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Abstract—Evaluation of protein-ligand interaction is a 

crucial step in the process of drug discovery. Recently, several 

methods based on deep learning have gained impressive binary 

classification performance on protein-ligand binding 

prediction. However, lack of three-dimensional complex data 

still limits the accuracy and robustness of evaluation of 

protein-ligand binding affinity, as well as the prediction of 

their binding sites. In this paper, we propose a novel 

convolutional neural network based method for estimating the 

binding affinity between protein and ligand using only 1D 

sequence data. Even with the same amount of sample size, this 

model outperforms other structure-dependent traditional and 

machine learning based methods in terms of both binary 

classification and regression task. Furthermore, we use this 

model to identify the key amino acid residues of protein that 

are vital for binding interaction, which provides biological 

interpretation. 

Keywords—drug discovery, representation learning, binding 

sites prediction, interpretability, occlusion 

I.  INTRODUCTION  

Identifying the interaction of protein and ligand plays an 
import role in drug discovery. Computational methods for 
screening potential positive compounds to target protein at 
the initial phase of drug discovery actually improve the 
success rates[1]. However, the traditional methods like 
molecular docking have limitations such as expert 
knowledge dependence and high computational cost. That is, 
these structure-based methods first need to predict different 
binding poses of protein and compounds by “docking" them 
together before calculating their binding energies, which 
tends to be a bottleneck for computational speed and 
accuracy. In recent years, more attention has been given to 
the introduction of machine learning methods into drug 
discovery[2]. Models such as support vector machine, 
random forest are capable of capturing non-linear 
relationships in protein-ligand complex.  

More recently, deep learning, which refers to neural 
network with many layers of non-linear transformations, has 
gained remarkable achievements in various fields such as 

computer vision, computer games.[3, 4] The main advantage 
of this algorithm is that it can extract useful features 
automatically from the raw data during the process of 
training. Inspired by these successes, several studies have 
introduced deep learning methods into drug discovery for 
protein-ligand interaction identification[5–8]. Using 
comprehensive 3D representation of a protein−ligand 
complex as input, Ragoza et al. described a convolutional 
neural network based scoring function. This model 
outperforms AutoDock Vina (a widely used docking 
software) on both pose prediction and virtual screening[6]. 
Similarly, Stepniewska-Dziubinska et al. proposed a model 
consisting of convolutional and dense layers with 3D grid 
represented structure as input[7]. Their model outperformed 
any other classical scoring functions Another study applied 
convolution operations along protein and drug sequences and 
gained better results than machine learning based model[8]. 
However, the applicability of structure based model may be 
limited by the lack of 3D data, whereas sequence based 
model always suffers from the lack of interpretability. 

Here we present an interpretable convolutional neural 
network model to evaluate the protein-ligand interaction. The 
model outperforms traditional docking and machine learning 
methods on both binary classification (protein-ligand bind or 
not) and regression (protein-ligand binding affinity) task 
using only 1D sequence information, even with the same 
amount of sample size. In addition to such predictions, 
combined with designed occlusion, the model can trace the 
important sites of the input data, thus to predict key amino 
acid residues of protein that are crucial for binding. 

II. METHODS 

A. Data 

The Directory of Useful Decoys Enhanced (DUD-E) set 
containing 102 targets, 22886 active compounds and 1.4M 
decoys (negatives) was used for classification task[9]. DUD-
E is a benchmarking platform that makes it possible for 
comparing our model with previously proposed methods. 
The ratio of negatives to positives was set to 1.5:1 to avoid 
unbalanced data. The PDBbind v.2018 database contains 
16151 protein-ligand complexes was used for regression[10]. †: These authors contributed equally to this work. 

*: To whom correspondence should be addressed. 



 

 

This database provides 3D crystal structures of protein-
ligand and their experimentally measured binding affinity 
data expressed with pKa (-logKd or -logKi) values. To assess 

the model performance accurately, we used 5-fold cross 
validation in the training process. And the data were 
randomly split into train/valid/test set at ratio of 60/20/20.

 

Fig.1. The architecture of proposed model.

B. Model 

Basically, the proposed model consists of two parts: 
protein/ligand feature extraction by convolutional layers and 
interaction prediction by fully connection layers. The last 
dense layer is activated as output. The loss functions are 
defined according to different tasks: binary entropy for 
classification and mean squared error (MSE) for regression. 
To conserve space, some details would be added in the next 
version. Fig. 1 displays the basic architecture of the model, 
more details are described below: 

 Input: The one hot encoding is used to represent 
input molecules. We traverse all protein amino acid 
sequences and ligand SMILES identifiers in databases 
to build dictionaries contained 20 and 64 characters 
for protein and ligand, respectively. Amino acid 
sequences are first one-hot encoded and then padded 
at the end to the length of fixed maximum lengths of 
1200, which produced (20, 1200) dimensional 
matrices for proteins. Similarly, ligands SMILES 
identifiers are also one-hot encoded and padded to the 
length of 200, so the input for ligands are (64, 200) 
dimensional matrices.  

 Feature extraction: The input 2D tensor is first 
processed by several stacked convolution layers. 
Specifically, two convolutional layers followed by 
one pooling layer are regarded as a block, totally we 
have three such blocks in feature extraction step. 
Similar to VGGNet, the techniques of "small 
convolution kernels" and "keeping input size" are 
applied in our model. In convolutional operation, the 
edge region is padded to keep feature map unchanged. 
The numbers of convolutional filters are set to 32, 32, 
64, 64, 128 and 128 respectively. The size of 
convolutional core is set to 3*3 and the stride is set to 
1. Then, the output of the last convolution layer of 
each branch is mapped to 1024 dimensional feature 
vector by a dense layer. 

 Concatenation: Feature vectors from two branches 
are concatenated together and then fed into next dense 
layers with units of 512, 64 and 1, respectively. To 
avoid over-fitting, dropout layer are added after each 
dense layer, and the random inactivation probability is 
set to 0.5. Rectified linear units (ReLU) are chosen as 
the activation function in our model because it speeds 

up the training process and reduces the likelihood of 
vanishing gradient.  

 Output: The activation functions of the output layer 
are sigmoid for classification and linear for regression. 
Also, the loss functions are defined according to 
different tasks: binary entropy for classification and 
MSE for regression. 

C. Training 

Xavier (Glorot) uniform weight initialization method is 
used to initialize weights in Convolution 2D filters and dense 
layers. This method corrects the variance of uniform 
distribution to ensure that the output variance and input 
variance of each layer are the same, without changing with 
the number of input neurons. The range of uniform 

distribution is from −√
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number of input units of layer, nout is the number of output 
units of layer. The bias variables of all layers are initialized 
to 0. The Adam optimizer is used to train the model with 10
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initial learning rate and 128 batch size. Other default 
parameters are set according to He et al.[11]. Meanwhile, the 
10

-3
, 10

-5
 learning rates and 256, 512 batch sizes were also 

tested but showed worse results of loss on validation set. In 
order to improve generalization of our model, we use RMSE 
with L2 regularization as the loss function, where the 
regularization parameter is set to 0.01. Early stopping is used 
to avoid over-fitting and the number of patience epochs is set 
to 10. Finally, the model with the minimum loss value on 
validation data is selected. 

D. Occlusion 

Here we present a non-parametric method “occlusion” to 
explore which parts of the input sequences are critical to the 
task. Then, compared to the positive binding pockets in 
proteins, we are able to see whether such sites are key parts 
for binding. Briefly, si from test samples (i = 0, 1, 2, ..., n-1, 
here n is sample size of test set) is expressed as tuple (protein 
input_i, compound input_i), where protein input_i and 
compound input_i are 2D tensors of shape (20, 1200) and (64, 
200) respectively. While maintaining compound input_i 
unchanged, we systematically mask the protein input_i in si 
to track the changes of the output. Then the importance of 
each sub-sequence in the sequence to the prediction can be 
calculated. More details are described below:  



 

 

 First, the upper left corner element of the two-
dimensional matrix is regarded as the coordinate 
origin, the direction of one-hot amino acid types and 
sequence length are seemed as x-axis, y-axis 
respectively. Cartesian coordinate system is 
established in this step. 

 Second, “mask” is carried out sequentially along y-
axis direction to generate the occlusion result sij’. 

Values from x=0 to x=19, 𝑦 = 𝑗 – ⌊
𝑠𝑖𝑧𝑒−1

2
⌋ to 𝑦 = 𝑗 +

⌈
𝑠𝑖𝑧𝑒−1

2
⌉ are replaced by 0 to produce masked result 

protein input_ij'. The masked result protein input_ij’ 
and compound input_ij’ form 

sij’ (𝑗 = ⌊
𝑠𝑖𝑧𝑒 −1

2
⌋ , ⌊

𝑠𝑖𝑧𝑒 −1

2
⌋ + 1, ⌊

𝑠𝑖𝑧𝑒 −1

2
⌋ +

2 , … , 1200– ⌈
𝑠𝑖𝑧𝑒 −1

2
⌉ – 1) , here j denotes the y 

coordinate of blocked window central point and size 
denotes the length of blocked window. The hyper-
parameter “size” can be optimized through 
experiments and it is set to 15 by default. The stride 
of blocked window is set to 1 to avoid any omission. 

 Third, according to the occlusion result sij, the 
changes of output caused by occlusion are tracked. 
We define an evaluation measure K to quantify the 
changes as:  

 𝐾𝑖𝑗 =
|𝑝𝑖𝑗−𝑣𝑖|

|𝑝𝑖−𝑣𝑖|+𝜀
 

where vi denotes the actual binding value of sample si, 
pi and pij denote the predicted value of si and the 
occlusion result sij respectively. ε is a small positive 
real number which is used to keep denominator not 
equal to 0. Then we can visualize the critical parts for 
binding in protein sequences through heat-map. 

III. RESULTS 

A. Classification 

Table I shows the comparison of methods including 
traditional docking, machine learning and other deep learning 
models for identifying actives and decoys on DUD-E dataset. 
AutoDock Vina and Smina are open source molecular 
docking programs that are widely used in traditional virtual 
screening. AtomNet[5] and 3D-CNN[6] are deep learning 
models for predicting interaction between protein-ligand 
based on 3D structure. Obviously, our model outperforms 
these 3D structure methods on classification even with 1D 
sequence input. It indicates that deep model achieve much 
better result than shallow model in this task.  

TABLE I.  COMPARISON OF METHODS ON DUD-E DATASET. 

 

Methods 

Smina 
AutoDock 

Vina 
SVM AtomNet 

3D-

CNN 

Our 

model 

AUC 0.696 0.716 0.811 0.895 0.868 0.997 

The AUC scores of Smina, Vina, AtomNet, 3D-CNN are derived from[5, 6]  

B. Regression 

The measures root mean square error (RMSE), Pearson's 
correlation coefficient (R) and standard deviation (SD) are 
selected to evaluate our model’s performance on regression. 
Among these, RMSE is used to calculate the differences 
between predicted and real values, Pearson's coefficient R is 

a measure of the linear correlation between predicted and real 
values and SD is used to quantify the amount of variation of 
values. RMSE is defined as:  

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦 

𝑖
)2𝑁

𝑖=1  

where N is the sample size of corresponding set, yi is the real 

binding value experimentally measured whereas ŷi is the 

predicted value by our model.  

 
Fig.2. Evaluation of binding affinity on the PDBbind v2018 dateset. 

The loss changes on training set and validation set were 
monitored during training. After 28 epochs, the validation 
loss began to rise while the training loss continued declining, 
that means the model started to over fit. So the model on 28th 
epoch was saved and selected as the final model. 

Fig.2 displays the predicted against real binding values of 
protein-ligand complex on PDBbind v2018 dataset. As 
shown, our model achieves the lowest RMSE on training set 
which is used to learn “common rules” for evaluation. The 
model also performs well on validation and test set. That 
means, our model learned some important features of 
interactions between proteins and ligands and can use this 
“knowledge” to predict interactions even it has never seen 
before. Actually, the results predicted by our model are 
slightly better than those achieved by 3D structure based 
deep model (pafnucy)[7], which had RMSE=1.44, SD=1.43 
and RMSE=1.42, SD=1.37 for validation and test set, 
respectively. To the best of our knowledge, pafnucy provides 
the state-of-the-art protein-ligand prediction results on 
PDBbind dataset. Although the values of R exhibited in their 
study are higher than ours (0.78 for test), the accuracy and 
generalization of 1D input model would be easier to improve 
as it can extract more binding features from large amounts of 
data without known structural information. 

C. Biological interpretation 

As a representation learning method, deep learning can 
automatically learn features from raw data. While fast and 
accurate, deep learning model is a “black box” that is 
difficult to know why it works well on specific tasks. Hence 
we develop a method to explore how the model processes the 
biological data. Similar to the occlusion algorithm which 
used to explore whether CNN model can locate the key target 



 

 

in input image[12], this method is actually masking some 
subsequences of the input protein, thus can be used to define 
where is the binding sites. 

 
Fig.3. The alignments of predicted and actual binding sites of protein 

sequences. The corresponding PDB ID: (A) 5k09; (B) 4i4f; (C) 4a51; (D) 

3ati. (The abscissa axis is the length of protein sequences.) 

As defined above, the range of Kij is (0, +∞). When Kij > 
1, occlusion of the corresponding subsequences would 
increase the difference between real and predicted value, 
which means the masked subsequences play an important 
role in prediction. The larger Kij value, the greater influence 
of the corresponding region on the prediction. If Kij=1, the 
corresponding region has no effect on the prediction results. 
As for Kij < 1, which means mask of corresponding 
sequences can reduce the error of the predictions. One 
possible explanation for that is the whole protein sequence 
may produce some noise information from the portions of the 
sequence that are not involved in the binding. 

Heat-maps of some samples from test set are exhibited in 
Fig.3. The yellow regions in actual binding sites are the 
pockets (the binding site for ligand) in protein sequences. In 
the heat maps of predicted binding sites, as indicated by K 
value, the regions close to yellow are considered to be 
important for binding by the model. Obviously, the predicted 
binding sites are very close to the actual ones which suggests 
our deep model indeed processes the data in a proper way. 
Although there is a slight shift in alignments, this may be 
partially caused by local translation invariance of CNN 
introduced by pooling operation, which is especially useful 
when we only care about whether the desired characteristics 
exist in a certain area not a specific location. Additionally, 
the selected coordinates of masked area at the center point in 
the calculation of heat map more or less affect these shifts. 

IV. CONCLUSION 

In this paper, we introduce an interpretable convolutional 
neural network based model to predict the binding between 
protein and ligand. This model is shown to accurately predict 
both binding possibility and value by using only 1D 
information. It should be noted that our model performs even 
slightly  better than the state-of-the-art 3D structure based 
deep learning model. Although 3D complex retains complete 
binding information, the amount of such data is too small and 
an end-to-end model cannot extract enough common features. 
The poor performance on unseen complex may be a common 
problem for 3D based predictive models. The generalization 

of model with 1D input would be easier to improve because 
of large amounts of data without structural information.  

One of the most common problems for deep learning is 
that they are regarded as black boxes, lacking accountability, 
trustworthiness and effective ways for debugging. Although 
convenient and accurate, deep model may yield favorable 
results for the misguided reasons. Therefore, it is necessary 
to check if the model utilized input information correctly. 
Interestingly, we show that our model can be used to predict 
key amino acid residues which are important for binding in 
combination with feature extraction algorithm applied in 
computer vision. It should be emphasized again that our 
model pinpoints the binding sites using only 1D sequence 
information, which suggests the deep model processed data 
in a proper way. We are excited about the future application 
of such sequence based predictive model. Different datasets 
would be used to improve the generalization ability of our 
model. We plan to apply multi-task learning in the 
downstream of the model, thus it can be extended to 
problems involving drug toxicity and sensitivity prediction.  
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