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Vehicle Trajectory Prediction in Connected
Environments via Heterogeneous Context-Aware

Graph Convolutional Networks
Yuhuan Lu, Wei Wang*, Xiping Hu*, Pengpeng Xu, Shengwei Zhou, and Ming Cai

Abstract—The accurate trajectory prediction of surrounding
vehicles is crucial for the sustainability and safety of connected
and autonomous vehicles under mixed traffic streams in the
real world. The task of trajectory prediction is challenging
because there are all kinds of factors affecting the motions of
vehicles, such as the individual movements, the ambient driving
environment especially road conditions, and the interactions
with neighboring vehicles. To resolve the above issues, this
work proposes a novel Heterogeneous Context-Aware Graph
Convolutional Networks following the Encoder-Decoder archi-
tecture, which simultaneously extracts the hidden contexts from
individual historical trajectories, varying driving scene, and
inter-vehicle interactional behaviors. Specifically, the historical
vehicle trajectories are fed into Temporal Convolutional Network
to capture the individual context. Besides, a 2-Dimensional
Convolutional Network with temporal attention is designed for
transforming the scene image stream into compressing scene
context. Then a Spatio-Temporal Dynamic Graph Convolutional
Networks is devised to model the evolving interactional patterns,
which incorporates the acquired individual and scene contexts
as the representation of the node. Finally, the aforementioned
three contexts are combined and fed into the decoder to produce
future trajectories. The proposed model is validated on two real-
world datasets which contain various driving scenarios. Results
demonstrated that the proposed model outperforms state-of-
the-art methods in prediction accuracy and achieves immense
stability towards different vehicle states.

Index Terms—Traffic big data, graph neural networks, trajec-
tory prediction, connected vehicles, interaction context.

I. INTRODUCTION

THE perception of the motions of human-driving vehi-
cles is crucial for autonomous vehicles when driving in

mixed traffic streams. Such complex and ever-changing driv-
ing environments require the accurate trajectories prediction
of surrounding vehicles to make decisions in advance and
circumvent the potential incidents, which also enhances the
mobility, sustainability, and safety of autonomous vehicles
[1]. However, the exact prediction of trajectories is quite
challenging especially when vehicles travel on urban road
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networks [2]. At this time, the motions of vehicles are af-
fected by diverse factors, such as their own dynamics, road
conditions, and interactions with surrounding vehicles. Over
the past decade, researchers in the field of connected and
autonomous vehicles have endeavored to address the above
issues and make precise predictions of vehicle trajectories. At
present, the trajectory prediction paradigms can be divided
into three categories: physics-based methods, maneuver-based
methods, and interaction-aware methods [3].

Physics-based methods [4] concentrate on the individual
dynamic behaviors and integrate individual dynamics by linear
filters to predict the future placement of vehicles. Maneuver-
based methods [5] consider the limitation of driving maneuvers
resulted from road conditions and incorporate the restricted
maneuvers into trajectory prediction. To strengthen both the
short-term and long-term features expression, physics- and
maneuver-based combined methods are proposed to produce
high fidelity trajectories [6]. Although the above methods
achieve good performances, ignoring the impacts from sur-
rounding vehicles still inhibits their representation ability.

With the advancement of communication technologies,
vehicle-to-vehicle (V2V) enables smoother message passing
between vehicles, and thus the interaction-aware methods
have attracted increasingly more attention [7], [8]. Currently,
methods based on Convolutional Neural Networks (CNN) are
widely used to model the interactions between vehicles. Con-
volutional social pooling [9] constructs an Encoder-Decoder
model employing the Long Short-Term Memory (LSTM) as
basic cells. Within the encoder, CNN is applied to extract
interdependencies from social tensors consisting of vehicle
motions. Instead of predefining the size of a spatial grid, CNN-
LSTM [10] designs a dynamic grid to cover the motions of
vehicles and then the interaction features are seized by a two-
layer CNN.

Since the great success of Graph Neural Networks (GNN)
in spatio-temporal predictions [11]–[14], recent interaction-
aware methods employ GNN to model the mutual effects
between vehicles, which have been proved the superiority
over CNN-based methods. Grip [15] proposes a graph to
represent the interactions of surrounding vehicles. Then a
Graph Convolutional Network (GCN) [16] is employed to
capture inter-vehicle interactional patterns in spatial space.
SCALE-Net [17] constructs edge characteristics for inter-
vehicle measurements and then employs an edge-enhanced
GCN to acquire the interaction embedding. HEAT [18] pro-
poses an edge-enhanced Graph Attention Network (GAT) [19]
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to handle the heterogeneity of connected vehicles and the
map features extracted by gate mechanism are shared across
all vehicles. While interpreting inter-vehicle interactions as a
graph raises the prediction accuracy, most existing interaction-
aware methods still faces the following limitations:

• Existing interaction-aware methods regarded the scene
information as an invariant complement for trajectory
prediction. However, the driving environment is rapidly
changing and the snapshots of it at different time intervals
have distinct influences on the future trajectories of
vehicles.

• The most recent GNN-based methods tend to represent
the connected vehicles in a static graph, which is not
able to express the shape change of vehicle platoon
and restrain the capability of capturing the dynamic
interactional patterns.

In order to overcome the above obstructions, this work
invents a new deep learning-based architecture, which ex-
plores the heterogeneous contexts inherent in the historical
trajectories and ambient driving environments of the connected
vehicles for emphasizing the spatio-temporal representation
and prediction of vehicle mobilities. In particular, the main
contributions of this work can be summarized as:

• A Heterogeneous Context-Aware Graph Convolutional
Networks is proposed to consider vehicles’ individual dy-
namics, interactional patterns, and road conditions jointly.
The above three factors are mapped into context embed-
dings, which largely elevates the prediction accuracy.

• A dynamic scene context extraction method is designed
to reinforce the expression of the effects of the driving
environment on vehicle motions, where a temporal atten-
tion mechanism is incorporated into CNN to model the
temporal correlations inherent in scene images.

• A novel Spatio-Temporal Dynamic Graph Convolutional
Networks is developed to model the evolving inter-
vehicle interactions from both the spatial and temporal
domains. In the spatial domain, a node attention mech-
anism is designed to insert the scene context into node
feature. And in the temporal domain, a Evolving Graph
Convolutional Network module is developed to capture
the temporal dynamics of the connected vehicle platoon.

The remainder of this paper is organized as follows: Sec. II
reviews the related works. Sec. III provides an overview of this
work. Sec. IV elaborates the proposed Heterogeneous Context-
Aware Graph Convolutional Networks. Sec. V validates the
proposed model on two real-world driving dataset. Finally,
Sec. VI concludes this work and points out some future
research directions.

II. RELATED WORK

Accounting for the deep-seated interactional behaviors is
most important for the high-accuracy trajectory prediction and
scholars have applied various machine learning-based methods
to raise the interpretation. This section briefly introduces
some recent works on trajectory prediction with two types
of prevalent interaction representations.

A. Euclidean Representation

Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) are two most widely used approaches to
reflect the interactional behaviors with regard to Euclidean
representation. LSTM-based trajectory prediction [20] feeds
the historical coordinates of all vehicles into the corresponding
single LSTM cell and obtain the motion context for each
grid. Next, a unified LSTM network produces the occupancy
probability for each grid over these contexts and predict the
future trajectories of vehicles. GRU-based trajectory prediction
[21] employs the lightweight variant of LSTM to learn from
the historical trajectory data. As Gated Recurring Unit (GRU)
has less number of parameters than LSTM, the training of it
is more simple and fluent, and thus it is suitable for short-
term trajectory prediction. ARNN [22] is the improved model
upon the vanilla RNN, which incorporates the self-attention
mechanism to further capture the long-term dependencies in-
herent in the trajectory data. Through the attention mechanism,
the interaction between historical trajectory information and
current traffic state is exploited to enhance the forecasting
performance. S2TNet [23] makes use of the multi-head at-
tention mechanism to merge the spatial and temporal features
of historical trajectories and achieves plausible results. Con-
volutional social pooling [9] devises a pooling grid over the
vehicles in the autonomous scene. Based on the Long Short-
Term Memory (LSTM) cells, vehicle motions are captured by
the stacked LSTM encoder and then a social tensor cultivated
by CNN and pooling layers is employed to model the inter-
dependencies of all vehicles. Finally, a maneuver activated
LSTM decoder generates the future motions over a given time
window. CNN-LSTM [10] also utilizes the LSTM encoder
to seize the sequential features of vehicle motions. Based on
a designed dynamic 3×3 grid over the vehicular group, a
CNN and LSTM combined interaction extractor is proposed
to fully represent the inter-vehicle influences. MATF [24] first
introduces the tensor realization into the spatial constraints
modeling of surrounding vehicles. A multi-faceted tensor is
constructed which takes the scene variances and dynamic
motions into account. To learn the spatial inter-dependencies,
the built tensor is fed into a U-Net-like architecture while
retaining the spatial resolution of trajectories.

The above-mentioned trajectory prediction methods are able
to capture dynamic interactional behaviors of vehicles to some
extent but fail to comprehensively cover the heterogeneity of
relationships among vehicles due to the narrow geometric-
structure representation ability of Euclidean machine learning.

B. Non-Euclidean Representation

Data represented in the form of graph is ubiquitous in the
smart city, and increasing more recent works focus on the
development of Graph Neural Networks (GNN) to address the
problem of representation learning upon non-euclidean data.
GNNs are categorized into either spectral method [16], [25],
[26] or non-spectral method [19], [27], [28]. Spectral GNN,
e.g., Graph Convolutional Network (GCN) [16] generalize the
convolutional operation from grid data to graph data, which
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applies the graph Laplacian matrix to aggregating the infor-
mation of nodes. On the other hand, non-spectral GNN, e.g.,
Graph Attention Network (GAT) [19] restricts the information
aggregation to performing on local nodes, which reduces the
computational overhead on Laplacian eigenbasis. Motivated
by the excellent performance of GNNs, some recent works
attempt to utilize GNNs to explore the applications of smart
city, especially the spatio-temporal modeling. ST-GDN [29] is
a hierarchically structured GCN, which learns from both the
local geographical dependencies and the global spatial seman-
tics to improve the citywide traffic flow prediction. ADGCN
[30] empowers the combination of attention mechanism and
GCN to tackle the congestion recognition problem. To catch
the long-range evolution of congestion, GCN is applied on a
digraph to model the high-order spatio-temporal features. ST-
RGAN [31] develops a spatio-temporal block by the multi-
faced GAT to capture both spatial and temporal dependencies
of the turn-level road network topology simultaneously. These
GNNs can handle heterogeneous dependencies in a graph and
achieve great performance on spatio-temporal modeling.

Graph is exactly the most suitable structure for representing
the interactions among vehicles, and therefore the above
GNN techniques advance the expression of complex inter-
dependencies and relationships among objects [32]. GRIP [15]
constructs an undirected graph containing the nodes and edges
referring to the vehicles and interactions, respectively. The
node feature is constituted by a sequence of coordinates over
the observed time steps. To extract the interaction contexts,
a Graph Convolutional Network (GCN) is employed with
spatially correlated graph operations. DGG [33] uses a two-
stream GNNs combined with LSTM networks to capture
the spatio-temporal motions patterns. Based on the spectral
regularization, the fusion of patterns is transformed into the
future trajectories. SCALE-Net [17] regards the edge charac-
teristics of a connected graph as the inter-vehicle measure-
ments. An edge-enhanced attention mechanism is invented
to assign the importance weights to different vehicles and
then apply the GCN to integrate the features and transfer the
features to predictive motions. VectorNet [34] proposes a novel
hierarchical framework to amplify the interaction modeling.
The first layer is composed of multiple sub-graphs, each of
which corresponds to a specific vehicle and the second layer
combines all sub-graphs and represent the inter-dependencies
by a fully-connected graph.

GNN-based interaction modeling has superior capability
of heterogeneity representation over the Euclidean modeling.
However, the existing works lack the combination of global
and local contexts, which results in the static-excessive repre-
sentation.

III. OVERVIEW

A. Problem Formulation
The overarching goal of this work is to learn the underlying

contexts regarding interactional behaviors of connected vehi-
cles under various traffic situations and to forecast the future
trajectory of the target vehicle accordingly.

Suppose the historical states of the networked vehicle i
at time interval t is HSit =

{
hsit−T+1, hs

i
t−T+2, . . . , hs

i
t

}
,

where T denotes the traceback time window. Considering
the trade-off between communication efficiency and shared-
information richness, an instantaneous state hsit contains both
the position and velocity of the vehicle i at time interval t.
Accordingly, the historical states of all networked vehicles is

represented by HSt =
Nt−1⋃
i=0

HSit, with i = 0 as the target

vehicle and Nt as the number of connected vehicles at time
interval t. While involving the scene context SCt derived from
the local maps at t-th time interval, the input to the model can
be defined as follows:

HDt = {HSt,SCt} (1)

From this, the output from the model is the predicted
trajectory of target vehicle as follows:

PTt =
{(
x0t+1, y

0
t+1

)
,
(
x0t+2, y

0
t+2

)
, . . . ,

(
x0t+τ , y

0
t+τ

)}
(2)

where
(
x0t+1, y

0
t+1

)
refers to the 2-Dimensional coordinates of

target vehicle and τ stands for the predictive time window.

B. The Proposed Model

In order to accurately predict the future trajectory of a target
vehicle, a Heterogeneous Context-Aware Graph Convolutional
Network is proposed to extract the hidden contexts of the
target and surrounding vehicles from their historical vehicle
trajectories along with the ambient driving environment. Fig.
1 presents the framework of the proposed model which follows
an Encoder-Decoder architecture. The raw input data contain-
ing historical vehicle trajectories and road features are firstly
transmitted to two-stream neural networks. On the one hand,
a Temporal Convolutional Network replacing the traditional
RNN is employed to capture the sequential features for each
vehicle and transform the features into individual context
embedding. On the other hand, a 2-Dimensional Convolutional
Network is devised to map the driving scenarios images
into scene context. At the same time, a connected graph is
constructed with the hyperbolic structure where the central
node denotes the target vehicle and outside nodes refer to the
surrounding vehicles. Afterward, a Spatio-Temporal Dynamic
Graph Convolutional Network (STDGCN) is developed to
model both the spatial and temporal evolutions of interactions
over the above connected graph. The proposed STDGCN
incorporates both the individual and scene contexts as the
representation of the node, which largely enhances the mining
of interaction context. Finally, the derived three contexts are
fused and fed into a Temporal Convolutional Network decoder
to forecast the future trajectory of the target vehicle.

IV. HETEROGENEOUS CONTEXT-AWARE GRAPH
CONVOLUTIONAL NETWORKS

In this section, we elaborate on the capture of three distinct
but closely linked contexts (i.e., individual context, scene
context, and interaction context) which are essential for the
proposed trajectory prediction framework.
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Fig. 1. The framework of HCAGCN. TCN: Temporal Convolutional Network. 2D Conv: 2-Dimensional Convolution. STDGCN: Spatio-Temporal Dynamic
Graph Convolutional Network.

A. Individual Context Extraction

Individual context is a deep-seated understanding of the
behavioral patterns of vehicles and thus it is crucial to the
forecast of future vehicle positions. Nevertheless, context
information is intensely hidden in a historical trajectory and
therefore a suitable time-series processor is needed to seize
the sequential context.

Recurrent Neural Networks (RNNs) are specialized for
handling sequential dependency which makes them the default
choices to resolve the time-series problems [35], [36]. How-
ever, inspired by the recent studies, some novel CNN-based
models are more effective than RNN-based approaches across
a variety of tasks, such as machine translation [37], signal
processing [38] and traffic prediction [39]. Encouraged by the
success of the Convolutional Neural Network (CNN) family
in sequential modeling, a Temporal Convolutional Network
(TCN) model with dilated causal convolution is applied to
learning the temporal dependency inherent in individual trajec-
tory and then converting it into individual context. Compared
with RNNs, TCN is more suitable for the task of context
extraction, because: 1) The activations within each layer of
TCN are independent. Such a design greatly improves the
training speed, which has direct impact on the efficiency of
context embedding. 2) Through adjusting the parameters of
dilated filters, the TCN output can be restricted to relying more
on short-range input time steps, the property of which exactly
satisfies the demand of trajectory prediction framework [40].

As shown in Fig. 2a, TCN exerts the dilated causal convolu-
tion to enlarge the receptive field of network without extending
the filter size. Particularly, the dilated factor d increases
exponentially with layer depth. Let fl : {0, 1, . . . , k − 1} be
the filter set of the l-th layer. The output activation of the l-th
layer at time interval t is given by:

Fl(t) =

k−1∑
q=0

fl(q)Fl−1(t− q ∗ d) (3)

where fl(q) denotes the q-th filter in the corresponding filter
set, k refers to the filter size and Fl−1(t− q ∗ d) is the input

activation from the last layer (l − 1). To further capture the
individual context, the dilated convolution layers are stacked
in a blocky structure as presented in Fig. 2b. Especially, the
dilated TCN utilizes the skip connection [41] to mitigate the
gradient vanishing and the network degradation. Suppose the
output activation at time interval t of j-th block is denoted
by F j(t) ∈ RFI , where FI denotes the embedding size of
individual context. The final output is obtained as follows:

C(t) = ReLU

 B∑
j=1

F j(t)

 (4)

where B is the number of blocks in TCN and ReLU(·) is the
Rectified Linear Unit [42] applied in the activation layer:

ReLU(x) = max (0, x) (5)

For convenient, the derived context embedding of a specific
vehicle i at time interval t is denoted by ZIi (t). Here, ZIi (t) =
C(t) ∈ RFI .

B. Scene Context Extraction

The driving environment is a vital factor highly affecting
the vehicle trajectory and therefore the scene context should
be appropriately extracted from the road condition to represent
the latent information of the driving environment. Recently,
many studies have explored all sorts of representation methods
of scene context. ReCoG [43] employs a CNN to encode the
local map into context embedding. However, such a local map
is centered at the target vehicle’s initial position and overlooks
the real-time motions. MATF [24] constructs a multi-agent
tensor that retains the encoded scene image in the channel
dimension and then applies CNN to capture the fusion of
multi-agent interactions and scene context. Notably, in MATF,
the scene image snapshots at different time intervals have the
same impact on future trajectories of target vehicles.

To exploit a more informative context embedding, an atten-
tion mechanism is designed to model the dynamics of temporal
correlations between different time intervals in the scene
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(a) An example of dilated causal convolution stack.
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(b) The dilated TCN model employs blocky-stacked dilated convolutions.

Fig. 2. Illustration of dilated causal convolution and TCN model.

images. Referring to the channel attention [44] in CNN for
emphasizing the feature representation, a temporal attention is
developed to adaptively select the scene images at the most
relevant time intervals to produce the scene context. Assume
that the scene-image series of vehicle i at current time interval
t is denoted by a three-order tensor Mt

i ∈ RTS×H×W , where
TS denotes the input time window of scene images, H and W
denotes the height and width of an image, respectively. Tensor
Mt

i is first reshaped to M̃t
i ∈ RTS×P , and then a matrix

multiplication is applied between M̃t
i and its transpose. At

last, a softmax function is performed to derive the temporal
attention matrix A ∈ RTS×TS :

αkj =

exp

((
M̃t

i

)
j
·
(
M̃t

i

)
k

)
∑TS

j=1 exp

((
M̃t

i

)
j
·
(
M̃t

i

)
k

) (6)

where
(
M̃t

i

)
j
∈ RP is the transpose of j-th row in M̃t

i. αkj
semantically represents the impact from the j-th time interval
on the k-th time interval. Furthermore, a matrix multiplication
is likewise employed between the A’s transpose and M̃t

i. The
result is then reshaped to RTS×H×W . Finally, the reshaped
result is scaled by a parameter β and a skip connection is also
executed to obtain the contextual output ~Mt

i ∈ RTS×H×W :

((
~Mt
i

)
[1]

)
k

= β

TS∑
j=1

(
αkj

(
M̃t

i

)
j

)
+
(
M̃t

i

)
k

(7)

𝑇𝑆

CNN

ℳ𝑖
𝑡

𝑍𝑖
𝑆(𝑡)

Temporal Attention +

Fig. 3. The workflow of scene context extraction.

where β is a learnable parameter and
(
~Mt
i

)
[1]

is the 1-

mode unfolding of ~Mt
i. Through the above temporal attention,

each time interval (namely channel) of final output ~Mt
i is

a weighted sum of all time intervals, which enhances the
expression of dynamical scene features. To achieve the context
embedding, a CNN is applied to the refined scene tensor:

ZSi (t) = FC(CNN( ~Mt
i)) (8)

Here, FC(·) stands for the fully connected layer to obtain the
weighted summation of features produced by CNN. The com-
plete workflow with regards to context extraction is presented
in Fig. 3.

C. Interaction Context Extraction

The graph is naturally an excellent data structure to repre-
sent the interactions among connected vehicles [18]. Benefit-
ing from the advancement of Graph Convolutional Network
(GCN), recent studies have employed a wide variety of GCN-
based approaches to recognize the interactional patterns [15],
[34], [45]. Most of them achieve prominent performances over
trajectory prediction.

Without loss of generality, the connected graph at time
interval t is denoted as Gt (Vt, Et). Vt is the set of nodes at time
interval t and each node corresponds to a real-world vehicle.
Et ⊆ |Vt|×|Vt| denotes the set of edges at the same time. The
portrait of connected graph construction is exhibited in Fig. 4.
Let H l

t ∈ RNt×FI be the activation in the l-th layer at time
interval t, where Nt is the number of nodes at time interval t
and FI is the size of input individual context as described in
Section IV-A. According to the classical GCN model proposed
by Kipf and Welling [16], the propagation rule between two
consecutive graph convolution layers is as follows:

H l+1
t = f

(
D− 1

2ED− 1
2H l

tW
l
t

)
(9)

where E ∈ RNt×Nt denotes the adjacency matrix of connected
graph G with self-loop. D ∈ RNt×Nt is the degree matrix of
E wherein Djj =

∑
k Ejk. W l

t ∈ RFI×FI is a layer-specific
weighted matrix and f(·) refers to an activation function.
Additionally, H0

t =
[
ZI0 (t), Z

I
1 (t), . . . , Z

I
Nt−1(t)

]T
. ZIi (t)

is computed by Eq. (4) and ZI0 (t) represents the individual
context of target vehicle.

Although the classical GCN is capable of modeling the
static inter-vehicle correlations, a connected vehicle platoon
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Fig. 4. Illustration of connected graph construction and its corresponding ad-
jacency matrix. The black and blue circles represent the target and surrounding
vehicles respectively.

often dynamically evolves. For example, the number of ve-
hicles in a connected vehicle platoon changes over time due
to the entry and exit of vehicles; hence, the connected graph
should be updated accordingly to reflect the temporal variation
of interactional patterns. Similarly, the driving environment of
a platoon is constantly shifting since the high-speed movement
of vehicles. Thus the dynamics of such spatial information
should be captured to augment the interaction context extrac-
tion.

To resolve the above issues, a dynamic mechanism is
developed that is imposed on GCN to capture the evolution
of interactional patterns. Specifically, a Spatio-Temporal Dy-
namic Graph Convolutional Network is devised to capture the
dynamics of the connected graph from both the spatial and
temporal domains.

In the spatial domain, a node attention mechanism is de-
signed to adapt the varying scene context into the connected
graph, which strengthens the representation ability of vanilla
GCN. Given the scene context ZSi (t) of vehicle i at time
interval t, the node attention is calculated as follows. Likewise,
ZS0 (t) refers to the scene context of the target vehicle.

rit = vT tanh
(
WrZ

I
i (t) + UrZ

S
i (t) + br

)
(10)

γit =
exp

(
rit
)∑Nt−1

k=0 exp
(
rkt
) (11)

where v, br, Wr and Ur are learnable parameters. Eq. (11)
is a softmax function ensuring that all the attention weights
obtained in Eq. (10) sum to one. In this case, attention weight
semantically represents the effect intensity of scene context
on vehicle stage. After deriving the attention scores, the node
feature of vehicle i at time interval t can be updated as follows:

Z̃Ii (t) = γitZ
I
i (t) (12)

In the temporal domain, the principal difficulty is how to
inject the temporal dynamics into the parameters of conven-
tional GCN and then constitute an evolving graph sequence.
Fortunately, recurrent architecture naturally fulfills the above
requirements [46]. In terms of the selection of recurrent
models, this work utilizes the Gated Recurrent Unit (GRU) as
an alternative to Long Short-Term Memory (LSTM) network
[47]. Contrasted with LSTM, GRU is more computationally
efficient [48] and has been widely used in modeling the
time-varying characteristics of trajectory [40], [49], [50]. To

GCN

𝐻𝑡
𝑙

GRU𝑊𝑡−1
𝑙 𝑊𝑡

𝑙

𝐻𝑡
𝑙+1

𝑊𝑡
𝑙EGCN

Fig. 5. Illustration of Evolving Graph Convolutional Network (EGCN)
module for capturing temporal dynamics of connected graph.

dynamically update the weighted matrix W l
t of GCN based on

current and historical contexts, W l
t is regarded as the hidden

state of GRU. Consequently, the activations and hidden states
in GRU should be extended from vectors to matrices:

Pt =sigmoid
(
WPH

l
t + UPW

l
t−1 +BP

)
Qt =sigmoid

(
WQH

l
t + UQW

l
t−1 +BQ

)
W̃ l
t =tanh

(
W0H

l
t + U0

(
Qt ◦W l

t−1

)
+B0

)
W l
t =(1− Pt) ◦W l

t−1 + Pt ◦ W̃ l
t

(13)

where WP , WQ, W0, UP , UQ, and U0 are all learnable
parameters. BP , BQ, and B0 are trainable bias terms. ◦ refers
to the Hadamard product. Notably, in Eq. 13, the number of
columns of activation H l

t is required to be the same as that
of weighted matrix W l

t−1. Since the initial node feature in the
connected graph is produced by the combination of individual
context and node attention, the size of the feature is able to
retain at FI , which is identical to the number of columns
of W l

t−1. The structure of Evolving Graph Convolutional
Network (EGCN) module is presented in Fig. 5.

On the basis of the aforementioned node attention and
EGCN module, a Spatio-Temporal Dynamic Graph Convo-
lutional Network (STDGCN) is constructed which integrates
the spatial and temporal domain to extract the profound
interaction context. The architecture of STDGCN is illus-
trated in Fig. 6. Specifically, STDGCN consists of a node
attention block and two EGCN modules. The historical indi-
vidual contexts

{
ZI(t− T + 1), ZI(t− T + 2), . . . , ZI(t)

}
are first fed into the node attention block, where ZI(t) =[
ZI0 (t), Z

I
1 (t), . . . , Z

I
Nt−1(t)

]T
. Then the filtered contexts{

Z̃I(t− T + 1), Z̃I(t− T + 2), . . . , Z̃I(t)
}

are sequentially
fed into the EGCNs to seize the spatio-temporal ensemble
dynamics. The outputs of lower EGCN are inputted to the
upper EGCN to figure out high-level features. Finally, a fully
connected layer is utilized to integrate features and transform
the integration into an interaction context.

D. Trajectory Prediction & Model Training

In the encoder, embeddings from the branches of individual
context, scene context, and interaction context are aggregated
as the new input to the decoder:



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, AUGUST 2021 7

EGCN

Node Attention

𝑍𝐼(𝑡 − 𝑇 + 1) 𝑍𝐼(𝑡 − 𝑇 + 2) 𝑍𝐼(𝑡)

෨𝑍𝐼(𝑡 − 𝑇 + 1) ෨𝑍𝐼(𝑡 − 𝑇 + 2) ෨𝑍𝐼(𝑡)

EGCN EGCN…

EGCN EGCN EGCN…

Fully Connected Layer

𝑍0
𝐻(𝑡)

<ZERO>

<ZERO>

Fig. 6. Overview of Spatio-Temporal Dynamic Graph Convolutional Network
(STDGCN) for the interaction context extraction.

Z0(t) =
[
ZI0 (t);Z

S
0 (t);Z

H
0 (t)

]
(14)

where ZH0 (t) ∈ RFH denotes the interaction context of target
vehicle extracted by STDGCN (as shown in Fig. 6) and [·; ·]
refers to the concatenation operation.

In the decoder, a TCN model similar to Section IV-A is
applied to make final predictions:

PTt = TCNdec (Z0(t)) (15)

As the proposed HCAGCN is smooth and differentiable,
back-propagation [51] is able to be employed in this work
to train the approach, as shown in Algorithm 1. During
the training stage, parameters in HCAGCN are optimized
by minimizing Huber Loss [52], which combines the superb
properties from both Mean Absolute Error (MAE) and Mean
Square Error (MSE). Specifically, N training samples are
selected, each of which contains τ prediction steps, to optimize
the model. Therefore, the loss function is defined as:

Loss =
1

Nτ

N∑
j=1

τ∑
k=1

I∥∥∥pttj+k−p̂ttj+k

∥∥∥
2
≤δ

∥∥∥pttj+k − p̂ttj+k∥∥∥2
2

2

+I∥∥∥pttj+k−p̂ttj+k

∥∥∥
2
>δ

(
δ
∥∥∥pttj+k − p̂ttj+k∥∥∥

2
− 1

2
δ2
)

(16)

where ptt is the predicted position (namely 2-Dimensional
coordinates) of target vehicle at time interval t and p̂tt is the
ground-truth position of it. δ is set to 1 and ‖·‖2 denotes the
L2-norm.

V. EXPERIMENTAL RESULTS

This section examines the proposed HCAGCN model on
two real-world datasets. Firstly, experimental settings are
introduced and parametric studies are executed to find the
optimal parameter combination. Then the proposed model is
compared with representative approaches in various scenarios.
Eventually, ablation studies are done to verify the effectiveness
of different components in HCAGCN.

Algorithm 1: Training of HCAGCN
Input: The set of vehicle trajectories HD
Output: Model parameters W

1 ZI = ∅
2 ZS = ∅
3 ZH = ∅
4 for i ∈ epoch do
5 Zi = ∅
6 ZIi = TCN(HDi)

7 ZSi = FC(CNN( ~Mi)))
8 ZHi = STDGCN

(
ZIi , Z

S
i

)
9 for t ∈ T do

10 Zi(t) =
[
ZIi (t);Z

S
i (t);Z

H
i (t)

]
11 Zi = concat (Zi, Zi(t))
12 end
13 PTi = TCNdec(Zi)
14 find the error e = |PTi −PTreal|
15 if |e| > emin then
16 Update all weights in W
17 else
18 return W
19 end
20 end

A. Experimental Settings

Datasets: To evaluate the proposed model, two prevalent
public accessible datasets are used.

1) INTERACTION Dataset [53]: This dataset provides nat-
uralistic driving states of various traffic participants from
different countries. At a given timestamp, the state of a vehicle
contains its position and velocity. To fully investigate the
HCAGCN, three kinds of highly interactive driving scenarios
are considered in this work, namely roundabout, highway ramp
and un-signalized intersection. Since there are only a few
instances corresponding to each of the above scenario types
in raw dataset, for increasing the richness of driving scene,
vehicle trajectories in Xuancheng city, China, collected by
VSensor1 are accommodated into INTERACTION dataset. Ul-
timately, the dataset is split into the training set, validation set,
and testing set suggested by the authors of INTERACTION,
which contains 311,275 pieces, 103,758 pieces, and 102,961
pieces, respectively.

2) NGSIM US-101 Dataset [54]: This dataset is collected
under the Next Generation SIMulation (NGSIM) program,
which records the motions of vehicles from an arterial road
segment of the U.S. Highway 101. Since this dataset is domi-
nated by the scenario of lane-keeping, this work reconstructs a
refined dataset with 15,412 pieces for lane-keeping and lane-
changing scenarios, respectively. After the above procedure,
a total of 30,824 pieces is randomly split into a training set
(24,659 pieces) and a validation set (6,165 pieces). Referring
to the recent works [18], [43] that points out the shortage
of traffic scenarios in this dataset, NGSIM US-101 is only

1https://vsensor.openits.cn/
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utilized as the validation set for parametric selection in the
experiments.

Evaluation Metrics: Following prior works [20], [55], the
prediction performance is evaluated by two widely adopted
error metrics in meter:

1) Average Displacement Error (ADE): This metric exer-
cises the average Euclidean distance between the predicted
trajectories and the ground-truth trajectories of all vehicles:

ADE =

∑M
i=1

∑t0+ψ
t=t0+1

∥∥∥ptit − p̂tit∥∥∥
2

Mψ
(17)

2) Final Displacement Error (FDE): This metric is calcu-
lated by the average Euclidean distance between the predicted
trajectories and the ground-truth trajectories of all vehicles at
final positions:

FDE =

∑M
i=1

∥∥∥ptit0+ψ − p̂tit0+ψ∥∥∥2
M

(18)

Implementation Details: The proposed model is executed
by using the PyTorch [56] and the GNN in this model is
realized through PyTorch Geometric [57]. In the training stage,
Adam optimizer with Cyclical Learning Rates (CLR) [58] is
used to minimize the training loss and the optimized learning
rate is 1.52e−03. Simultaneously, the batch size is set to 128.
To prevent over-fitting, the stop early strategy is employed to
automatically determine the number of epochs, which stops
the training procedure when the training loss decreases in 10
consecutive epochs while the validation loss increases at the
same time. In addition, the traceback time window T and the
predictive time window τ is set to 32 (3.2 seconds) and 16
(1.6 seconds) time steps, respectively. The embedding size FI
is set as 16. A vehicle is selected as the surrounding vehicle
of a given target vehicle when its distance to the target vehicle
is within 30 meters.

All experiments are conducted on a machine equipped with
a GeForce RTX 3090 GPU and the physical memory of the
GPU is 24 GB.

B. Parametric Studies
Network structure definitely has an impact on forecast

performance. Therefore, this section investigates the effects of
four structure-related hyperparameters on the trajectory predic-
tion to identify the optimal hyperparameters combination. The
prediction results on the two datasets with different parametric
values are shown in Table I.

Dilated Factor d: Dilated factor determines the receptive
field of the model and then affects the representation of
individual context. In this experiment, 2, 4, and 8 are selected
as the candidate values for d. The results show that d = 4 or 8
is a much better choice than d = 2 for both INTERACTION
and NGSIM US-101 datasets. However, the increase of dilated
factors also expands the computational burden. Thus d = 4
is a trade-off choice between computational efficiency and
prediction performance.

The Number of Dilated Convolution Blocks LI : Analo-
gous to the results of dilated factor d, HCAGCN achieves bet-
ter performance when LI = 3 or 5 than LI = 1. This implies

TABLE I
PREDICTION RESULTS OF THE PROPOSED HCAGCN WITH RESPECT TO

STRUCTURE-RELATED HYPERPARAMETERS.

INTERACTION NGSIM US-101

ADE (m) FDE (m) ADE (m) FDE (m)

d = 2 0.22 0.69 0.18 0.60
d = 4 0.18 0.57 0.12 0.38
d = 8 0.17 0.57 0.12 0.37

LI = 1 0.24 0.72 0.17 0.55
LI = 3 0.18 0.57 0.12 0.38
LI = 5 0.18 0.56 0.11 0.36

LS = 1 0.20 0.61 0.13 0.42
LS = 2 0.18 0.57 0.12 0.38
LS = 3 0.21 0.64 0.15 0.49

LH = 1 0.27 0.85 0.22 0.71
LH = 2 0.18 0.57 0.12 0.38
LH = 3 0.20 0.63 0.13 0.40

that the stack of dilated convolution blocks indeed captures the
deep-seated and meaningful individual context embedding. It
can be observed that the gaps between the results produced
by LI = 3 and LI = 5 are small. Accordingly, LI = 3 is
selected as the efficiency-accuracy balance.

Number of Convolution Layers LS : Likewise, the stack of
convolution layers is able to extract high-level embedding of
scene context. It can be found that LS = 2 has the best results
on both INTERACTION dataset and NGSIM US-101 dataset.
Notably, the performance for LS = 3 is even worse than that
for LS = 1, which indicates that the excessive number of
layers of CNN may cause over-fitting and then result in the
degradation of generalization.

Number of EGCN Layers LH : EGCN is utilized in mod-
eling the spatio-temporal dynamics of interactional behaviors.
When the number of layers LH = 2, the proposed model
produces the best results. This indicates that STDGCN may
be under-fitting or over-fitting for LH = 1 or LH = 3,
respectively. Therefore, LH = 2 is the most suitable setting
for STDGCN.

To sum up, the optimal hyperparameters combination is d =
4, LI = 3, LS = 2 and LH = 2, which is applied in the
following experiments.

C. Model Comparison
In this section, the proposed HCAGCN is compared with six

well-known baseline models on the INTERACTION dataset.
ARIMA [59]: Autoregressive Integrated Moving Average

model is a statistical model that predicts the future points in
the time-series data.

CS-LSTM [9]: This model utilizes an LSTM encoder-
decoder with convolutional social pooling to improve the
robust learning of interdependencies in processing vehicle
trajectories.

CNN-LSTM [10]: This model employs CNN and LSTM to
model the interactions and dynamics of vehicles, respectively.

VectorNet [34]: VectorNet constructs a hierarchical GNN
that first represents the individual road components as vec-
tors and then exploits the high-order interactions among all
components.
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Social-WaGDAT [60]: This model designs a Graph Double-
Attention Network that can capture the spatio-temporal dy-
namics of connected vehicles and model the complex interac-
tions among vehicles by message passing.

EvolveGraph [61]: EvolveGraph is designed for multi-
agent trajectories prediction, which evolves the latent inter-
action graphs to represent the uncertainty of future behaviors.

Table. II shows the prediction results of the above base-
lines and the proposed HCAGCN. To investigate the model
performances in-depth, approaches are evaluated in various
scenarios. Notably, the best results (lowest ADE and FDE)
are highlighted in bold.

It can be observed clearly that deep learning models achieve
much better accuracy than classical machine learning models
(ARIMA). This suggests that deep learning approaches have
advantages in modeling heterogeneous trajectory data. Con-
ventional deep learning models (CS-LSTM and CNN-LSTM)
that utilize CNN and LSTM to exploit interactions are capable
of offering decent prediction results. Nevertheless, the GNN-
based model (VectorNet) accomplishes higher accuracy in all
scenarios. It indicates that GNN is superior to conventional
deep learning models in terms of recognizing the interactional
patterns. In the highway ramp scenario, three dynamic GNN-
based models (Social-WaGDAT, EvolveGraph, and HCAGCN)
tremendously outperform VectorNet. The main reason is that
the shape of the vehicle platoon often changes dramatically
when passing the highway ramp and static GNN fails to
represent such transient dynamics of the connected graph.
Additionally, Social-WaGDAT and HCAGCN both enhance
the individual context integration into the GNN interpreter
and thus they have better performances in un-signalized in-
tersections where the speed of traffic flow is smoother and
steadier than the other two traffic scenarios. Overall, the
proposed HCAGCN achieves the best prediction results among
all models. Compared to that of HCAGCN, the total aver-
age ADE/FDE are decreased by 14.3%/12.5%, 14.9%/6.7%,
25.1%/23.3%, 35.7%/33.4%, 33.3%/30.9% and 48.5%/45.1%
for EvolveGraph, Social-WaGDAT, VectorNet, CNN-LSTM,
CS-LSTM and ARIMA, respectively. To intuitively display
the prediction performance of HCAGCN, some example visu-
alizations on ground-truth and predicted trajectories are shown
in Fig. 7. It can be observed that the predicted trajectories are
extremely close to the ground-truth trajectories in all scenarios.

D. Ablation Studies

To further assess the effects of different model components
on prediction accuracy, an ablation experiment is designed
in which three variants are created by replacing modules in
HCAGCN.

HCAGCN-I*: In terms of the individual context extraction,
TCN is replaced by LSTM to allow us to understand the
contribution of the TCN to the final prediction.

HCAGCN-S*: Regarding the scene context extraction, the
paradigm of CNN with attention is substituted by a local CNN
developed in [43]. This variant is aimed at evaluating the role
played by the temporal attention in the full-fledged HCAGCN.

HCAGCN-H*: In this variant, the STDGCN invented for
interaction context extraction is replaced by the EvolveGraph
to verify the superiority of STDGCN.

Table III presents the prediction results of the ablation
experiment on INTERACTION dataset. In general, HCAGCN
achieves the best performance in all scenarios. Comparing
HCAGCN with HCAGCN-I*, it is obvious that TCN is more
powerful in capturing the trajectory context than LSTM due
to the ability of long-range memory is not suitable for the
task of short-term features extraction in a connected envi-
ronment. Besides, the better results produced by HCAGCN
over HCAGCN-S* indicate that temporal attention is vital for
the expression of scene context. The underlying reason is that
temporal attention assigns different weights to the snapshots
of scene image stream and thus the effects of scene images at
different time intervals are accounted for. In addition, it can
be found that HCAGCN outperforms HCAGCN-H*, which
demonstrates that the proposed STDGCN has the superiority
in modeling the spatio-temporal dynamics of the connected
graph.

In real-world situations, the state of the target vehicle varies
dynamically, which imposes a big challenge on the accurate
prediction of vehicle trajectory. Hence, the performance of
HCAGCN and its variants over various target vehicle states
should be investigated. Here, target vehicle states are classified
into three categories, namely uniform velocity, acceleration
and deceleration. The specific classification rule is defined as
follows according to [53]:

vehstate =


acceleration, η ≥ 1

uniform velocity, η ∈ (−1, 1)
deceleration, η ≤ −1

(19)

The unit of η is m/s2. Table IV exhibits the prediction results
of different variants over various target vehicle states. Obvi-
ously, when the target vehicle travels at a uniform velocity,
the gaps between the prediction errors generated by different
variants are small. However, comparing HCAGCN-S* with
HCAGCN, the gaps of ADE/FDE considerably increase from
0.03/0.09 to 0.09/0.26 and 0.10/0.30 over acceleration state
and deceleration state, respectively. The same findings can be
observed towards the comparison of HCAGCN and HCAGCN-
I*. This proves the contributions of TCN and temporal at-
tention to the stability of model performance. Furthermore,
HCAGCN also yields better results over HCAGCN-H* for all
kinds of vehicle states. This advances the confirmation of the
superiority and robustness of STDGCN. The visualizations of
prediction results given by HCAGCN over different vehicle
states (see the Fig. 8) also justify the effectiveness of compo-
nents ensemble.

As known, the online prediction of vehicle trajectory is vital
and practical for incident prevention and traffic management.
Therefore, the computational efficiency of applications of
HCAGCN in real-time prediction should be assessed. Table
V presents the average computational time of the proposed
HCAGCN and its variants. It can be observed that HCAGCN
family are able to perform the online trajectory prediction in
the order of centisecond which is beneficial to the derived
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TABLE II
PREDICTION RESULTS OF DIFFERENT MODELS IN VARIOUS SCENARIOS.

Model Roundabout Highway Ramp U-Intersection

ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

ARIMA 0.30 0.92 0.38 1.10 0.33 1.02
CS-LSTM 0.24 0.75 0.30 0.91 0.26 0.79
CNN-LSTM 0.26 0.81 0.32 0.95 0.25 0.77
VectorNet 0.23 0.70 0.27 0.83 0.22 0.67
Social-WaGDAT 0.20 0.62 0.22 0.67 0.19 0.52
EvolveGraph 0.22 0.67 0.21 0.60 0.21 0.64

HCAGCN 0.19 0.60 0.20 0.61 0.17 0.53

Predicted trajectory

Ground-truth

(a) Roundabout. (b) Highway Ramp. (c) Un-signalized Intersection.

Fig. 7. Visualization results over the three different scenarios. Black line corresponds to lane, red dot corresponds to ground-truth track point and blue dot
corresponds to predicted track point.

TABLE III
PREDICTION RESULTS OF HCAGCN AND ITS VARIANTS IN VARIOUS SCENARIOS.

Model Roundabout Highway Ramp U-Intersection

ADE (m) FDE (m) ADE (m) FDE (m) ADE (m) FDE (m)

HCAGCN-I* 0.24 0.72 0.25 0.73 0.24 0.73
HCAGCN-S* 0.23 0.71 0.24 0.70 0.26 0.78
HCAGCN-H* 0.22 0.68 0.24 0.71 0.23 0.70

HCAGCN 0.19 0.60 0.20 0.61 0.17 0.53
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services for intelligent transportation systems. Moreover, it
should be noted that the average computational time is stable
across various traffic scenarios, which further justifies the
robustness of the proposed architecture.

VI. CONCLUSION

In this study, the fundamental problem about the trajectory
prediction of vehicles in a connected environment is revisited.
The Heterogeneous Context-Aware Graph Convolutional Net-
works is proposed to extract individual context, scene context,
and interaction context from historical states of connected
vehicles and their driving environments. The core component
of the proposed model is Spatio-Temporal Dynamic Graph
Convolutional Network, which exploits both the spatial and
temporal evolutions of interactional patterns and captures the
high fidelity interaction context. Experimental results indicate
that the proposed model achieves the best prediction perfor-
mance over five stat-of-the-art methods in all types of driving
scenarios. An ablation study further verifies the superiority and
robustness of the proposed STDGCN when vehicles travel at
fluctuating speeds.

In the future studies, it is worth introducing more abundant
infrastructure information into the model development, such
as traffic signs, road markings, and traffic lights. On the other
hand, this work could be extended to tackle the multi-modality
behaviors prediction considering the interactions between ve-
hicles and pedestrians.
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