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ABSTRACT Short-term traffic flow prediction is one of the most important issues in the field of 

Intelligent Transportation Systems. It plays an important role in traffic information service and traffic 

guidance. However, complex traffic systems are highly nonlinear and stochastic, making short-term traffic 

flow prediction a challenging issue. Although Long Short-Term Memory (LSTM) has a good performance 

in traffic flow prediction, the impact of temporal features on prediction has not been exploited by existing 

studies. In this paper, a temporal information enhancing LSTM (T-LSTM) is proposed to predict traffic 

flow of a single road section. In view of the similar characteristics of traffic flow at the same time each day, 

the model can improve prediction accuracy by capturing the intrinsic correlation between traffic flow and 

temporal information. Experimental results demonstrate that our method can effectively improve the 

prediction performance and obtain higher accuracy compared with other state-of-the-art methods. 

Furthermore, we propose a novel missing data processing technique based on T-LSTM. According to the 

experimental results, this technique can well restore the characteristics of original data and improve the 

accuracy of traffic flow prediction. 

INDEX TERMS traffic flow prediction, missing data repair, temporal features, deep learning, LSTM. 

I.  INTRODUCTION 

In the field of Intelligent Transportation Systems (ITS), 

traffic control and guidance systems are the core topics and 

to which traffic flow prediction is the key. Accurate and 

realtime short-term traffic flow prediction can not only 

provide crucial travel information for individual travelers, 

business sectors, and government agencies, but also play an 

increasingly important role in easing traffic congestion, 

reducing carbon dioxide emissions, and improving travel 

safety. 

During the past four decades, many researchers have been 

trying to provide reliable traffic flow prediction methods. 

However, due to the highly nonlinear and random 

characteristics of traffic flow, it is still a great challenge for 

traditional methods to make accurate prediction [1]-[5]. 

Existing parametric models-based and nonparametric 

models-based methods mainly use linear models and shallow 

machine learning models to predict incoming traffic flow and 

cannot describe the nonlinearity and uncertainty well [6]. 

With the continued improvement of computing 

performance and the wide deployment of traffic sensors, 

data-driven Deep Neural Networks (DNN) has been widely 

applied in the field of traffic [7]. It can make full use of latent 

knowledge hidden in big traffic data to forecast traffic flow 

and deal with large historical datasets and complex nonlinear 

functions. Among the state-of-the-art methods, Recurrent 

Neural Networks (RNN), Stacked Autoencoder (SAE), and 

Deep Belief Networks (DBN) have good performances in 

traffic flow prediction of a single road section [8]-[10]. 

Especially, since the RNN model is a special approach for 

processing time series, it can capture the temporal 

characteristics of traffic flow well and is very suitable for 

traffic flow prediction. Other advanced methods such as 

Convolutional Neural Networks (CNN) or CNN-RNN model 

have better performances in traffic network prediction for 

their strong learning ability in spatial or spatial-temporal 

features. In particular, the framework combining CNN and 

RNN has become standard research configuration for its 
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consideration of the spatial-temporal characteristics of traffic 

flow. 

However, all these studies neglect a factor that might have 

a strong impact on short-term traffic flow prediction. The 

factor is the temporal information itself. Traffic flow is 

commonly recognized to have a strong temporal 

characteristic and a similar trend is demonstrated by daily 

traffic flow [11]. Specifically, traffic flow is heavy during 

commuting hours and relatively light in the early hours of 

each day. Conversely, when a traffic flow sample is obtained, 

its moment can be roughly inferred, but cannot be accurately 

inferred. Therefore, if the temporal information and the 

traffic flow are considered simultaneously, deep neural 

networks may be capable of learning higher-level temporal 

representations and achieve better results. More importantly, 

the trend modeling study found that residual traffic flow as a 

kind of important trend information can reflect the time-

variant fluctuation and the prediction accuracy can be 

improved when the residual traffic flow is fed into the model 

[12]-[16]. We believe that the temporal information itself 

could also be used as a kind of trend information and should 

be considered in the prediction model because it is closely 

related to the time-variant fluctuation of traffic flow. Existing 

traffic flow forecasting methods based on deep learning take 

only traffic flow as the input to neural networks. Thus, these 

methods might not capture the temporal characteristics of 

traffic flow completely. Besides, most existing studies have 

not paid adequate attention to the processing of missing data 

and often use adjacent values to fill missing values, which 

hinders improvement of the prediction accuracy [17].  

The main contributions of this paper are as follows: 

1) For the first time, we propose a Temporal 

information enhancing Long Short-Term Memory 

neural networks (T-LSTM) that combines recurrent 

time labels with recurrent neural networks, which 

makes the best use of the temporal features to 

improve the accuracy of short-term traffic flow 

prediction.  

2) The performance of our proposed model has been 

evaluated against a variety of comparison models, 

which include Gated Recurrent Unit (GRU), SAE, 

DBN, LSTM, Support Vector Machine (SVM), K-

nearest neighbor (KNN), Feed Forward Neural 

Networks (FFNN), and Autoregressive Integrated 

Moving Average model (ARIMA). The result is that 

our model has achieved the best performance. The 

reason for not including CNN related models is that 

the traffic flow data of a road network is currently not 

available to us so that traffic flow prediction of only a 

single road section is considered in this paper.  

3) In view of the deficiencies in the processing of 

missing data, a new missing data repair technique is 

proposed based on the proposed T-LSTM model to 

maximally recover the characteristics of the raw data. 

To the best of our knowledge, it is the first time that 

an LSTM-based model is used for missing data repair. 

II.  RELATED WORK 

Generally, traffic flow forecasting methods can be divided 

into two categories of parametric models and nonparametric 

models [18]. Parametric models refer to the models where 

the structure is predetermined based on certain theoretical 

assumptions and the parameters can be computed with 

empirical data [19]. Among parametric models, ARIMA is 

one of the most widely used. It was proposed in 1970s to 

predict short-term freeway traffic data [20]. Then, scholars 

made some improvements on the ARIMA model and 

proposed a series of variant models such as Kohonen-

ARIMA [21], subset ARIMA [22], Autoregressive Moving 

Average model (ARMA) [23], and seasonal ARIMA [24]. In 

addition, Kalman Filter is another commonly used parameter 

model. It has been successfully applied in traffic flow 

prediction and has exhibited a superior capability of 

conducting online learning [25]. Although the above 

parametric models improve the performance of traffic flow 

prediction, due to the nonlinearity and randomness of traffic 

flow, these relatively simple and inflexible models cannot 

accurately capture the characteristics of traffic flow [10]. 

As a result, researchers have begun to focus on 

nonparametric models, such as nonparametric regression [26], 

SVM [27], Online Support Vector Machine (OL-SVM) [28], 

KNN [29], and Neural Networks (NN) [30]. Among the 

above models, NN has the best performance and is 

considered another popular model for traffic flow prediction 

due to its powerful ability in processing multidimensional 

data, flexible model structures, strong generalization ability 

as well as adaptability [31]. However, due to the shallow 

structure of the aforementioned models, it is still a great 

challenge to make accurate traffic flow prediction. 

Recently, with the resurgence of deep learning, neural 

networks with multilayer nonlinear structures have been 

widely used in pattern recognition, classification, and 

prediction [32]-[34]. Compared with traditional shallow 

structure, deep neural networks can use distributed and 

hierarchical feature representation to model the deep 

complex nonlinear relationship of traffic flow. In 2014, 

Huang et al. employed a DBN with multitask learning for 

traffic flow prediction [35]. To achieve traffic flow 

forecasting for the next day, Li et al. proposed an advanced 

multi-objective particle swarm optimization algorithm to 

optimize some parameters in DBN and enhance its multiple 

step prediction ability [36]. Lv et al. proposed an SAE and 

demonstrated that the model is superior to FFNN, Random 

Walk (RW), SVM, and Radial Basis Function (RBF) [17]. 

These models all belong to fully-connected structure and 

there are no assumptions about the features in the fully-

connected architecture. Thus, it is difficult for the fully-

connected neural networks to capture representative features 

from a dataset with plentiful characteristics [37]. 
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In order to solve these issues, researchers proposed RNN 

and CNN based models, which can capture the nonlinearity 

and randomness of traffic flow more effectively and have 

become basic models to forecast traffic flow. LSTM and 

GRU, the variants of RNN, have superior capability for time 

series prediction with long temporal dependency and 

temporal features learning ability. In 2015, Tian applied 

LSTM to short-term traffic flow prediction for the first time 

and proved that the model is superior to SVM, FFNN, and 

SAE [11].  Jia found that with the combination input of speed 

and weather information, LSTM has better prediction 

accuracy and outperforms DBN in capturing the temporal 

characteristics of traffic speed [38].  

Another type of most successful deep neural networks is 

CNN. The traffic flow information of a traffic network is first 

mapped into a series of images and then fed into a CNN [39]. 

CNN-based methods have strong spatial features modeling 

ability and are widely used for traffic network prediction. 

However, CNN-based methods usually cannot map multiple 

types of information simultaneously into the images. The 

information includes traffic, speed, density, and other factors 

important for traffic flow prediction. Therefore, the 

combination of convolutional and recurrent neural networks 

has become an important research direction. In the model, 

CNN is used to capture spatial features while RNN is for 

temporal features. Wu proposed a CNN-RNN model to 

improve prediction accuracy, which makes full use of 

weekly/daily periodicity and spatial-temporal characteristics 

of traffic flow [37]. Duan combined CNN and RNN to 

predict urban traffic flow. Experimental results with real 

taxis’ GPS trajectory data from Xi’an city show that the 

model can achieve higher prediction accuracy and shorter 

time consumption compared with existing methods [40]-[41]. 

However, as we mentioned above, these studies neglect 

the temporal information and may lead to the fact that the 

models used cannot effectively learn the temporal 

characteristics of traffic flow. In the process of training, the 

neural networks need to divide the continuous traffic data 

into training samples according to different inputs and 

outputs, resulting in the disruption of the data that are 

originally continuous in time. In addition, the temporal 

information closely related to traffic flow has not been fed 

into the existing models. Thus, the models cannot learn the 

relationship between traffic flow and corresponding temporal 

information and cannot capture the temporal characteristics 

of traffic flow adequately. Besides, existing studies do not 

pay enough attention to processing of missing data and often 

use adjacent values to replace missing values approximately. 

Therefore, we propose the T-LSTM model that makes the 

best use of the temporal characteristics to improve the 

accuracy of short-term traffic flow prediction. Furthermore, 

we propose a T-LSTM missing data repair method to achieve 

maximum recovery of the characteristics of traffic flow. 

III.  THE T-LSTM MODEL COMBINING RECURRENT 
NEURAL NETWORKS AND RECURRENT TIME LABEL  

A. RECURRENT NEURAL NETWORKS 

LSTM is a variant of RNN that overcomes the gradient 

disappearance of the RNN model. It exhibits a superior 

capability of modeling nonlinear time series problems in an 

effective fashion. The primary objectives of LSTM are to 

model long-term dependencies and determine the optimal 

input length via three multiplicative units [9]. 

  The LSTM model is composed of the input layer, the 

recurrent layers whose basic unit is memory block instead of 

traditional neuron node, and the output layer. The memory 

block is a set of recurrently connected subnets. Each memory 

block contains one or more self-connected memory cells and 

three multiplicative cells: an input gate, an output gate, and a 

forgetting gate, which perform a continuous simulation of the 

write, read, and reset operations of a cell. As shown in Fig. 1, 

the forgetting gate tf  controls which information needs to be 

discarded from the state 1ct  at the previous moment. Thus, it 

can ignore irrelevant features and automatically determine 

the optimal input. The input gate ti  determines which state 

the unit needs to be updated with. Therefore, it has the long-

term memory ability. The output gate to  will filter output 

based on the state of the unit. In Fig. 1, x  represents the 

input vector, h  represents the output vector, and 

W represents the weight matrix. Then, symbols  and 

 represent Element-wise Multiplication and Element-wise 

Concatenation respectively. It is worth mentioning that the 

expressions of functions   and tanh  will be given below. 

FIGURE 1.  The recurrent structure of LSTM. t represents the timestep, 

x represents the input vector, h represents the output vector, 

c represents the state vector,  ,  is for connecting vector and W  

represents the weight matrix.  

B.  RECURRENT TIME LABEL 

Traffic flow at the same moment of each day has similar 

characteristics and similar M-shaped intra-day trends 

maintain over consecutive days. From the short-term trend, 

the evolution of traffic flow is closely related to the time (e.g., 

traffic flow is heavy during commuting hours and relatively 

light in the early hours of each day). From the long-term 
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trend, the traffic volume at the same moment each day varies 

within a certain range, as shown in Fig. 2.  

 

 

FIGURE 2. The traffic flow at 4:00 am, 8:00 am, 6:00 pm, and 11:00 pm 

from August 1 to 30, 2014. The time interval is 16 minutes and more 

details about the dataset will be given in section IV. 

 

In order to express the evolution of traffic flow at the same 

time more clearly, the following indicator is defined, 

assuming T samples per day and continued sampling for N 

days: 
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where i  represents the thi  day ( [1, ]i N ) and t represents 

the index of the traffic flow at time t  of a day ( [1,T]t ). So, 
t

iy represents the traffic flow at the time t  of the thi  day. 

     The traffic flow series and the average traffic flow at the 

time t  in N days can be written as  

1 2[ , , ]t t t t

Ny y y y    ，                                                               (2) 
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t t

i

i

y y
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  ，                                                                  (3) 

where the t

Averagey  reflects the average traffic flow at time t in 

N days. Then, Mean Absolute Percentage Fluctuation 

(MAPF) at time t  in N days is defined as 

1

1
100%.

t tN
Average it

t
i Average

y y
MAPF

N y


                                      (4) 

Here, tMAPF denotes the average variation of traffic flow 

over N days at time t .  

As an example, the MAPF calculated from August 1 to 30, 

2014 is shown in Fig. 3. The MAPF at different time (24 

hours) changes between 2.35% and 19.37% within 30 days 

and the maximum does not exceed 20%. It can be clearly 

observed that the characteristics of the traffic flow at the 

same time are very similar. So, it can be viewed as a proof 

for the correlation between the temporal information and the 

traffic flow. Thus, the prediction accuracy may be improved 

via a comprehensive consideration of the temporal 

information and the traffic flow.  

 

FIGURE 3. The range of the MAPE. The red lines represent the maximum 

and minimum of MAPF respectively. It is calculated based on the traffic 

flow within 24 hours of 30 consecutive days since August 1, 2014.  

 

In this paper, we combine time label and LSTM to fully 

explore the temporal characteristics of traffic flow and 

improve the accuracy of short-term traffic flow prediction. 

We pay sufficient attention to time information and add a 

time label to the traffic flow at each moment. Then an 

LSTM-based model is trained with the samples and 

corresponding time labels. The model is named T-LSTM, an 

LSTM model enhanced by temporal information. When 

GRU is combined with recurrent time label, the model is 

called T-GRU. 

In our study, tl  is used to represent the time labels at the 

time t  every day and t

ix  to represent the traffic flow at the 

time t on the ith  day. So, the input [ ,x ]t t

t ix l  is a 2D vector. 

The time labels change periodically according to the 

sampling time of each day. For example, if the sampling time 

interval is 16 minutes, 90 (24×60÷16) pieces of samples and 

90 labels will be generated each day. The data of 00:16 each 

day is labeled with 1, while that of 00:32 is labeled with 2, 

and so on. Thus, after a round of 24 hours, traffic data at 

00:00 each day is marked with 90. Finally, each tx  is a two-

dimensional vector with time label and traffic flow. 

Assuming that the input historical traffic flow sequence is 

denoted as 1 2( , , )tx x x x      , the predicted traffic flow 

sequence 1 2( , , )th h h h        is literally outputted by the 

following equations: 

1(W [h x ] b )t f t t ff    ， ，                                                    (5) 

1(W [h x ] b )t i t t ii    ， ，                                                       (6) 

~

1tanh(W [h ,x ] b )t c t t cc    ，                                                 (7) 
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~

t1c ( ) ( c )t t t tf c i    ，                                                     (8) 

1 t(W [h x ] b )t o t oo    ， ，                                                     (9) 

h tanh(c )t t to  ，                                                              (10) 

where W  terms denote weight matrices, and b terms denote 

bias vectors. And other mathematical symbols are the same 

as defined above. The standard logistics sigmoid function   

and the hyperbolic function tanh are defined as follows: 

1
(x)

1 xe






，                                                                   (11) 
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x x

x x

e e

e e









．                                                             (12) 

IV.  EXPERIMENTS 

A.  DATASET 

The traffic detector data from Shibalidian Bridge to Hongyan 

Bridge of the East Fourth Ring Road in Beijing (March 1 to 

August 30, 2014) is selected to validate the T-LSTM. The 

original sampling time interval is 2 minutes and each detector 

will generate 720 pieces of data every day. For convenience 

of processing, the data of the 31st of March, May, July, and 

August is deleted. So, there will be a total of 129,600 (720×
30×6) samples. The data include speed, flow, date, and 

density. The scientific computing library Pandas is used to 

remove the duplicate and anomalous data. The missing data 

rate is 17% and the maximum number of consecutive 

missing data is 414. Note that we just use historical average 

value to replace the missing data in the traffic flow prediction 

experiment.  

For purpose of research and analysis, the Highway 

Capacity Manual suggests to use 15 minutes as short-term 

prediction interval [42]. However, the time interval of our 

original data is 2 minutes. Therefore, in this paper, the data 

are aggregated into the time intervals of 16 minutes. So, there 

are 90 (720×2÷16) pieces of data and corresponding time 

labels for each day. The data of the first five months are used 

for training and the data of August are used for testing. 

Finally, the data are normalized to [0, 1] by the Min-Max 

Scaler normalization method in the Scikit-learn library. 

B.  EXPERIMENT DESIGN 

The proposed T-LSTM model is implemented using 

TensorFlow and Python language. The workstation used is 

configured with an Intel i7-4790 3.6 GHz CPU, a 32 GB 

memory, and an NVIDA GTX 1080 Ti GPU. 

1)  TRAFFIC FLOW PREDICTION 

The most notable difference between this experiment and 

existing experiments is that the T-LSTM is implemented to 

make the best use of the temporal characteristics to improve 

the prediction accuracy. Three LSTM layers are stacked so 

that the model is capable of learning higher-level temporal 

representations (see Fig. 4). Input feature tx  is a two-

dimensional vector with the time label and the traffic flow. 

The timestep is set to 8 (i.e., 8 historical data are used to 

predict traffic flow at the next moment). Therefore, the input 

to the LSTM model is a matrix of 8×2. For simplicity, the 

number of neurons in each hidden layer is empirically set to 

the same of 16. As shown in Fig. 4, the most popular 

Rectified Linear Unit (ReLu) is applied as the activation 

function of the hidden layers and Sigmoid is for the output 

layer. 

 

FIGURE 4.  The structure of the T-LSTM model. The three layers of LSTMs 

are stacked as the hidden layers and the one-layer fully connected layer is 

stacked as the output layer. 

 

TABLE Ⅰ 

KEY HYPERPARAMETERS OF T-LSTM 

Hyperparameters Loss Optimizer Batch_size Epochs 

Value MSE Adam 50 500 

Epochs represent the training times, Batch_size represents the number of 

samples input to the neural networks in a batch, and Loss represents the loss 

function. 

 

Additionally, other hyperparameters have been determined, 

including Loss, Optimizer, Batch_size, and Epochs as shown 

in Table I. Adaptive Moment Estimation (Adam) is used to 

optimize the neural networks and it can calculate the adaptive 

learning rate for each parameter [43]. In practical 

applications, the Adam method works well. Compared with 

other adaptive learning rate algorithms, it has faster 

convergence, more effective learning effects, and can correct 

problems in other optimization methods. In addition, Mean 

Square Error (MSE) is the most commonly used regression 

loss function, which calculates the sum of the squares of the 

distance between the predicted value and the true value. 

2)  MISSING DATA REPAIR 

Since LSTM has strong time series data processing capability, 

and it can predict pretty well the traffic status at the next 
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moment with the historical data [10], we propose an LSTM-

based missing data repair technique that can achieve 

maximum recovery of the characteristics of traffic flow. 

The experiment of missing data repair is performed on the 

raw data with a time interval of 2 minutes. No algorithm can 

effectively use the missing data, but valid data can be used to 

infer the missing values as much as possible. Therefore, we 

removed all discontinuous data and trained the model with 

real values. Note that the same T-LSTM model is used to 

repair missing data. Based on the traffic flow prediction 

experiment above, the timestep is set to 1 and the other 

Hyperparameters remain unchanged. Thus, any two 

consecutive data can be used to train the T-LSTM to infer 

missing data. Then, the trained model is used to repair the 

missing data and the repaired data will finally be used for 

short-term traffic flow prediction. 

C.  EXPERIMENTAL RESULTS AND ANALYSIS 

As our model is to predict traffic flow at next timestep, the 

evaluation criteria include accuracy metrics that compare the 

predicted traffic flow with the real traffic flow.  So, Root 

Mean Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) are used to evaluate the performance of the 

model. They are defined by (13) and (14) respectively as 

follows: 

1/2

2

1

1
( )

n

i i

i

RMSE f p
n 

 
  
 
 ，                                             (13) 

1

1 n
i i

i i

f p
MAPE

n f


  ，                                                       (14) 

where f  is the observed value of the traffic flow while p  is 

the predicted value, and n represents the number of samples. 

1)  RESULTS OF TRAFFIC FLOW PREDICTION 

In this subsection, we compare the proposed T-LSTM model 

with existing models of SAE, DBN, GRU, LSTM, SVM, 

KNN, FFNN, and ARIMA (1, 0, 1) in terms of effectiveness 

under same conditions. Table Ⅱ shows the prediction results 

of different models and corresponding input information. The 

prediction results for August 2014 demonstrate that T-LSTM 

has the highest prediction accuracy and the MAPE is reduced 

to 6.09%. Obviously, adding the time labels can improve the 

prediction performance of LSTM. Compared with LSTM 

without time labels, the RMSE and MAPE of T-LSTM 

decreased by 13.4 and 1.44%, respectively. More importantly, 

when the LSTM is replaced by GRU as the recurrent 

structure in T-LSTM, the prediction accuracy of T-GRU is 

also significantly improved. Thus, the results strongly 

demonstrate that the temporal information is critical for 

short-term traffic flow prediction, and can effectively 

improve the prediction accuracy. As it can be seen from the 

experimental results, the more complex LSTM and GRU 

have no significant improvement in prediction performance 

compared with the simple structure of FFNN. However, T-

LSTM exhibits strong temporal features learning ability and 

the prediction performance is significantly improved when 

the temporal information is added. Fig. 5 shows randomly 

selected partial prediction results of T-LSTM.  

TABLE Ⅱ  

COMPARISON OF THE RESULTS AND THE INPUT INFORMATION 

Models 
Metrics Parameters 

RMSE MAPE Input Hidden Layers 

T-LSTM 50.54 6.09% flow+time  3 

T-GRU 55.43 6.22% flow+time 3 

SAE 60.44 6.67% flow 3 

DBN 70.38 9.65% flow 3 

GRU 65.09 7.68% flow 3 

LSTM 63.85 7.53% flow 3 

FFNN 67.25 7.94% flow 3 

SVM 80.01 12.39% flow NA 

KNN 121.40 12.73% flow NA 

ARIMA 90.25 8.24% flow NA 

The prediction results of different models. And the data from August 1st 

to 30th, 2014 were used as a test set. 

 

FIGURE 5.  Prediction results of T-LSTM. The picture shows the forecast 

results of the T-LSTM model from August 1st to 4th, 2014, which is 

randomly selected. 

Furthermore, according to the RMSE, it can be clearly 

found that the prediction results based on deep neural 

networks are better than those of classic models such as 

ARIMA, KNN, and SVM. The seemingly strange result is 

that the RMSE of the SVM is relatively low, but its MAPE is 

pretty high. That is because SVM has poor prediction 

performance when traffic flow is low. 

2)  RESULTS OF MISSING DATA REPAIR 

In the above experiment, the average of historical values is 

used to replace the missing data. In order to verify the 

effectiveness of the proposed missing data repair technique, 

the following experiments are conducted. As mentioned in 

the previous section, the raw valid data is used to train the T-

LSTM first and then the trained model is applied in inferring 

the missing data. Finally, the repaired data is aggregated into 
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time intervals of 16 minutes and then the traffic flow 

prediction experiment is re-executed to achieve new results. 

TABLE Ⅲ 

PREDICTION RESULTS AFTER T-LSTM REPAIR 

Models 
Before Repair After Repair 

RMSE MAPE RMSE MAPE 

T-LSTM 50.54 6.09% 46.48 5.49% 

T-GRU 55.43 6.22% 48.08 5.98% 

SAE 60.44 6.67% 55.97 6.16% 

DBN 70.38 9.65% 67.38 9.20% 

FFNN 67.25 7.94% 62.87 7.34% 

SVM 80.01 12.39% 79.49 12.49% 

KNN 121.40 12.73% 106.31 11.27% 

ARIMA 90.25 8.24% 85.75 7.67% 

The prediction results of different models after repairing the missing data. 

And the data from August 1st to 30th, 2014 was used as a test set. 

As can be seen from Table Ⅲ, after missing data repair by 

T-LSTM, the prediction performance of all the models, 

namely, T-LSTM, T-GRU, SAE, DBN, FFNN, SVM, kNN, 

and ARIMA (1, 0, 1) has been improved to some extent. 

Specifically, the RMSE of T-LSTM, T-GRU, SAE, DBN, 

FFNN, KNN, and ARIMA has declined notably. Except for 

SVM, the MAPE of other models has also been reduced. The 

reason for this anomaly might be that SVM is not very good 

at modeling when traffic flow is very low. From the overall 

prediction results, we can find that the data processed by the 

proposed technique can improve the accuracy of short-term 

traffic flow prediction. With the powerful high-dimensional 

data processing ability, T-LSTM can accurately infer missing 

data and restore the original characteristics of traffic flow.  

FIGURE 6.  Missing data repair results of T-LSTM. The time interval is 2 
minutes and data from 12:00 on August 14, 2014 to 10:00 on August 15 
were used as a test set. 

 

Moreover, the proposed T-LSTM based data repair 

technique can not only accurately infer random missing data 

but also effectively recover data with a large number of 

consecutive missing values. Fig. 6 shows that T-LSTM can 

accurately recover the evolution of traffic flow with only one 

piece of historical data. When there is a large amount of 

missing data, T-LSTM can infer the first missing value based 

on the valid historical data and temporal information, and 

then use the inferred data and temporal information to 

continue to infer the next missing data. 

V. CONCLUSION AND FUTURE WORK 

In this paper, the recurrent time labels and the recurrent 

networks are combined and a T-LSTM model is proposed for 

short-term traffic flow prediction. The addition of temporal 

information as input to the T-LSTM is effective in improving 

the accuracy of short-term traffic flow prediction. In 

experiments, it is evaluated against GRU, SAE, DBN, LSTM, 

SVM, KNN, FFNN, and ARIMA (1, 0, 1). The results show 

that temporal information is crucial for traffic flow prediction 

and can effectively improve the prediction performance of 

the LSTM and GRU models. Furthermore, for the first time, 

we propose a technique of missing data repair based on T-

LSTM and the results show that the data processed can 

notably improve the accuracy of short-term traffic flow 

prediction. Currently, we only forecast traffic flow of a 

section of the road without considering traffic flow of the 

road network. In the future, we will further this research into 

predicting traffic flow of the road network and implement 

more comparative experiments as well. 
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