Pei Huang

Pei Huang
Dalarna University · Energy Technology

Doctor of Philosophy

About

52
Publications
14,095
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
980
Citations
Additional affiliations
March 2019 - present
Dalarna University
Position
  • PostDoc Position
September 2017 - February 2019
City University of Hong Kong
Position
  • PostDoc Position
March 2016 - August 2016
Georgia Institute of Technology
Position
  • Visiting scholar

Publications

Publications (52)
Article
Peer-to-peer (P2P) energy sharing among neighboring households is a promising solution to mitigating the difficulties of renewable power (such as solar Photovoltaics (PV)) penetration on the power grid. Until now, there is still a lack of study on the impacts of future climate change on the P2P energy trading performances. The future climate change...
Article
The use of electric vehicles (EVs) has been on the rise during the past decade, and the number is expected to rapidly increase in the future. At aggregated level, the large EV charging loads, if not well regulated, will cause great stress on the existing grid infrastructures. On the other hand, considered as a resource-efficient and cost-effective...
Article
Household electricity demand has substantial impacts on local grid operation, energy storage and the energy performance of buildings. Hourly demand data at district or urban level helps stakeholders understand the demand patterns from a granular time scale and provides robust evidence in energy management. However, such type of data is often expens...
Article
Model-based real-time optimization (MRTO) is proven as an effective tool that can capture the complex dynamics of heating, ventilation, and air conditioning (HVAC) systems and improve its energy performance. Despite the energy benefits offered by MRTO, these approaches are rarely implemented in actual buildings. This is due to the reason that these...
Article
Net-zero energy buildings (NZEBs) are considered as a promising method to mitigating the energy problems. Due to the intermittent characteristics of renewable energy (e.g., solar energy), NZEBs need to frequently exchange energy with the grid, which imposes severe negative impacts on the grid especially the overvoltage risk. Both planning and desig...
Chapter
Existing studies have developed some advanced building side controls that enable renewable energy sharing and that aim to optimize building-cluster-level performance via regulating the energy storage charging/discharging. However, the flexible demand shifting ability of electric vehicles is rarely considered. For instance, the electric vehicle char...
Chapter
Urban energy mapping plays a crucial role in benchmarking the energy performance of buildings for many stakeholders. This study examined a set of buildings in the city of Borlänge, Sweden, owned by the municipality. The aim was to present a digital spatial mapping of both electricity use and district heating demand. A toolkit for top-down data proc...
Chapter
Smart grid is triggering the transformation of traditional electricity consumers into electricity prosumers. This chapter reports a case study of transforming an existing residential cluster in Sweden into electricity prosumers. The main energy concepts include (1) click-and-go photovoltaics (PV) panels for building integration, (2) centralized exh...
Chapter
Solar photovoltaic (PV) is becoming one of the most significant renewable sources for positive energy district (PED) in most countries, including Sweden. The lack of innovative business models and financing mechanisms are one of the main constraints for PV’s deployment installed in local community. This chapter therefore analyses a set of peer-to-p...
Chapter
Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy problem. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from the historical weath...
Article
Full-text available
A digital twin is regarded as a potential solution to optimize positive energy districts (PED). This paper presents a compact review about digital twins for PED from aspects of concepts, working principles, tools/platforms, and applications, in order to address the issues of both how a digital PED twin is made and what tools can be used for a digit...
Article
Full-text available
Urban Photovoltaic (PV) systems can provide large fractions of the residential electric demand at socket parity (i.e., a cost below the household consumer price). This is obtained without necessarily installing electric storage or exploiting tax funded incentives. The benefits of aggregating the electric demand and renewable output of multiple hous...
Preprint
Full-text available
Distributed renewable energy systems are now widely installed in many buildings, transforming the buildings into electricity prosumers. Existing studies have developed some advanced building side controls that enable renewable energy sharing and that aim to optimise building-cluster-level performance via regulating the energy storage charging/ disc...
Article
Full-text available
Urban energy mapping plays a crucial role in benchmarking the energy performance of buildings for many stakeholders. This study examined a set of buildings in the city of Borlänge, Sweden, owned by the municipality. The aim was to present a digital spatial map of both electricity use and district heating demand in the spatial-temporal dimension. A...
Article
Proper energy storage system design is important for performance improvements in solar power shared building communities. Existing studies have developed various design methods for sizing the distributed batteries and shared batteries. For sizing the distributed batteries, most of the design methods are based on single building energy mismatch, but...
Article
Full-text available
The COVID-19 outbreak is exacerbating uncertainty in energy demand. This paper aims to investigate the impact of the confined measures due to COVID-19 outbreak on energy demand of a building mix in a district. Three levels of confinement for occupant schedules are proposed based on a new district design in Sweden. The Urban Modeling Interface tool...
Article
Utilizing renewable energy to meet the energy demand, net-zero energy building (NZEB) is considered a promising solution to the worsening energy and environmental problems. Due to the intermittent and unstable characteristics of renewable energy (e.g. solar energy), NZEB needs to frequently exchange energy with the power grid. Such frequent energy...
Article
Full-text available
The deployment of solar photovoltaics (PV) and electric vehicles (EVs) is continuously increasing during urban energy transition. With the increasing deployment of energy storage, the development of the energy sharing concept and the associated advanced controls, the conventional solar mobility model (i.e., solar-to-vehicles (S2V), using solar ener...
Article
Full-text available
Solar photovoltaic (PV) is becoming one of the most significant renewable sources for positive energy district (PED) in Sweden. The lacks of innovative business models and financing mechanisms are the main constraints for PV's deployment installed in local community. This paper therefore proposes a peer-to-peer (P2P) business model for 48 individua...
Article
Full-text available
This paper proposes an integrated simulation framework for both building design and energy performance analysis. Literature review shows that, although many studies exist, most of them did not fully consider the integrated techno-economic evaluation of building-integrated photovoltaic (BIPV) system. Therefore, this research aims to use the interope...
Article
Distributed renewable energy systems are now widely installed in many buildings, transforming the buildings into ‘electricity prosumers’. Existing studies have developed some advanced building side controls that enable renewable energy sharing and that aim to optimize building-cluster-level performance via regulating the energy storage charging/ di...
Article
A proper system design is crucial for a net-zero energy building (NZEB) to achieve the desired performance during its lifecycle. Most conventional design methods utilize TMY (typical meteorological year) data or multi-year historical data for NZEB system sizing. Due to the climate change, future weather data may differ considerably from these utili...
Article
As large energy prosumers in district energy systems, on the one hand, data centers consume a large amount of electricity to ensure the Information Technologies (IT) facilities, ancillary power supply and cooling systems work properly; on the other hand, data centers produce a large quantity of waste heat due to the high heat dissipation rates of t...
Article
The crowded urban environment and busy traffic lead to heavy roadside pollutions in high-density cities, thereby causing health damages to city pedestrians. Electric vehicle (EV) is considered as a promising solution to such street-level air pollutions. Currently, in high-density cities, the number of public charging stations is limited, and they a...
Article
Smart grid is triggering the transformation of traditional electricity consumers into electricity prosumers. This paper reports a case study of transforming an existing residential cluster in Sweden into electricity prosumers. The main energy concepts include (1) click-and-go photovoltaics (PV) panels for building integration, (2) centralized exhau...
Chapter
In this chapter, the authors introduce current building energy management system (BEMS) from its development, current structure and main components, communications and standards, main functions and benefits, as well as future development trends. The information in this chapter can guide the readers in the direction of understanding, operation, and...
Article
Active supply-demand interactions in a smart grid are essential for reducing grid power imbalance which is important for the security and efficiency of power supply. A key element to the success of such interactions is the proper pricing strategy. The latest game-theory based dynamic pricing methods require information exchanges not only between th...
Article
Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy problem. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from the historical weath...
Article
Collaborations (e.g. renewable energy sharing) among nearly zero energy buildings can improve performances at cluster level. Demand response control is helpful to enable such collaborations. Existing studies have developed some dynamic pricing demand response control methods to reduce the nearly zero energy building cluster’ electricity bills and e...
Article
Demand response control is one of the common means used for building peak demand limiting. Most of the existing demand response controls focused on single building's performance optimization, and thus may cause new undesirable peak demands at building group, imposing stress on the grid power balance and limiting the economic savings. A few latest s...
Article
Sizing the nZEB systems properly is crucial for nZEBs to achieve the desired performances. The energy demand prediction uncertainties and the components’ degradation are two major factors affecting the nZEB systems sizing. The energy demand prediction has been studied by many researchers, but the impacts of degradation are still neglected in most s...
Article
Proper sizing of central air-conditioning (AC) systems is essential for high energy efficiency and desired levels of thermal comfort. However, due to the lack of accurate information at the design stage to predict the building peak cooling load and AC system performance, uncertainty exists in the sizing process. To directly deal with the uncertaint...
Article
Full-text available
Net-zero energy building (NZEB) is widely considered as a promising solution to the current energy and environmental problems. The existing NZEBs are designed using the historical weather data (e.g. typical meteorological year-TMY). Nevertheless, due to climate change, the actual weather data during a NZEB’s lifecycle may differ considerably from t...
Article
Collaborations among nZEBs (e.g. renewable energy sharing and battery sharing) can improve the nZEBs’ performance at the cluster level. To enable such collaborations, existing studies have developed many demand response control methods to control the operation of nZEB systems. Unfortunately, due to lack of consideration of demand prediction uncerta...
Article
Nearly zero energy buildings (nZEBs) are considered as a promising solution to mitigate the energy and environmental problems. A proper sizing of the nZEB systems (e.g. HVAC systems, PV panels, wind turbines and batteries) is essential for achieving the desirable level of thermal comfort, energy balance and grid dependence. Parameter uncertainty, c...
Article
Cooling loss during transmission from cooling sources (chillers) to cooling end-users (conditioned zones) is prevalent in HVAC systems. At the HVAC design stage, incomplete understanding of the cooling loss may lead to improper sizing of HVAC systems, which in turn may result in additional energy consumption and economic cost (if oversized) or lead...
Article
Near-zero energy buildings (nZEBs) are considered as an effective solution to mitigating CO2 emissions and reducing the energy usage in the building sector. A proper sizing of the nZEB systems (e.g. HVAC systems, energy supply systems, energy storage systems, etc.) is essential for achieving the desired annual energy balance, thermal comfort, and g...
Conference Paper
Heating, Ventilation, and air-conditioning (HVAC) systems have been widely equipped in modern buildings to provide thermal comfort and acceptable indoor air quality, and always represent the largest primary energy end-use. As reported by many researchers, the cooling loss is prevalent in HVAC systems during cooling transmission from cooling sources...
Article
Configuring the number and size of chillers in a multiple-chiller plant properly is an efficient way to improve the plant energy efficiency. At the design stage, the optimal configuration can be achieved through matching the capacity to load as closely as possible across the full-load profile. However, in spite of the fact that current literature o...
Article
Uncertainty in HVAC system sizing exists as there is a lack of accurate information at the design stage to predict a building's peak load demand and not enough operational data to predict system operating cost and energy performance. Instead of dealing implicitly with the uncertainty through a choice of safety factor in the standardized sizing proc...
Article
Ageing inevitably leads to capacity degradation in a chiller plant. Hence in the life-cycle performance analysis of a chiller plant, ageing always represents a crucial consideration for designers. Ageing is normally quantified using maintenance factor. A conventional analysis recommends that the maintenance factor should be 0.01 for systems that un...
Article
Net zero energy buildings (NZEBs) are promising to mitigate the increasing energy and environmental problems. For NZEBs, annual energy balance between renewable energy generation and building energy consumption is an essential and fundamental requirement. Conventional RES (renewable energy system) design methods for NZEBs have not systematically co...

Network

Cited By

Projects

Projects (4)