing or poorly mapped. Therefore, this study has updated the 2010 baseline map t...
Timely and up-to-date bathymetry maps over large geographical areas have been difficult to create, due to the cost and difficulty of collecting
in situ
calibration and validation data. Recently, combinations of spaceborne Ice, Cloud, and Elevation Satellite-2 (ICESat-2) lidar data and Landsat/sentinel-2 data have reduced these obstacles. However,...
Wetlands are among the most vulnerable, threatened, valuable, diverse, and heterogeneous ecosystems existing on our planet. While they provide invaluable ecosystem services to our society, they have been declining globally for many centuries. Monitoring of these changes is necessary for implementing efficient conservation policies and sustainable m...
Ice surface albedo is a primary modulator of melt and runoff, yet our understanding of how reflectance varies over time across the Greenland Ice Sheet remains poor. This is due to a disconnect between point or transect scale albedo sampling and the coarser spatial, spectral and/or temporal resolutions of available satellite products. Here, we prese...
To feed the world increasing population, expansion in the area under arable cultivation is expected, with the majority projected to occur in Sub-Sahara Africa and Latin American countries. However, many existing Precision Agriculture (PA) techniques are difficult to transfer to agricultural systems in these regions as they rely on prohibitively exp...
Forest structure is a useful proxy for carbon stocks, ecosystem function and species diversity, but it is not well characterised globally. However, Earth observing sensors, operating in various modes, can provide information on different components of forests enabling improved understanding of their structure and variations thereof. The Ice, Cloud...
Mangrove forests are of high biological, economic, and ecological importance globally. Growing within the intertidal zone, they are particularly vulnerable to the effects of climate change in addition to being threatened on local scales by over-exploitation and aquaculture expansion. Long-term monitoring of global mangrove populations is therefore...
Accurate spatial information regarding forest types and tree species is immensely important for efficient forest management strategies. In the UK and particularly in Wales, creating a spatial inventory of larch (Larix sps.) plantations that encompasses both the public and private forests has become one of the highest priorities of woodland manageme...
A global review of mangrove forests - extent, condition, protection, ecosystem services, restoration, global mapping, policy, economics, community engagement
Tropical forests provide essential ecosystem services related to human livelihoods. However, the distribution and condition of tropical forests are under significant pressure, causing shrinkage and risking biodiversity loss across the tropics. Tanzania is currently undergoing significant forest cover changes, but monitoring is limited, in part due...
Earth Observation (EO) has been recognised as a key data source for supporting the United Nations Sustainable Development Goals (SDGs). Advances in data availability and analytical capabilities have provided a wide range of users access to global coverage analysis-ready data (ARD). However, ARD does not provide the information required by national...
The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques,...
Mangrove forests are highly productive ecosystems that sustain marine life, including fish communities. This study aimed to analyse mangrove characteristics, physicochemical parameters, nutrient and primary production derived from mangrove litter and estimate the fish production. The study was conducted at five mangrove sites in North Sumatra and t...
National-level mapping of crop types is important to monitor food security, understand environmental conditions, inform optimal use of the landscape, and contribute to agricultural policy. Countries or economic regions currently and increasingly use satellite sensor data for classifying crops over large areas. However, most methods have been based...
The increasing availability of very-high resolution (VHR; <2 m) imagery has the potential to enable agricultural monitoring at increased resolution and cadence, particularly when used in combination with widely available moderate-resolution imagery. However, scaling limitations exist at the regional level due to big data volumes and processing cons...
Increasing awareness of the adverse impacts of human-induced environmental change have prompted the need for more sustainable development and proactive planetary restoration. An essential component is to equip stakeholders with timely and reliable data that provide informed understanding of landscape change across varying spatial and temporal scale...
Mangrove forests provide many ecosystem services but are among the world's most threatened ecosystems. Mangroves vary substantially according to their geomorphic and sedimentary setting; while several conceptual frameworks describe these settings, their spatial distribution has not been quantified. Here, we present a new global mangrove biophysical...
Aim
Climate change is pressing extra strain on the already degraded forest ecosystem in Tanzania. However, it is mostly unknown how climate change will affect the distribution of forests in the future. We aimed to model the impacts of climate change on natural forests to help inform national‐level conservation and mitigation strategies.
Location
T...
Transformation to Continuous Cover Forestry (CCF) is a long and difficult process in which frequent management interventions rapidly alter forest structure and dynamics with long lasting impacts. Therefore, a critical component of transformation is the acquisition of up-to-date forest inventory data to direct future management decisions. Recently,...
Mangrove forests are found on sheltered coastlines in tropical, subtropical, and some warm temperate regions. These forests support unique biodiversity and provide a range of benefits to coastal communities, but as a result of large-scale conversion for aquaculture, agriculture, and urbanization, mangroves are considered increasingly threatened eco...
Airborne Laser Scanning (ALS) measurements are increasingly vital in forest management and national forest inventories. Despite the growing reliance on ALS data, comparatively little research has examined the sensitivity of ALS measurements to varying survey conditions over commercially important forests. This study investigated: (i) how accurately...
Mangrove forests play a global role in providing ecosystem goods and services in addition to acting as carbon sinks, and are particularly vulnerable to climate change effects such as rising sea levels and increased salinity. For this reason, accurate long-term monitoring of mangrove ecosystems is vital. However, these ecosystems are extremely dynam...
Access to temporally dense time series such as data from the Landsat and Sentinel-2 missions has lead to an increase in methods which aim to monitor land cover change on a per-acquisition rather than a yearly basis. Evaluating the accuracy and limitations of these methods can be difficult because validation data are limited and often rely on human...
This study establishes the use of the Earth Observation Data for Ecosystem Monitoring (EODESM) to generate land cover and change classifications based on the United Nations Food and Agriculture Organisation (FAO) Land Cover Classification System (LCCS) and environmental variables (EVs) available within, or accessible from, Geoscience Australia’s (G...
Rapid losses of mangroves over the past 50 years have had negative consequences on the environment, climate, and humanity, through diminished benefits such as carbon storage, coastal protection and fish production. Restoration of mangrove forests is possible, and has already been undertaken in many settings, but such efforts have been piecemeal, an...
Mangroves globally provide a diverse array of ecosystem services but these are impacted upon by both natural and anthropogenic drivers of change. In Australia, mangroves are protected by law and hence the natural drivers predominate. To determine annual national level changes in mangroves between 1987 and 2016, their extent (by canopy cover type)an...
Image classification and interpretation are greatly aided through the use of image segmentation. Within the field of environmental remote sensing, image segmentation aims to identify regions of unique or dominant ground cover from their attributes such as spectral signature, texture and context. However, many approaches are not scalable for nationa...
Providing timely and accurate maps of surface water is valuable for mapping malaria risk and targeting disease control interventions. Radar satellite remote sensing has the potential to provide this information but current approaches are not suitable for mapping African malarial mosquito aquatic habitats that tend to be highly dynamic, often with e...
Australia has historically used structural descriptors of height and cover to characterize, differentiate, and map the distribution of woody vegetation across the continent but no national satellite-based structural classification has been available. In this study, we present a new 30-m spatial resolution reference map of Australian forest and wood...
This study presents a new global baseline of mangrove extent for 2010 and has been released as the first output of the Global Mangrove Watch (GMW) initiative. This is the first study to apply a globally consistent and automated method for mapping mangroves, identifying a global extent of 137,600 km 2
. The overall accuracy for mangrove extent was 9...
Ecotourism is an alternative for development and management of forest area that is expected to provide sustainable economic, cultural and social benefits to the surrounding community. The central components of ecotourism are the landscape and the people. This study aims to create spatial planning of mangrove ecotourism through the exploration of la...
Medium-resolution DEMs have limited applicability to flood mapping in large river systems within data sparse regions such as Sub-Saharan Africa. We present a novel approach for the enhancement of the SRTM (30?m) Digital Elevation Model (DEM) in The Gambia, West Africa: A time-series analysis of flood frequency and land cover was used to delineate d...
This study demonstrates a globally applicable method for monitoring mangrove forest extent at high spatial resolution. A 2010 mangrove baseline was classified for 16 study areas using a combination of ALOS PALSAR and Landsat composite imagery within a random forests classifier. A novel map-to-image change method was used to detect annual and decada...
Mangroves play an important and valuable role in coastal and marine ecosystems, in particular acting as nursery grounds for coastal and offshore fisheries. Mangrove ecosystems in North Sumatra, Indonesia, have been lost through anthropogenic activities. The purpose of this study was to calculate the potential contribution of mangrove litter to fish...
Coastal sand dune systems across temperate Europe are presently characterized by a high level of ecological stabilization and a subsequent loss of biological diversity. The use of continuous monitoring within these systems is vital to the preservation of species richness, particularly with regard to the persistence of early stage pioneer species de...
The morphology of englacial drainage networks and their temporal evolution are poorly characterised, particularly within cold ice masses. At present, direct observations of englacial channels are restricted in both spatial and temporal resolution. Through novel use of a terrestrial laser scanning (TLS) system, the interior geometry of an englacial...
Mangrove plays an important role in coastal ecosystems including ecological, social, and economic aspects. This study aimed to determine the diversity of macrozoobenthos and water quality based on diversity index (H’), similarity Index (E), and dominance index (D) in the mangrove of Lubuk Kertang Village North Sumatra, Indonesia. The samples of mac...
The use of multispectral imagery achieved from fixed-wing unmanned aerial vehicles (UAVs) has the capability to deliver high resolution imagery that can be used to monitor vegetative composition and change in semi-natural grasslands. Using a multispectral camera mounted on a fixed wing UAV with autonomous flight capability, this study is classifyin...
Many areas across Europe are mapped and monitored using a large range of different data types, sources and classification schemes leading to gaps in the knowledge required to fulfill the European Council’s Habitats Directive (1992). The Earth Observation Data for Habitat Monitoring (EODHaM) system, developed during the EU FP7 BioSOS project, introd...
A common obstacle to the use of remote sensing data for nature conservation is the difficulty in obtaining or generating data that are pre-processed to a standard that gives confidence in their subsequent use. Such processing is essential in order to facilitate physical measurement (e.g., of temperature, surface reflectance, height) and compare dat...
For the period 1996-2010, we provide the first indication of the drivers behind mangrove land cover and land use change across the (pan-)tropics using time-series Japanese Earth Resources Satellite (JERS-1) Synthetic Aperture Radar (SAR) and Advanced Land Observ- ing Satellite (ALOS) Phased Array-type L-band SAR (PALSAR) data. Multi-temporal radar...
For the period 1996-2010, we provide the first indication of the drivers behind mangrove land cover and land use change across the (pan-)tropics using time-series Japanese Earth Resources Satellite (JERS-1) Synthetic Aperture Radar (SAR) and Advanced Land Observing Satellite (ALOS) Phased Array-type L-band SAR (PALSAR) data. Multi-temporal radar mo...
Across their range, mangroves are responding to coastal environmental change. However, separating the influence of human activities from natural events and processes (including that associated with climatic fluctuation) is often difficult. In the Gulf of Carpentaria, northern Australia (Leichhardt, Nicholson, Mornington Inlet, and Flinders River ca...
As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic apertur...
A map of vegetated wetlands in Alaska generated by applying an automated classification routine to ALOS PALSAR data from 2007 and ancillary layers.
The method used to generate the map and associated accuracy is described in the following, open access, publication:
Clewley, Daniel; Whitcomb, Jane; Moghaddam, Mahta; McDonald, Kyle; Chapman, Bruce;...
Across the world, particularly in the tropics, the extent of forest clearance has been widespread. At present, few studies have been undertaken and little is known on the long-term effect of land use history following clearance, on forest recovery, a significant sink for atmospheric CO2.
This study aimed at quantifying the capacity of regenerating...
High spatio-temporal resolution optical remote sensing data provide unprecedented opportunities to monitor and detect forest disturbance and loss. To demonstrate this potential, a 12-year time series (2000 to 2011) with an 8-day interval of a 30 m spatial resolution data was generated by the use of the Spatial and Temporal Adaptive Reflectance Fusi...
To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has...
Differentiation of forest growth stages through classification of single date or time-series of Landsat sensor data is limited because of insensitivity to their three-dimensional structure. This study therefore evaluated the benefits of integrating the Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) L-...
To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has...
Northern peatlands are estimated to hold about 30 % of the total global pool of soil carbon or 13 % of the total terrestrial carbon in the biosphere [1]. The warmer, drier conditions being experienced throughout the Arctic appear to be accelerating both aerobic and anaerobic decomposition of northern peatland soils, thereby increasing emissions of...
Between 2007 and 2010, Japan’s Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) captured dual polarization HH and HV data across the tropics and sub-tropics. A pan tropical dataset of Japanese Earth Resources Satellite (JERS-1) SAR (HH) data was also acquired between 1995 and 1998. The provision of th...
It is necessary to remove the effects of topography from optical satellite imagery if automated techniques are to be used to infer surface properties. This is especially the case in mountainous terrain where variable slope normals cause variation in both illumination and reflectance of light. Digital elevation models (DEMs) are required to model sl...
A modular system for performing Geographic Object-Based Image Analysis (GEOBIA), using entirely open source (General Public License compatible) software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT). The system utilizes a number of libraries, developed by the authors: The R...
TanDEM-X provides a unique opportunity for environmental studies, being the first single-pass radar
interferometer in space which employs two synthetic aperture radar (SAR) satellites flying in formation with the possibility to adjust baselines by several metres or kilometres. These characteristics allow in principle for the retrieval of forest bio...
Significant progress on quantifying state and trends in vegetation structure in savanna and woodland ecosystems has been made by integrating in situ measurements with lidar datasets. However, large area ground-based monitoring campaigns required for calibration are both costly to maintain, and reduce the generality of results. Estimation of directi...
The inversion of physics-based models presents a promising alternative to empirical relationships for the retrieval of forest structure from Synthetic Aperture Radar (SAR) data, one particular advantage being the ability to include information on soil and vegetation moisture. This paper describes a two-stage estimation algorithm for retrieving cano...
As part of the Biodiversity Multi-Source Monitoring System (BIO_SOS), a new approach to the classification of Food and Agricultural Organisation (FAO) Land Cover Classification System (LCCS) classes from very high resolution (VHR) remote sensing data has been developed. These classes are also translated to General Habitat Categories (GHCs). Example...
This research has developed a method for detecting changes in vegetation cover and state, accounting for change direction, magnitude and extent, in regions of frequent cloud cover or data gaps. The study integrated high-temporal, low spatial-resolution data from MODIS with moderate spatial-resolution sensors (Landsat TM / ETM+ and ASTER), to negate...
Whilst extensive clearance of forests in the eastern Australian Brigalow Belt Bioregion (BBB) has occurred since European settlement, appropriate management of those that are regenerating can facilitate restoration of biomass (carbon) and biodiversity to levels typical of relatively undisturbed or remnant formations. However, maps of forests are di...
Whilst extensive clearance of forests in the eastern Australian Brigalow Belt Bioregion (BBB) has occurred since European settlement, appropriate management of those that are regenerating can facilitate restoration of biomass (carbon) and biodiversity to levels typical of relatively undisturbed or remnant formations. However, maps of forests are di...
The inversion of physics based models presents an alternative to empirical relationships for the retrieval of forest structure from Synthetic Aperture Radar (SAR) data. A major disadvantage of such techniques is instability in the presence of moderate levels of noise. The effects of noise on the accuracy with which parameters can be retrieved is ev...
Introduction.- Part I - 3D Imaging and Shape Representation.- Passive 3D Imaging.- Active 3D Imaging Systems.- Representing, Storing and Visualizing 3D Data.- Part II - 3D Shape Analysis and Processing.- Feature-based Methods in 3D Shape Analysis.- 3D Shape Registration.- 3D Shape Matching for Retrieval and Recognition.- Part III - 3D Imaging Appli...
Glaciers in the Southern Alps of New Zealand are showing rapid
morphological changes that reflect adjustments in local to regional
scale temperature and precipitation gradients. These changes provide an
insight into ablation mechanisms at a local scale that have hitherto
been poorly quantified. The relatively recent emergence of terrestrial
laser s...
Discontinuities in polarimetric SAR backscattered intensity (edges and point targets) can be characterized by a mathematical model. This paper presents a technique based on the Lipschitz regularity of an underlying singular function for detecting and interpreting such discontinuities. Numerical estimators of the Lipschitz parameters (exponent, swin...
The Phase 1 Survey is the most comprehensive and widely used national level map of semi-natural habitats in Wales. However, the survey was based largely on field survey and was conducted over several decades, before being completed in 1997. Given that resources for a repeat survey were limited, this study has used an object-orientated rule-based cl...
Focusing on woody vegetation in Queensland, Australia, the study aimed to establish whether the relationship between Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) HH and HV backscattering coefficients and above ground biomass (AGB) was consistent within and between structural formations (forests, woodlands and open woodl...
For many years, the classification of forest communities and their associated species from airborne data (primarily aerial photography) has largely been through manual interpretation. With the development of digital imagery, options for delineating individual crowns and identifying these to species have become available but automated techniques for...
This paper outlines research undertaken to assess the ability of textural information, from image filters, to be used alongside hyperspectral data for the classification of broad forest types. The study made use of 2.6 m hyperspectral HyMap data acquired over the Injune study area, Queensland, Australia, in September 2000. The HyMap data provided s...