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This paper applies topological methods to study complex high dimensional data sets by extracting shapes
(patterns) and obtaining insights about them. Our method combines the best features of existing standard
methodologies such as principal component and cluster analyses to provide a geometric representation of
complex data sets. Through this hybrid method, we often find subgroups in data sets that traditional
methodologies fail to find. Our method also permits the analysis of individual data sets as well as the analysis
of relationships between related data sets. We illustrate the use of our method by applying it to three very
different kinds of data, namely gene expression from breast tumors, voting data from the United States
House of Representatives and player performance data from the NBA, in each case finding stratifications of
the data which are more refined than those produced by standard methods.

athering and storage of data of various kinds are activities that are of fundamental importance in all areas

of science and engineering, social sciences, and the commercial world. The amount of data being gathered

and stored is growing at a phenomenal rate, because of the notion that the data can be used effectively to
cure disease, recognize and mitigate social dysfunction, and make businesses more efficient and profitable. In
order to realize this promise, however, one must develop methods for understanding large and complex data sets
in order to turn the data into useful knowledge. Many of the methods currently being used operate as mechanisms
for verifying (or disproving) hypotheses generated by an investigator, and therefore rely on that investigator to
formulate good models or hypotheses. For many complex data sets, however, the number of possible hypotheses
is very large, and the task of generating useful ones becomes very difficult. In this paper, we will discuss a method
that allows exploration of the data, without first having to formulate a query or hypothesis. While most
approaches to mining big data focus on pairwise relationships as the fundamental building block', here we
demonstrate the importance of understanding the “shape” of data in order to extract meaningful insights.
Seeking to understand the shape of data leads us to a branch of mathematics called topology. Topology is the
field within mathematics that deals with the study of shapes. It has its origins in the 18" century, with the work of
the Swiss mathematician Leonhard Euler’. Until recently, topology was only used to study abstractly defined
shapes and surfaces. However, over the last 15 years, there has been a concerted effort to adapt topological
methods to various applied problems, one of which is the study of large and high dimensional data sets®. We call
this field of study Topological Data Analysis, or TDA. The fundamental idea is that topological methods act as a
geometric approach to pattern or shape recognition within data. Recognizing shapes (patterns) in data is critical
to discovering insights in the data and identifying meaningful sub-groups. Typical shapes which appear in these
networks are “loops” (continuous circular segments) and “flares” (long linear segments). We typically use these
template patterns in an informal way, then identify interesting groups using these shapes. For example, we might
select groups to be the data points in the nodes concentrated at the end of a flare. These groups can then be studied
with standard statistical techniques. Sometimes, it is useful to make a more formal definition of flares, when we
would like to demonstrate by simulations that flares do not appear from random data. We give an example of this
notion later in the paper. We find it useful to permit both the informal and formal approaches in our exploratory
methodology.

There are three key ideas of topology that make extracting of patterns via shape possible. Topology takes as its
starting point a metric space, by which we mean a set equipped with a numerical notion of distance between any
pair of points. The first key idea is that topology studies shapes in a coordinate free way. This means that our
topological constructions do not depend on the coordinate system chosen, but only on the distance function that
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specifies the shape. A coordinate free approach allows topology the
ability to compare data derived from different platforms (different
coordinate systems).

The second key idea is that topology studies the properties of
shapes that are invariant under “small” deformations. To describe
small deformations, imagine a printed letter “A” on a rubber sheet,
and imagine that the sheet is stretched in some directions. The letter
will deform, but the key features, the two legs and the closed triangle
remain. In a more mathematical setting, the invariance property
means that topologically, a circle, an ellipse, and the boundary of a
hexagon are all identical, because by stretching and deforming one
can obtain any of these three shapes from any other. The property
that these figures share is the fact that they are all loops. This inherent
property of topology is what allows it to be far less sensitive to noise
and thus, possess the ability to pick out the shape of an object despite
countless variations or deformations.

The third key idea within topology is that of compressed represen-
tations of shapes. Imagine the perimeter of the Great Salt Lake with all
its detail. Often a coarser representation of the lake, such as a poly-
gon, is preferable. Topology deals with finite representations of
shapes called triangulations, which means identifying a shape using
a finite combinatorial object called a simplicial complex or a network.
A prototypical example for this kind of representation is the iden-
tification of a circle as having the same shape as a hexagon. The
hexagon can be described using only a list of 6 nodes (without any
placement in space) and 6 edges, together with data indicating which
nodes belong to which edges. This can be regarded as a form of
compression, where the number of points went from infinite to finite.
Some information is lost in this compression (e.g. curvature), but the
important feature, i.e. the presence of a loop, is retained.

Topological Data Analysis is sensitive to both large and small scale
patterns that often fail to be detected by other analysis methods, such
as principal component analysis, (PCA), multidimensional scaling,
(MDS), and cluster analysis. PCA and MDS produce unstructured
scatterplots and clustering methods produce distinct, unrelated
groups. These methodologies sometimes obscure geometric features
that topological methods capture. The purpose of this paper is to
describe a topological method for analyzing data and to illustrate its
utility in several real world examples. The first example is on two
different gene expression profiling datasets on breast tumors. Here
we show that the shapes of the breast cancer gene expression net-
works allow us to identify subtle but potentially biologically relevant
subgroups. We have innovated further on the topological methods**
by implementing the idea of visually comparing shapes across mul-
tiple networks in the breast cancer case. The second example is based
on 20 years of voting behavior of the members of the US House of
Representatives. Here we show that the shapes of the networks
formed across the years tell us how cohesive or fragmented the voting
behavior is for the US House of Representatives. The third example is
defining the characteristics of NBA basketball players via their per-
formance statistics. Through these advanced implementations of
topological methods, we have identified finer stratifications of breast
cancer patients, voting patterns of the House of Representatives and
the 13 playing styles of the NBA players.

Results

Mathematical underpinnings of topological data analysis (TDA).
TDA applies the three fundamental concepts in topology discussed
in the introduction to study large sets of points obtained from real-
world experiments or processes. The core problem addressed by
TDA is how to use data sampled from an idealized space or shape
to infer information about it. Figure 1 illustrates how our particular
topological method based on a generalized Reeb graph®, operates on
sampled points from a human hand. The method takes three inputs:
a distance metric, one or more filter functions (real valued quantities
associated to the data points), and two resolution parameters
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Figure 1 | The approach as applied to a data set in our analysis pipeline.
A) A 3D object (hand) represented as a point cloud. B) A filter value is
applied to the point cloud and the object is now colored by the values of the
filter function. C) The data set is binned into overlapping groups. D) Each
bin is clustered and a network is built.

(“resolution” and “percent overlap”), and constructs a network of
nodes with edges between them. The layouts of the networks are
chosen using a force directed layout algorithm. As such, the
coordinates of any individual node have no particular meaning.
Only the connections between the nodes have meaning. Hence, a
network can be freely rotated and placed in different positions with
no impact on the interpretation of the results. The nodes represent
sets of data points, and two nodes are connected if and only if their
corresponding collections of data points have a point in common
(see the Methods section). The filter functions are not necessarily
linear projections on a data matrix, although they may be. We often
use functions that depend only on the distance function itself, such as
the output of a density estimator or a measure of centrality. One
measure of centrality we use later is L-infinity centrality, which
assigns to each point the distance to the point most distant from it.
When we do use linear projections such as PCA, we obtain a
compressed and more refined version of the scatterplot produced
by the PCA analysis. Note that in figure 1, we can represent a dataset
with thousands of points (points in a mesh) in 2 dimensions by a
network of 13 nodes and 12 edges. The compression will be even
more pronounced in larger datasets.

The construction of the network involves a number of choices
including the input variables. It is useful to think of it as a camera,
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Figure 2 | Networks derived from NKI (panels A and B) and GSE2034 (panels C and D). Two filter functions, L-Infinity centrality and survival or
relapse were used to generate the networks. The top half of panels A and B are the networks of patients who didn’t survive, the bottom half are the patients
who survived. Panels C and D are similar to panels A and B except that one of the filters is relapse instead of survival. Panels A and C are colored by the
average expression of the ESR1 gene. Panels B and D are colored by the average expression of the genes in the KEGG chemokine pathway. Metric:
Correlation; Lens: L-Infinity Centrality (Resolution 70, Gain 3.0x, Equalized) and Event Death (Resolution 30, Gain 3.0x). Color bar: red: high values,

blue: low values.

with lens adjustments and other settings. A different filter function
may generate a network with a different shape, thus allowing one to
explore the data from a different mathematical perspective. Some
filter functions may not produce any interesting shapes (such as a
straight line). One works with a data set experimentally to find values
for which the network structure permits the identification of sub-
groups (such as the tips of flares, or clusters) of interest.

Applications of TDA in the real world. In order to show the
implementation of TDA, we apply it to three very different data
sets. We analyzed two disparate datasets of gene expression
profiling data on breast tumors, 22 years of voting behavior of the
members of the US House of Representatives, and characteristics of
NBA basketball players via their performance statistics. We show
that the coordinate invariance and the related insensitivity to
deformation are useful in reconciling the results from two distinct
microarray studies. The innovation in this paper is to demonstrate
that correspondences between multiple networks, whether it be over
time, over disparate data sets or over changes of scale, are extremely
important and can lead to novel insights. We discuss the parameters
that go into the analyses, as well as the definition of filters related to
the singular value decomposition, in the Methods section.

Identifying patient subsets in breast cancer. The first application is
the identification of patient sub-populations in breast cancer. We
show here that topological maps can more finely stratify patients
than standard clustering methods. We also identified interesting
patient sub-groups that may be important for targeted therapy.
Breast cancer continues to confound us, with multiple sub-types
being identified to date. Identifying subtypes of cancer in a
consistent manner is a challenge in the field since sub-populations
can be small and their relationships complex. It is well understood
that the expression level of the estrogen receptor gene (ESRI) is
positively correlated with improved prognosis, given that this set
of patients is likely to respond to standard therapies. However,
among these high ESR1 patients, there are still sub-groups that do
not respond well to therapy. It is also generally understood that low
ESR1 levels are strongly correlated with poor prognosis although

patients with low ESR1 levels but high survival have been
identified over the years’. Many researchers have continued to find
sub-groups that are enriched in different pathways®'°. Although
many molecular sub-groups have been identified, it is often
difficult to identify the same sub-group in a broader setting, where
data sets are generated on different platforms, on different sets of
patients and at a different times, because of the noise and complexity
in the data'""%

We use two relatively older breast cancer data sets, NKI'"* and
GSE2034", to demonstrate that even with older data sets, there is
much to be gained by using this approach. The first data set, NKI,
consists of gene expression levels extracted from 272 tumors and is
analyzed using about 1500 most varying genes'>'>'*. Although we are
able to compute with any variance threshold, we show in Figure S1
that the shape in the network becomes less distinct as the threshold is
relaxed. We therefore used the top most varying genes for this
example. In addition to gene expression data, the NKI data set
includes survival information. Figure 2 (panel A) shows the network
constructed using both gene expression columns and survival
information. We use correlation distance between gene expression
vectors together with two filter functions, L-infinity centrality and
survival variable (event death). The L-infinity centrality function
captures the structure of the points far removed from the center or
norm. The survival filter is used as a supervised step to study the
behavior of the survivors separately from the non-survivors (filter
functions described in Materials and Methods).

Note that the resulting network has a structure shaped like a
horizontal letter Y along with several disconnected components.
The patients that survived form the Y and the patients that did not
survive form the smaller networks. The nodes of the network rep-
resent sets of tumors and are colored according to the average
expression value of the ESR1 expression levels of those tumors. As
mentioned earlier, low ESRI1 levels often correspond to poor pro-
gnoses. It is interesting then to discover that the lower arm of the Y
network of survivors is comprised entirely of tumors with low ESR1
expression levels (called lowERHS hereafter). In contrast, the low
ESRI non-survivors (lowERNS hereafter) are comprised of 3 smaller
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disconnected groups. Note that there is no need to determine a priori
the threshold of ESR1 gene expression levels, which is often required
by other methods when determining “ESR1 positive” or “ESR1 nega-
tive” status. The network was generated in an assumption-free man-
ner. Mathematical validation of the data structures uncovered by
TDA is described in Materials and Methods.

However, in order to corroborate that the lowERHS group is indi-
cative of underlying biology, we performed the same analysis on the
second breast cancer dataset, GSE2034". This dataset records the
time to relapse instead of survival data. By obviating the need to
transform the coordinates in the data matrices, we were able to
visually compare topological maps constructed from the two data
sets generated from entirely different experimental platforms. Once
again, a very similar network was found (Figure 2, panel C). The large
survivor/non-relapse structure comprised a horizontal letter Y with
its lower arm defining a lowERHS group.

In order to test if these two lowERHS populations are enriched in
some particular pathways, we performed a Kolmogorov-Smirnov
test and identified a list of genes that best differentiated this sub-
group from the rest of the structure'”. These genes, including CCL13,
CCL3, CXCL13 and PF4V1, are significantly enriched in the chemo-
kine KEGG pathway (enrichment p-value 1.49E-4). When the nodes
of these networks are colored by the average levels of these genes in
the KEGG chemokine pathway, it was clear that both lowERHS sub-
populations had higher than average values of the levels of these
genes than the lowERNS (non survivor/relapse) group (see Table
S1 for quantitative differences). In contrast, the excellent survival
high ESRI groups exhibit low chemokine levels. However, even
though the chemokine pathway is on average higher in expression
in lowERHS than in lowERNS, it is likely not the only determining
factor. The low ERNS group is comprised of 3 smaller sub-networks
and the chemokine activity varies between them, indicating that
there are more sub-groups within the lowERNS.

In summary, the topological maps identified various sub-groups
of breast cancer patients that are consistent between two different
data sets. In particular, we have identified a group of surviving
patients with low ESR1 expression occurring consistently across
the two independent studies, and for which the expression levels of
genes in the immune pathways are elevated. We note that these
subgroups are easily detected by our methods even across two dis-
parate platforms because of the coordinate free property enjoyed by
our approach. We show that classical single linkage hierarchical
clustering approaches cannot easily detect these biologically relevant
sub-groups (Figure 3) because by their nature they end up separating
points in the data set that are in fact close.

PCA

Clustering

ER- did not survive

ER- survived

Figure 3 | Single linkage hierarchical clustering and PCA of the NKI data
set. Highlighted in red are the lowERNS (top panel) and the lowERHS
(bottom panel) patient sub-groups.

Implicit networks of the US House of Representatives based on
voting behavior. The next data set to which we applied TDA is
comprised of 22 years of voting records from the members of the
US House of Representatives. The networks derived from the voting
behavior of the members of the House differ from year to year, with
some years having more sub-groups than others. We show that these
sub-groups cannot be easily identified with methods such as PCA.
We took the ‘aye’, ‘nay’ and ‘present but not voting’ votes of every
member of the house for every year between 1990 to 2011 and built
networks of the representatives based on their voting behavior for
each year (figure S2). Details of the construction are provided in
the Supplementary materials. The majority of the members either
fall into the Republican group or the Democratic group with a small
percentage of the members being independent or affiliated with
either of the major party. Generally, every year the relationships
between the members of the House based on voting patterns show
that the Respublicans and the Democrats vote along party lines.
However, upon closer inspection, there are many sub-groups
within each political group. For some years, the relationships are
more cohesive where there are large connected maps, but in other
years, the networks show a very high degree of fragmentation.
Figure 4 shows a plot of the fragmentation index that we have
derived from the networks. The fragmentation index is computed
by counting the number of connected components in the network
(singletons excluded) for each year. This very high degree of
fragmentation is evident in 2008 and 2010. There were many
political issues that were voted on for these two years that could
explain such fragmentation. In 2008, the US experienced a melt-
down in the economy and in 2010, the healthcare bill was one of
the most fiercely debated issue among many. We show that a PCA
analysis of the same data was not able to show the fragmentation of
voting behavior. As expected, the signal that was detected by PCA
was the more obvious Republican and Democratic divide (figure S3).
We also determined what issues are dividing the Republicans into the
two main sub-groups (G1 and G2) in 2009. Among the top issues that
most effectively divided these two Republican groups were The
Credit Cardholders’ Bill of Rights, To reauthorize the Marine
Turtle Conservation Act of 2004, Generations Invigorating Volun-
teerism and Education (GIVE) Act, To restore sums to the Highway
Trust Fund and for other purposes, Captive Primate Safety Act, Solar
Technology Roadmap Act and Southern Sea Otter Recovery and
Research Act. On these issues, the Republican subgroup (G2) was
voting very similarly to the Democrats. Interestingly, this subgroup
consisted of members that voted like another subgroup of Democrats
on certain issues and persisted through the years (figure S4). We have
termed these members the “Central Group”. This “Central Group”
was coherent across many years with some core members like
Sherwood Boehlert (R-NY) and Ike Skelton (D-MO) persisting
over 10 years in such networks, while other members joined or
dropped out across the years. Additional members of this group
include Billy Tauzin (D/R-LA) and John McHugh (R-NY). These
members of the House are often flagged as conservative Democrats
or Liberal Republicans. This Central Group, even during the years
when it broke away from each other along party lines, had weaker
connections to the other networks of its own party. Again, this
stratification is very difficult to locate using PCA analysis (figure S3).

Basketball team stratification. The final dataset we studied is a data
set that encodes various aspects of performance among basketball
players in the National Basketball Association (NBA). Using rates
(per minute played) of rebounds, assists, turnovers, steals, blocked
shots, personal fouls, and points scored, we identified more playing
styles than the traditional five. The distance metric and filters used in
the analysis were variance normalized Euclidean and principal and
secondary SVD values, respectively. The positions in basketball are
traditionally classified as guards, forwards, and centers. Over time,
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Figure 4 | Top panel is the fragmentation index calculated from the number of sub-networks formed each year per political party. X-axis:
1990-2011. Y-axis: Fragmentation index. Color bars denote, from top to bottom, party of the President, party for the House, party for the Senate (red:
republican; blue: democrat; purple: split). The bottom 3 panels are the actual topological networks for the members. Networks are constructed from
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Each panel labeled with the year contains networks constructed from all the members for all the votes of that year. Note high fragmentation in 2010
in both middle panel and in the Fragmentation Index plot (black bar). The distance metric and filters used in the analysis were Pearson correlation and
principal and secondary metric SVD. Metric: Correlation; Lens: Principal SVD Value (Resolution 120, Gain 4.5x, Equalized) and Secondary SVD Value
(Resolution 120, Gain 4.5x, Equalized). Color: Red: Republican; Blue: Democrats.

this classification has been refined further into five distinct positions,
namely point guard, shooting guard, small forward, power forward,
and center. These positions represent a spectrum of players from
short, fast, and playing outside the key to tall, slow, and playing
inside the key. However, distinguishing players based only on
physical characteristics such as height or speed is perhaps arbitrary
and outdated. One can then ask the question if there is instead a more
informative stratification of player types based on their in-game
performance. To answer this question, we constructed perfor-
mance profiles for each of the 452 players in the NBA by using
data from the 2010-2011 NBA season (Figure 5).

From the networks, we see a much finer structure than five distinct
categories. These structures represent groups of players based on
their in-game performance statistics. For example, the left side of
the main network reveals a finer stratification of guards into three
groups, namely offensive point guards, defensive point guards, and
ball handling shooting guards. We also see three smaller structures in
the lower central part of the map that we labeled “All NBA” and “All
NBA 2" team”. The “All NBA” network consists of the NBA’s most
exceptional players and the second team consists of players who are
also all-around excellent players but perhaps not as top-performing
as the “All NBA” players. Within “All NBA” group are all-star
players like LeBron James and Kobe Bryant. Interestingly, there are
some less well-known players in the “All NBA” network such as
Brook Lopez, suggesting that they are potential up and coming stars.
Itis of note that the “All NBA” and “All NBA 2" team” networks are

well separated from the large network, indicating that their in-game
statistics are very different. To also illustrate the capability to perform
multi-resolution analyses simultaneously on the same dataset and
how that kind of analysis is important, we compared the high reso-
lution network (Figure 5, right panel) to the lower resolution network
(Figure 5, left panel). The right panel shows that at a lower resolution,
these players form 4 categories, which are scoring big men, paint
protectors, scoring guards, and ball handling guards. In summary,
this topological network suggests a much finer stratification of
players into thirteen positions rather than the traditional division
into five positions.

Discussion

We have shown that TDA can handle a variety of data types using
three real world examples. The three key concepts of topological
methods, coordinate freeness, invariance to deformation and com-
pressed representations of shapes are of particular value for applica-
tions to data analysis. Coordinate free analysis means that the
representation is independent of the particular way in which the data
set is given coordinates, but rather depends only on the similarity of
the points as reflected in the distance function. Coordinate free repre-
sentations are vital when one is studying data collected with different
technologies, or from different labs when the methodologies cannot
be standardized. The invariance to deformation provides some
robustness to noise. Compressed representations are obviously
important when one is dealing with very large data sets, but even
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for moderate size data sets they provide more succinct and under-
standable representations than most standard methods. Finally, we
have shown that our novel implementation of the idea of corres-
pondence between multiple networks, whether it be over time or
disparate data sets, or over changes of scale is extremely important
and can lead to novel insights. The usefulness of TDA is not restricted
to these three types of applications but can generally be applied to
many different data types, including nucleic acid sequencing reads
for de novo assembly, structure of interactions among people,
unstructured text, time series data, reconstruction of metagenomes
represented in complex microbiome communities and others.

Methods

TDA Pipeline. The two resolution parameters (a number N of intervals and p, a
percent overlap), determine a collection of N intervals of equal length with a uniform
overlap of p percent of the length of the intervals. The real world data set here is a
sampling of points from a 3D mesh that represents the shape of hand (Figure 1A). The
metric is three-dimensional Euclidean distance, and the filter function is the x-
coordinate (the set is colored by the filter function values). By using the collection of
intervals specified above, the data set is binned into groups, whose filter values lie
within a single interval, giving rise to a collection of overlapping bins (figure 1C). Note
that since we chose the intervals to be overlapping, the binned data represents a
systematic oversampling of the original data. We frequently use filter functions which
depend explicitly only on the distance function used, and not on the representation of
the data as a data matrix. Examples of such functions would be various proxies for
distance-based density, measures of centrality, and various coordinates of a
multidimensional scaling analysis. Such filters are called geometric filters, and are
quantities that are important in any statistical analysis. One particular such filter,
L-infinity centrality, is defined for a data point x to be the maximum distance from x
to any other data point in the set. Large values of this function correspond to points
that are far from the center of the data set. It is also useful to use some filters that are
not geometric, in that they do depend on a coordinate representation, such as
coordinates in principal component or projection pursuit analysis. As we will
demonstrate, when our construction is performed using such filters, it will produce a
more detailed and also more succinct description of the data set than the scatter plots
that are typically displayed.

The final step in our pipeline is to apply a clustering scheme to each bin. We apply
single linkage clustering, but other clustering schemes would also work. Let N be the
number of points in a bin. We first construct the single linkage dendrogram for the
data in the bin, and record the threshold values for each transition in the clustering.
We select an integer k, and build a k-interval histogram of these transition values. The
clustering is performed using the last threshold before the first gap in this histogram.
The reason for this choice is that one frequently observes experimentally that the
shorter edges which connect points within each cluster have a relatively smooth
distribution and the edges which are required to merge the clusters are disjoint from

this in the histogram. Note that larger values of k produce more clusters, smaller
values fewer clusters. Occasionally the distribution of a variable is such that the
binning process produces an excessively skewed histogram. In this case, the values are
renormalized so as to make the distribution even, and we call this process “equalized”.
The clustering scheme thus partitions each bin into a list of partial clusters. Finally, we
build a network whose nodes are the partial clusters. We connect two partial clusters
with an edge if they have one or more data points in common (figure 1D). If we use
two filter functions, we will need to choose families of intervals for each, to obtain a
two dimensional array of rectangles instead of intervals. In this case, we might obtain
three or four fold intersections that will give rise to triangles and tetrahedra. The
choice of families of intervals corresponds to a level of resolution of the construction.
A larger number of smaller intervals yields a network with more nodes and more
edges, and can be viewed as a higher resolution version of the construction. We note
that our method provides a way to take advantage of the best properties of two
different strands in data analysis, namely clustering and scatterplot methods such as
principal component analysis, projection pursuit, and multidimensional scaling'®>°.

Our TDA pipeline is also highly parallelizable, which permits the interactive
analysis of large data sets. As an example, the network construction for a synthetic
dataset (will be downloadable as a part of supplementary materials) represented by a
point cloud of 1 million rows and 50 columns takes 87 seconds to compute. It also
permits us to study data sets without computing all possible pairwise distances.
Although the role compression plays in pure topology is already mirrored in existing
non-topological methods of data analysis, these methods such as a scatterplot, do so
by simply creating a list of points of the same length as the original set. In this case, a
scatter plot will still result in 1 million rows but with 2 columns. In contrast, our
approach produces a network of 896 nodes and 897 edges.

Mathematical validation of data structures uncovered by TDA. We describe a
method for “validating” the presence of a flare in a data set, i.e. for determining that
no flare could be obtained if the data is selected from a multivariate Gaussian
distribution. To test the significance of flares we generated 1000 datasets of the same
dimensionality as original data. The entries in each column of newly created datasets
were drawn from Gaussian distribution with zero mean and constant variance across
all columns. For each dataset we produce the associated graph using our methodology
and apply to it a flare detection algorithm described below. Using this algorithm we
count the number of flares found and compare it to the number of flares in the graph
of the original data.

Let us now describe flare detection algorithm in detail. The first step is to compute
an eccentricity function e(n) for each node of the graph:

e(n)= Z d(n,m)

meV(G)

where V(G) is the vertex set of the graph and d is the graph distance on the unweighted
graph G. The intuition behind this choice is that such function should differentiate
between nodes in central denser regions and nodes at the ends of flares. We order
nodes in each connected component by their eccentricity value in decreasing order,
let us denote this ordered list by L. Next, we set up a zero-dimensional persistence
mechanism for each connected component of the graph using eccentricity as a
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persistence parameter. The persistence algorithm proceeds as follows. We process
each node in L, and at each moment we keep the following data: the set of connected
components formed by nodes processed so far, the birth and death times for each
component. The birth time is defined as the eccentricity value of the node which
started the component (this is always the node with largest eccentricity value among
all nodes in the component). The death time is defined as eccentricity value of the
node which merges this component with another component with a higher birth
value (until such merge happens the death time is set to 0). With addition of a node
three things can happen. The node can (1) start a new component that will be created
in case when none of its graph neighbors are processed yet, (2) can be added to an
already existing component that will be created if precisely one of its graph neighbors
was already processed, or (3) merge two or more components that will be created if
two or more of node’s graph neighbors were already processed and they belong to two
or different components. After we traverse all the nodes in L, we have a set of con-
nected components together with a pair of birth and death times for each. For each
component we compute the absolute value of the difference between the death and
birth values divided by the range of eccentricity values. The resulting value, which we
will denote by V is in the interval [0,1]; in general, higher values of V correspond to
those components which were started early, i.e. by higher eccentricity nodes and
hence should correspond to flares.

Finally, for each x in [0,1] we count the number of components C such that V(C) <
x. This defines a non-increasing integer-valued function. We identify the longest
interval over which this function stays constant and greater than 1. We declare the
corresponding components as flares. The output of the algorithm is the number of
flares found by this procedure. This algorithm is applied to every connected com-
ponent of a graph provided that this component is large enough in the number of
nodes relative to the total number of nodes in the graph (the size threshold is set to
10% of graph size). This method, applied to randomly generated data as described
above, did not produce more than one flare except once in 1000 Monte Carlo
simulations.

Mathematical validation of a patient group in the Y structure. In using the TDA
methodology, one often colors the output network by a quantity of interest, and this is
useful in deriving actionable consequences of the analysis. For example, in a
microarray study of cancer patients, one might color each node by the proportion of
patients within that node who died within the period of the study. In earlier analyses,
we have found connected families of adjacent nodes in which the survival is perfect,
i.e. all patients survived the length of the study. The question arises, though, if this
observation is an artifact of the TDA network construction. One can address this
question as follows. Every microarray data set gives rise to a finite metric space, since
one can assign a number of choices of distances to the rows of the data matrix. For any
finite metric space X, one can associate a family of proxies for density p, on X
parameterized by a bandwidth parameter g, by the formula

1 ,
po(x) = gZk,,(d(x,x )

xeX

where k,(t) is a probability density function such as the Gaussian distribution
centered at the origin and with variance equal to ¢. The quantity p,(x) is a proxy for
the density within the metric space at the point x. We can consider an analogous
distribution based only on the set L of patients who survive the study, to construct a
density function

L _ 1 /
pr(x) = 27 D ko(d(xx)

x'eL

which is a proxy for density of live patients close to a point x. The quotient
L
q(x)= Pe EX; now represents the relative density of live patients compared to the
Pl
density of all patients in the metric space. A high value for q(x) indicates increased
percentage of survival in this region of X. One will then want to find methods for
assessing how high a value of g(x) is statistically significant. To perform such an
analysis, we will assume as a null hypothesis that the set L is obtained by random
selection from X. One can then select sets L’ uniformly at random, of the same
cardinality as L, and construct the corresponding quotients

LN PlLfl (x)
0=

We then perform a Monte Carlo simulation by repeated selection of sets L', and
record the values /"' = max 4" (x). The distribution of these values gives us a criterion
XE.

for determining how exceptional a given value of q(x) is. Applied to a high survival
flare’S, this value was found to occur with likelihood less than 10™*.

Principal metric SVD filters. When data points are given in a matrix, one can apply
the standard singular value decomposition to the data matrix to obtain subspaces
within the column space, and dimensionality reduction is accomplished by projection
on these subspaces. The values of each of these coordinates can then be used as a filter
for an analysis. When the data is simply given as a distance matrix, we produce a data
matrix by assigning to each data point its column vector of distances to all the other
data points. We then apply the standard singular value decomposition to this data
matrix. This is done with standard linear algebraic techniques when possible, and

when the number of points is too large, numerical optimization techniques are used.
Typically only the first and second singular vectors are used.

Filter functions. Wherever required, we used the Pearson correlation between two
tumors across all the chosen genes as the distance metric. Two filter functions were
used for the breast cancer network construction. The first filter function is

f(x)= max d(x.y)

This computes for every data point the maximal distance to any other data point in
the set (L-infinity centrality). The second filter function was simply the binary vari-
able representing survival.

Datasets and software. Access to any of the three datasets via a trial license of the
software can be requested by writing to the corresponding authors.
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