Facilitating the Exploration of Interface Design Alternatives:
The HUMANOID Model of Interface Design

Pedro Szekely, Ping Luo and Robert Neches

USC/Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292
(213) 822-1511
szekely@isi.edu, ping@isi.edu, neches@isi.edu

ABSTRACT HUMANOID's contribution to interface design is that it lets
HUMANOID is a user interface design tool that lets designersdesigners express abstract conceptualizations in an execut-
express abstract conceptualizations of an interface in an exable form, allowing designers to experiment with scenarios
ecutable form, allowing designers to experiment with sce-and dialogues even before the application model is com-
narios and dialogues even before the application model ispletely concretized. For example, designers can execute an
completely worked out. Three properties of themANOID interface after specifying only data types of command in-
approach allow it to do so: a modularization of design issuesputs, without having said anything about sequencing or pre-
into independent dimensions, support for multiple levels of sentation. The consequence is that designers can get an
specificity in mapping application models to user interface executable version of their design quickly, experiment with
constructs, and mechanisms for constructing executable deit in action, and then repeat the process after adding only
fault user interface implementations from whatever level of whatever details are necessary to extend it along the particu-
specificity has been provided by the designer. lar dimension currently of interest to them.

KEYWORDS: Design Processes, Development Tools and Figure 1. illustrates the nature of this refinement process.
Methods, User Interface Management Systems, Rapid ProThe figure shows ten snapshots from the evolution of the de-
totyping, Interface Design Representation, Dialogue Speci-sign for a program to view the slots of an object, starting

fication. with an initially empty design and ending with a complete,
working application. Each snapshot shows the interface that
INTRODUCTION HUMANOID generates after one or two refinements to the de-

Interface design really begins much earlier than currentSi9N- The intérfaces generated at each step are not just
tools recognize. Long before a designer is ready to experiMOCk-ups of the presentation, but fully working interfaces,
ment with presentation issues like the layout of widgets cho-to the extent that they have been defined thus far. For exam-

sen from a widget library, designers have typically made ple in Version 4 of the evolving design in Figure 1. the de-

(often implicitly and unconsciously) strong design commit- SIgner is able to explore dialogues involving selectable
ments about conceptual issues such as the choice of applicOPIECtS, despite not yet having defined how to display those

tion data structures and capabilities that will be presented, aObjr?CtS' \évg berz]lieve that the ?\esign procissﬁis Substantiglly
well as the general nature of interaction techniques which€hhanced by the opportunity this approach affords to put de-

will be used to present them. By and large, the tools that deSigns into action faster and earlier, and to test them before

signers use at this point are whiteboards or pad-and-penc@!! the abstractions are concretized.

because the conceptualizations are more abstract than mteHUMANOID belongs to the family of interface design tools

face drawing or mock-up tools support. For example, a de- : o
signer may decide that a file directory structure needs to b(f"md UIMSs centered around the notion of deriving the user

presented in a window, without yet knowing whether to usemterface from a high-level specification of the semantics of

indented text or a grapher. The fact that those early concepal? a;;pl;caﬂcm ;r)]ﬁ)grarp [3. 6. ﬁ4’ 15, 1IdelS and 20,[]' '?hebap-t
tualizations are not supported on-line inhibits exploration of plication semantics are usually specilied as a Set ol objec

design alternatives. It is too difficult to walk through scenar- types and procedure headers. The interface is specified by

ios and imagine dialogues when sketching by hand. There i:_elaborating the semantic description by annotating it with

too much work and too much commitment to particular de- |nforme_1tion .used.by an_interface gene_rating component. We
tails when using a display layout package recognize five dimensions along which interface designs

can be varied and elaborated. We summarize them below,
and expand on each dimension on the following sections.

Application design. The application design specifies the op-

erations and objects that an application program provides.
Variations involve changing the parameters of operations,

1 In CHI'92 Proceedings

FIGURE 1. The evolution of the design of a program to browse objects.

Browser Version 2.1

Browser Version 5

Browser Version 3 Browser Version 4

Browser Version 1 Browser Version 2

DRAW
HEIGHT
INITIALIEE
I5-A-INV
LEFT
POINT-IN-GOBE

: 0B JECT-CONTENTS |

[] P I
Initial design: Presentation: Presentation: Manipulation: Presentation:
Display = object + contents Contents is a list Add scrollbars Contents selectable Contents = slots of

Browser Version 6 Browser Version 7

OBJECT |#k<0PAL :LINE: ; OBJECT |RECTANGLE-63870 ¢

A DRAW DRAW-METHOD-LINE DRAW—FUNGTII]N EOR
HEIGHT 1 AST-REDRAW-P T
INITIALIZE INITIALIZE- f FFILLING-STYLE #k<0PAL:
IS-A ZRqU

Browser Version 8

%CLDSEI EBRDWSEI %REV'ERTI
OBJECT |RECTANGLE-63870

OBJECT |RECTANGLE-63870

"hogqus"
is not =n ohject.

FAST-REDRAW-F T
FILLING-STYLE #k<0PAL:
HEIGHT 0
INSTANTIATION-INFO +#<3

FAST-REDRAW-F T
FILLING-STYLE #k<0PAL:
HEIGHT 0

INSTANTIATION-INFO +#<3

HEIGHT 0

IS-A-INV (#k<KR-LEBUG: INSTANTIATION-INFO +#<a
LEFT 0 #l.< OPAL : RECTANGLE
POINT-IN-GOB FPOINT-IN-

o o o
Presentation: Application description: Application description: Sequencing: Action side-effects:
Contents = slot/value pairs, Parser and unparser for Close, Browse and Revert Constrain input of Browse Alert box for ing
Only values are selectable object commands to be an object objects

Version 1 shows the inter- pairs for the object, bMAN- cess procedure for the slotwas not refined. BMANOID
face generated for a desigroiD shows the list in a sche-in the object to be presentedby default placed the com
that states that the objecmatic way with twoslot- In addition, it refines the mand buttons at the top (
browser is an application ob-value parts in dotted rectan-presentation method to showthe display.
ject with a global variable to gles separated with “...". the names of the slots. Thé erqon 9 refines the appli-

hold the object beingyegon 21 illustrates that definition of the selection cqiinn " gescription for the
browsed. The presentatiory,o design process can inmanipulation was not gyq\se command, con
shows the global variable, e exploration of alterna- changed, and it still works. - giraining its only input to b
and below it the contents ofyjyes 4t the same level, noversion 6 further refines the an object, and linking it td
the object. WMANOID gen- j,q refinements. Versionpresentation method to showthe current-selection globz
erates a default interfaces 1 \yas an alternative prethe values of the slots, ancvariable in the application
choosing a type-in interac-gentation ofobject-contents refines the manipulation toThe effect on the interface i
sgﬂggﬁahn'qr”heef%rb_tgs g(l)(r)]bal as a graph rather than a list. only select the value part ofto constrain the sequencin
fonts aré shown ijn o sche.Version 3 refines the presen_the slots value pairs. of the d|alpgu¢. If the cur

i i tation to include scrollbars. Version 7 refines the appli- '€Nt sélection is not an ok
matic way (in a dotted - " . _ject, the Browse button i
rectangle), since at this poiniVersion 4 adds a new global Cation description by addmgdim,med and the user cann
the designer only stated thavariable to the application@ Parser and an unparser fc_ "\ == - 5 2 20
the dlsplay should contain adeSign: current-selection. It the gIObal variable for the mand. In contrast, in versio
part to d|sp|ay the Contentsladds a manipulation behav_object be|ng bI’OWSEd. The8 the-Browse bu&on was s
but did not represent any-ior to the design: making theUS€r can now type the name - - " 0 though th
thing else. slot value pairs selectable®f New objects. The deS|gnelcurrem selection was not

.) ; typed in the identifier of a)
Version 2 refines the presen-and stored in current—selec-r?étangle object and the disProwseable object.

stating that the Jc ontents concan be immediately exer-Play is upd.ated aytomatlcaI-Verson 10 gdds .What we
ly. The designer did not havecall an action side-effect

i i cised even though the pre) . :
sist of a list of slot value J IO_S to write any code for keep-When the object global vari

i i i int inSentation design Is. _ 4 ;)
pairs. Since at this point in nfinished g ing the display up to date. able receives an incorrect i
the design the designer hauntini : _ o

-) ! Version 8 adds three com- Put, an alert box is displaye

not specified how to com-Version 5 refines the presen- ree :
pute the set of slot valuetation by specifying an ac-Mands to the application deand the value is reverted |
scription. The presentationt® Previous value.

deleting or adding operations, adding attributes to objectinputs. An input is an object that describes all the informa-
types, etc. tion about a parameter of an operation needed to ensure that
the interface will invoke the call-back procedure with cor-
Application design is the major direction of refinement in rect arguments. The description of an input includesythe
interface design. Our model of design views designers’ ex-of the input value, redicate, which is a procedure that
ploration of design alternatives as a process of incrementaldoes semantic validation on input values, tfiimum and
ly adding information to the application design, generating maximum number of values that the input can takerna-
alternatives along the other four dimensions of variation astives, which specify a set of values from which the input
needed at each step. values must be chosen, ang@aaser andunparser for con-
verting strings to input values and viceversa.
Presentation. The presentation defines the visual appearance
of the interface. Variations involve: data to present, major Application Objects. An application object groups together a
parts of a display, data to be displayed in each part, preserset of commands and objects. &pplication programcon-
tation methods for each part (recursive step), layout of thesists of one or more application objects. For example, a mail
parts, and conditions for including parts in displays. program could consist of an application object to manipu-
late folders and an application object to edit messages. At
Manipulation. The manipulation specification defines the ryn time, a program can make multiple instances of its ap-
gestures that can be applied to the objects presented, and tlplication objects. For instance, a mail program would have
effects of those gestures on the state of the application anan application object instance to manipulate folders, and
the interface. perhaps multiple instances of the application object for edit-

_) . i . ing messages, so that the user would be able to compose
Sequencing. The sequencing defines the order in which ma- yytiple messages in parallel.

nipulations are enabled, or equivalently, the set of manipula-

tions enabled at any given moment. Many sequencinginput objects can also be defined for application objects. In
constraints follow from the data flow constraints specified in this case they are callgtbbal inputs because they are sim-
the application descriptiore(g, a command cannot be in- jlar to global variables in a program. The value they hold
voked unless all its Inputs are correct). Additional con- can be accessed from any command in the app"cation_
straints can be imposed during dialogue design.

_)) Application designs can be refined in three ways: by editing
Action side effects. Action side-effects refer to actions that the Command, input and app”cation objectsy by defining

an interface performs automatically as side effects of the acdata flow constraints, and by deﬁning command and input
tion of a manipulation. For example, a newly created objectgroups.

can become automatically selected, closing a dialogue bo»

can reset all the options to their default, typing return in aCommand, input and application modifications. Commands,
type-in field can automatically move the cursor to the “next” inputs and applications are organized in an inheritance hier-
type-in field. Side-effects can add, set, delete values of comarchy. Designers can define new versions of these objects,
mand inputs and global variables, and can change the stalinheriting properties from existing ones. Designers can also
of commands and inputs, which trigger changes in presentaadd, delete and modify any of the properties of the com-
tion and sequencing. mand, input and application objects described above.

The sections following discuss each of these dimensions irData flow constraints. The data flow constraints specify con-
detail, together with the benefits for interface design explo-straints between the properties of inputs, command and ap-
ration that the variations provide. Then we discuss relatecplication objects. One can, for instance, constrain the type,

work, and close with conclusions. value, alternatives or other property of an input to be a func-
tion of any property of a command or an input. The con-
DESIGN DIMENSION #1: APPLICATION DESIGN straints are enforced automatically by the underlying

An application design consists of a definition of commands, "éPresentation system [4]. Whenever the value of any of the
object types, global variables and the data flow constraintsSIots changes, the constrained values are recomputed, and
between these entities. The application design specifies thHUMANOID automatically reconstructs the affected portions
information about an application that is independent of how©f the display, enforces the relevant sequencing constraints,
the objects are displayed, and how the operations are in@nd performs the relevant side-effects.

voked. HUMANOID provides three kinds of objects to specify _ . :
application designs: The constraints between command inputs and global inputs

can be used to implement selection-based interfaces, and
Commands. A command is an object that describes all the Other interface features where commands get their inputs
information necessary to invoke an operation. The descrip-Tom & global variable. For example, these constraints are
tion of a command includes the call-back procedure that im-used to support the factoring transformations in UIDE [3].

lements the command, a set of pre-conditions, and ¢ . . N .
gescription of each of the inputs to th(laocommand. “Version 9 of the Object Browser in Figure 1. illustrates the

use of data-flow constraints. Thbject-to-browse input of
thebrowse command is constrained to get its value from the

application global input callecurrent-selection. Whenever with the close, browse andrevert commands. The default
a value is selected in thdject-contents part of the display, template generates the panel of command buttons. Menu
the value is stored in theirrent-selection global input. Hb- bars could have been generated by definingridrau-bar-
MANOID propagates the value to thigiect-to-browse input, commands command group, and the input panels are gener-
and enforces a sequencing constraint by disabling theated from thepanel-inputs input group.
browse button if the selected value is not an object.
The templates mechanism supports the following kinds of
Command and input groups. Command and input groups al- presentation refinements:
low designers to add more structure to the definition of an
application by grouping command and inputs into namedAdding parts to existing templates. Designers can start by
objects. Command and input groups can be installed in apspecifying what data should be displayed in a part, and later
plication, command and input objects. The groups do noton refine the part to specify how the data should be dis-
specify any interface feature by themselves, but designerplayed. For example, Version 1 of the Object Browser
can refine them to specify presentation, sequencing anshown in Figure 1. was created by adding a part cabied
side-effect interface features. ject-contents to the default application template. Designers
can initially provide some hints about the size and propor-
The application design represents information about an aptions of the presentations of parts so that whem4hoiD
plication program’s semantics in a central place. This infor- prototypes the interface it can generate presentations that
mation is shared by the other four dimensions of interfaceapproximate the presentations the designers have in mind.
design, and separating it out allows the other dimensions tc
be varied more independently. Also, since the applicationAdding inclusion conditions. Designers can add an inclusion
design describes the “objects of discourse” for the interfacecondition to the definition of a part so that it is only included
independently of other design dimensions, it represents &n the display when the conditions are met. The conditionals
start towards explicitly capturing issues that designers arecan be constraint expressions that depend on application
concerned with in the early, conceptual phases of design. data. The constraints are automatically maintained so that
when the application information changesMANOID auto-
The following sections discuss the presentation, manipula-matically updates the display to exclude or include the part
tion, sequencing and action side-effect dimensions of inter-as appropriate.
face design refinements, which can be applied to applicatior
designs to yield interfaces with particular features. Adding template applicability conditions. Designers can add
applicability conditions to templates to define the situations
when the use of a template is appropriate. The applicability
conditions can also be constraints. When the data they de-
OEpend on changes,U#aNoID will automatically re-search
the template hierarchy to find a new template to display the
corresponding portion of the display.

DESIGN DIMENSION #2: PRESENTATION

The presentation component ofyifaNOID is designed to
allow designers to specify presentations in stages. The g
is to let designers specify just the amount of information
that they can or want at any given time during the design
process, and to let them refine the presentation design itere
tively as they understand the design bettemkNoOID can
prototype the interface given any amount of information.

Refining parameters. Designers can refine the parameters of
a template to override default valuesg, change the font
of a class of labels). It is possible to put a constraint in the

The presentation component of the user interface for a pro‘parameters SO thé!t th_e values_ will be computed at run-time
based on application information. When the application in-

gram is defined vizemplateg21]. A template is an object formation changes, BMANOID automatically regenerates
that specifies a method for constructing the presentation of ¢ nanges, . y reg
the appropriate parts of the display.

data structure. Designers construct presentations by refining

the templates in BMANOID'S library. Specifying layout. Designers can specify the layout for the

parts of a display separately from the specification of the
parts. Designers can refine the layout once the design of the
presentation of the parts is complete, in order to achieve a
pleasing layout.

HumANOID’s template library contains default templates to

display application objects, commands and input objects, as
well as templates to display lists of objects in columns, rows
or tables, to display graphs and trees, and several flavors ¢

scrolling windows. Specifying a replacement hierarchy. A replacement hierar-

chy is a decision tree for selecting the most appropriate tem-
plates for displaying an object. Each node in the tree is a
template. Child templates construct more specific presenta-
tions than their parent, and are chosen only if their applica-

The default template for application objects can generate
menu bars of pull down menus, panels of command buttons
and panels of global inputs using radio buttons, check box-

es, and other traditional interaction techniques. This tem_bility condition is satisfied in the current context. When

plate illustrates the use of command and input groups tCHUMANOID is directed to display an object with a template
specify presentations. For example, to create the applicatior. play 4 plate,

window in Version 8 of the Object Browser example in Fig- it will search the replacement hierarchy below that template

; - i to find the lowest template in the hierarchy whose applica-
ure 1., the designer defined a group cajiael-commands, bility condition is satisfied. By calling tlimANOID with a

template close to the top of a replacement hierarchy, designVersion 4 of the Object Browser shown in Figure 1. defines
ers delegate to bivANOID the selection of presentation a mouse-click behavior to select slot-value pairs. stéue-
method. By specifying a template closer to the bottom of thewhere slot is the list of all the elements of theject-con-
hierarchy, designers exercise more control. tents part (making all the slot-value pairs selectable), and
the action sets thaurrent-selection global input to the value
For example, HVANOID has a template replacement hierar- presented in the slot-value pair that the user buttons. The ac-
chy to choose between different presentations of input ob-tion does not contain code to highlight therent-selection,
jects, such as check buttons, radio buttons or type-in buffersor to enable or disable any commands that might use the
The applicability conditions are based on attributes of thecurrent-selection. These features are specified in the presen-
input object such as whether there is a set of alternativetation and sequencing aspects of the design. When com-
from which the value is to be chosen, the size of the alternamands are added later on in Version 8, there is no need to
tives, the number of values that the input accepts, etc. Decome back to this behavior and edit the actions in order to
signers can build similar replacement hierarchies for theenable or disable the relevant commands.
templates for their application data structures.
The behaviors are implemented on top of the Garnet Inter-
HumaNoID’s template mechanism for constructing presen- actors package [11]. The library of behaviors includes be-
tations has the following benefits: haviors for type-in, dragging and moving, button and menu

- Designers can refine the presentation step by step alW‘,jlyselecti.on, angle specification, two point speg:ific_ation. Thgse
seeing the effects of the current design, even wh;an it icbehawors cover most of the gestures used in direct manipu-
only partially specified ' “lation, mouse-based interfaces [11].

» The part inclusion conditions, and template applicability HumANOID’S model of manipulation has several benefits:
conditions provide a natural way to create conditional-
ized displays whose characteristics depend on the run’
time values of the data to be presented.

Separates the specification what the behaviors do,
wherethey apply, anadvhenthey are applicable. The sep-

]) aration of what and where derives from the Garnet model
* The template replacement hierarchy provides a conve- of interactors [11]. The separation of when derives from

nient way to organize and reuse presentation methods. HUMANOID's model of sequencing (see next section).
* HumaNoID automatically reconstructs displays when the . \when designers refine the presentation of the objects, it is
data being presented changes. not necessary to modify the definition of the manipula-
tions. The manipulations will continue to work with the
DESIGN DIMENSION #3: MANIPULATION refined presentations of the objects.

Manipulation specification involves spe_cifying the input_ - Behaviors are easy to specify because their actions are
gestures that users can perform to manipulate presented ir simple: they either set the value of an input, or change the
formation, along with the actions that should be invoked status of an input, a command or a group. Interface de-

when the appropriate gesture is detected. signers need not program in order to specify the actions.

Manipulations are specified by adding to templates one or

morebehaviorspecifications. A behavior specification con- PESIGN DIMENSION #4: SEQUENCING _ _
sists of a specification of the gesture that invokes the behavSequencing design involves specifying the order in which
ior (e.g, mouse click, mouse drag), a specification of the _dlfferentd|splays appear on the_ screen, and the set of behav-
parts of the presentation where the gesture appiigs (10rS that are enabled at any given moment. UmkNOID
over the widget generated by a template, or over all the partdesigners do not specify sequencing by directly adding in-
of a template), a specification of the application data onStructions at appropriate places to enable or disable particu-
which the gesture operates, and the actions to be taken at ifar behaviors. Instead, UmANOID computes the set of
teresting points during the gestueeg(, for a dragging ges- enabled behaviors at any time based on the data flow con-

ture the interesting points are “mouse press”, “mouse move’Straints in the application design, and by applying a fixed set
and “mouse release”). of policies to a model of the states of individuals or groups

of commands and inputs. The sequencing of the displays is
The actions of behaviors can contain arbitrary Lisp code.computed in a similar way, and is explained in the next sec-
However, typical actions are very simple. They only set thetion on action side-effects.
value of an input object, or change the status of an input, ¢ _
command, or a group (see the following section on sequencwe discuss the model of command states below. The mod_el
ing for an explanation of input, command and group status).0f states for inputs and groups of commands and inputs is
Designers do not need to include code to, for instance, actiSimilar, and is not discussed in this paper.
vate or deactivate other behaviors, highlight or dim presen-
tations, etc. These are subsidiary actions to setting the valu
of an input or changing a status, and so are specified in th:
sequencing and action side-effect dimensions.

The state of a command is defined by the following slots:

Idle/active/running. Commands arille by default. Thedle

state specifies that the command is not being interacted
with. Theactive state specifies that the command is being

interacted with in order to obtain the inputs needed before it

can run. Theunning state specifies that the call-back of the command sequencing (similar attributes are provided for in-
command is executing. WANOID automatically returns put sequencing):

the command to its default state once the call-back returns. | Only-One-Active. This attribute specifies that only one

command in a group can leetive at any given time.
When a new command in the group is madgve, the
previouslyactive command is madigle. When no com-
mand isactive, a pre-designated command in the group is
madeactive, if one is defined.

Only-One-Enabled. This attribute specifies that when a
command in a group is madetive or running, the other
commands in the group atd&abled.

HumaNoID’s policies for determining enabled behaviors
from these states are as follows. When a commaiitkjs
only the behaviors that setdttive are enabled. When the
command isactive, the behaviors that set inputs for the
command are enabled (subject to one exception, as ex
plained below), and the behaviors that set the command te
idle are also enabled. The behaviors that set the state-to
ning are enabled only if the command is ready to run, as de:
fined by theready/not-ready slot. When the state ianning,

no behaviors are enabled. These two command sequencing attributes can be used to
implement familiar interface feature@nly-One-Active can

be used to specify the sequencing of the palette of drawing
madeactive, and the behaviors that set the commargtto = commands in a MacDraw-like drawing program, where the
tive or running are disabled. Thdisabled/enabled slot can user selects a tool to draw. Only one tool is selected at any
be defined with a constraint so that a command disables ogiven time, and only the behaviors for the selected tool are
enables itself by testing the state and value of any commanenabled over the drawing areanly-One-Enabled can be

or input in the application. By default, commands where oneused to disable the menu bar of pull down menus while one
or more inputs are tied to a global input are automatically of the commands is either executing, or prompting for in-
disabled when the value of the global input does not satisfy puts in a dialogue box. Note that in both examples the at-
the type, the minimum and maximum restrictions and the tributes are defined for command groups that the designer
predicate defined for the command input. Commands whosewould define to control the presentation.

preconditions are not satisfied digabled by default.

Disabled/enabled. When a command ifisabled it cannot be

To incorporate sequencing constraints into a design, the de-
Ready/not-ready. Indicates whether a command is ready to signer simply lists the relevant attribute in theibutes slot
run,i.e., whether it isactive, all its inputs are correct, and no of individuals or groups of command and inputs. If an at-
preconditions are violated. Behaviors that change the comtribute that packages the desired sequencing constraints
mand torunning are enabled only if the commandéady. does not exist, the designer first has to define it, by defining

the appropriate methods. This mechanism makes simple,
Thedisabled/enabled and theready/not-ready act as guards: commonly used features easy for designers to use, but pro-
they specify the conditions under which tHie/active/run- vides enough generality so that complex sequencing con-
ning slot can change value. Designers control sequencing instraints can also be implemented.
directly by defining additional constraints on the guard slots,
and by triggering actions that change the state of other comThe browse command in Version 9 of the Object Browser
mands and inputs when the value of any of the three slotshown in Figure 1. illustrates the sequencing model.obhe
changes. HMANOID propagates the effects of the state ject-to-browse input of thebrowse command is defined to be
changes by enabling and disabling behaviors as explaineof type Object. The default definition of thdisabled/en-
above. abled slot specifies that if thebject-to-browse is incorrect,

the command idisabled, causing the behavior that activates
The actions triggered on state changes are specified vithe command to be disabled so that clicking on the Browse
methods of commands (similarly, the sequencing constraintsputton has no effect. So, when the user selects an object in
of inputs and groups are specified via methods of input ancthe object-contents part of the display, the button is enabled,
group objects). Whenever a state slot of a command changebut if the user selects a non-object such as the constant
from A to B, the method a-to-b is called on the command XOR, the button is disabled.
and all command groups to which the command belongs.
For example, when a command changes faotive to run-
ning, the methodhctive-to-running is called; when a com-
mand is no longer ready to run, the metheaty-to-not-
ready is called. The method can then change the status o
other commands in the group, or call arbitrary procedures.

HumANOID's sequencing model has the following benefits:

» Provides a much less cumbersome means of specifying
sequencing than event-based systems [5], or state transi-
tion networks [7]. Rather than specifying sequencing at
the level of gestures/behaviors, or a potentially large

The state transition methods provide a general mechanisn NuUMber of states, banNoID derives the sequencing con-

for designers to control the states of individuals and groups
of commands and inputs, and thus a general way to contra
sequencing. In additioni1ANOID provides a library of ob-
jects calledattributes which define packages of methods
that implement commonly-used sequencing features. Fol
example, IMANOID provides the following attributes for

straints on behaviors by applying a fixed set of policies to
simple state model of commands, inputs and groups.

Provides a framework (states and methods) for designers
to express complex sequencing constraints, and provides
abstractions (attributes) that make it easy to express com-
monly used sequencing constraints.

» Provides good support for design exploration becauseinput and group state transitions, rather then specifying
much sequencing behavior falls out from the data flow them in the actions of behaviors:

constraints expressed in the application design, with no,

extra effort needed from the designer. Additional se-
guencing constraints are expressed as annotations to ind
viduals and groups of commands and inputs that are ofter
used for presentation purposes too.

DESIGN DIMENSION #5: ACTION SIDE EFFECTS
Action side-effects are actions performed automatically as
side effects of the actions triggered by user inputs. For ex-

ample, a newly created object can become automatically se*

lected, closing a dialogue box can reset all the options tc
their default, typing return in a type-in field can automatical-

Makes behaviors easier to reuse. Since the side-effects of
behaviors are separate from the behaviors, the same be-
havior can be used in different contexts that require dif-
ferent side-effects.

Increases modularity. Side-effects are represented cen-
trally in the command, input or group objects, rather than

being spread out in the possible multiple behaviors that
act on these objects.

Provides good support for design exploration. The ma-
nipulations and side-effect dimensions can be explored
independently because the side-effects depend on the ef-

fects of the action of a behavior rather than on the behav-
ior itself.

ly move the cursor to the “next” type-in field.

Action side-effects are expressed using the command, inpu
and group state transition methods described in the previouge| ATED WORK

section. Whenever a behavior sets the value of an input, Othe most sophisticated of the UIMSs centered around the

changes the state of a command or an input, methods indipgtion of deriving the user interface from a high-level speci-
cating the change are called. fication of the semantics of a program are MIKE [14],

Designers can specify side-effects by writing methods forUOfA [18] and UIDE [3]. MIKE and UofA* are able to

X o . . - generate a default interface from a minimal application de-
the appropriate state transitions, or can define attributes S'm.scription, and provide a few parameters that a designer can

Izla?(; toethﬁose(igegcmg at't_rr:bu;es.ollzqoreei((;':m;ple,etr? cai?g ?Od'set to control the resulting interface. MIKE allows designers
des%uners ():(an wri?epgar;elthordsfgr td:e to-acti msta?e tsran—c 'OTto define the interaction techniques for prompting for inputs,
sitiog that call obect with the g;ﬁ%%;nd and the structure of the menus, and actions to be executed when
| bont ls;lreszns-oitjsec Aramoters. Since shlca;l_/vin presentations are selected. However, MIKE has a built-in
giglljg_ ucg(_beogg: ?s . commopn casaHNomn Drovides a 9 prefix dialogue structure that cannot be changed. UofA*
comr%and attribute calleghow-Dial & 5 P supports prefix, post-fix and no-fix dialogue structures, sup-
ow-Lialogue-box. ports current selected objects, and open-ended, and close-

HumANOID provides the following attributes for commonly ended command invocation. Both systems allow designers

used side-effects on inputs. A similar library for command to refine the layout.
and group side-effects is also provided, but it is not dis-

AL HumMANOID’s general model of commands allows designers
cussed in this paper.

to exert much finer control over dialogue sequencing. In ad-
dition, HUMANOID provides a library of command groups
that allows designers to very easily specify the dialogue
structures that MIKE and UofA* support.UdANOID also
provides finer control over presentation design, and supports
the construction of the “main window” of application pro-
grams, which MIKE and UofA* do not support. UIDE’s ap-
Beep-When-Incorrect. When an input is set to an incorrect Plication description is much richer than those used in
value, the interface beeps. MIKE and UofA*. Such richer descriptions can be used to
support more sophisticated design tools [3] (help genera-

Prompt-Ring. This attribute is defined for input groups. tion, consistency and completeness checking, automatic dia-

When an input in the group is set, the behaviors for the nexlogue box and menu design, transformations). Even though
input in the group are automatically activated. we have not constructed such sophisticated design tools, it

should be possible to construct them, since our application
Version 10 of the Object Browser shown in Figure 1. is an description provides the necessary knowledge.
example of side-effect specification. It uses twvert- o S
When-Incorrect and the Message-When-Incorrect action HumANoID's application description is similar to UIDE's.
side-effect attributes on thudject global input, where users HUMANOID improves on UIDE by providing a richer model
can enter the object to be viewed. If the user types in an inof command states, enabling designers to exert finer control
correct object, the user will be notified with an alert box, over dialogue sequencing. For examplemaNoID’s action

and the value of the object is reverted to the previous (cor-Side-effect mechanism subsumes UIDE’s post-condition
rect) value. one, because it allows commands to assert side-effects on

any of the state transitions of a command, not just on the
HumaNoID's model of side-effects has several benefits, successful execution of a command. In additiamvkNOID
which derive mostly from linking side-effects to command, provides more sophisticated facilities for refining the pre-

Revert-When-Incorrect. When an input is set to an incorrect
value, the previously correct value is automatically restored.

Message-When-Incorrect. When an input is set to an incor-
rect value, an alert box is posted.

sentation and manipulation dimensions of the interface. their claims for ease of use. We view these systems as po-
tentially complementary to knowledge-based systems like
The command and input groups attributes provide a com-HumaANOID. For instance, one could imagine a Lapidary-
pact mechanism to specify dialogue sequencing similar talike interface to specify some of the design changes illus-
Statecharts [23], that avoids the explosion of states that octrated in our Object Browser example. To specify that the
cur in state transition networks. In fact, command and inputsiot-value pairs should be selectable, and highlighted in re-
group sequencing attributes can be used to emulate all thverse video, the designer could draw the black, xored, rect-
dialogue structures supported in the UofA* UIMS [18], plus angle, and the Lapidary-like tool would make the
provides the framework to define others. appropriate generalizations. It is an open research issue,
however, whether demonstrational tools can be made so-

Interface builders such as the Next Interface Builder [13], phisticated enough to design Comp|ex interfaces.

and Openinterface [12] are a different class of tools to aid in

the design of interfaces. These tools allow designers to dravOur work only partly addresses issues of task analysis and
interfaces consisting of check boxes, radio buttons, labelsuser centered designuMANOID facilitates creating designs
type-in areas and other such interface building blocks.that act upon realizations obtained through these design ap-
These tools make it very easy to construct the particular in-proaches, but does not address these methods directly.

terfaces they support, but they are poor for design explora:

tion. Designers have to commit to particular presentation, ~oycLUSIONS

layout and interaction techniques early in the design. Mak-
ing changes to the dialogue structure is difficult. For exam-
ple, changing an input prompted in a dialogue box to a
global input is difficult because all dialogue boxes that
prompt for that input have to be manually edited. Also,
making global policy changes such as changing the interac

HUMANOID is an interface design system that lets designers

express abstract conceptualizations of an interface design in
executable form, allowing designers to experiment with sce-

narios and dialogues before the application model is com-

pletely concretized. The novel features afMANOID are:

tion technique to present choices requires manually editinge Supports top-down design. Designers can refine interfac-

a large number of displays. Achieving the same results tha
HuMANOID enables by using an interface builders, if it can
be done at all, requires a level of programming sophistica-

tion beyond the reach of the designers for whom these tools,

are intended.

Systems such as ITS [1] andutaNoID do not have this
problem because to change a global policy it is enough tc
change a rule in ITS, or a template ioNtANOID. HUMAN-

oD and ITS provide similar facilities for constructing pre-

sentations, but ITS lacks the facilities to do interface design®

along the other dimensions thattaNOID supports.

Interface builders are currently easier to use than applicatior
description-centered systems like uMhNOID, MIKE,
UofA* and UIDE, for constructing simple displays like dia-
logue boxes. However, this shortcoming can be overcome
APT [9], SAGE [16] and DON [8] are examples of systems

that automatically generate high quality displays from the,

design knowledge base. APT and SAGE generate high qual
ity charts, and DON, which is based in UIDE, is an initial at-
tempt to generate high quality dialogue boxes.

HumaNoID currently lacks an interactive interface to con-
struct the application description, which MIKE and UIDE

have, and an interactive layout editor, which MIKE and *®

UofA* have. We are currently working to remedy this short-

coming. Perhaps the ultimate interactive interface for design
should also build on demonstrational systems like Lapidary
[10] and Druid [19]. These systems allow the designer to
specify the presentation and the behavior of an interface by
example. Designers draw the interface as the user will see it
and then demonstrate the actions that users can perform, t

graphically manipulating the presentation. These systemss

generalize the examples, and generate code that implemen
the general case. The attractiveness of these systems is

es step by step. At any step designers can astakbiD
to generate the interface in order to try it out, or can refine
it further.

Allows designers to delay committing to specific inter-
face features until they want to. Designers do not have to
fully specify any aspect of the design in order to proto-
type it or to refine another aspect of it. For example, de-
signers can specify manipulations for a presentation that
has not been fully specified.

Allows designers to explore the design space in any or-
der. HUMANOID supports both breadth-first and depth-
first design strategies, or any combination in between. In
the breadth-first strategy, designers can specify the com-
plete interface at a high level before refining any aspect
of it. In the depth-first strategy designers can fully specify
one aspect of the design (presentation, manipulation, se-
guencing) before working on a different aspect.

Supports the specification of all aspects of an interface.
HUMANOID supports the iterative specification of the ap-
plication functionality, its presentation, input behavior
and sequencing. l1ANOID supports the construction of
the interface for the “main windows” of programs, not
just the menus and commands to control the program.

Provides an extensive library of presentation methods,
and defaults for choosing presentation methods based on
the types of objects to be displayed. For example, H
MANOID can construct dialogue boxes automatically,
choosing check boxes, radio buttons, etc. automatically
based on the types of the inputs to be requested. Design-
ers can provide various hints that steer the dialogue box
constructions in several directions.

Defines a novel partitioning of interface design spaces
into relatively independent dimensions, allowing design-
ers to refine designs along these dimensions. The exam-

ple in Figure 1. illustrates how designers can refine the9 J. Mackinlay. Automating the Design of Graphical Pre-

presentation, application description, interactive manipu-
lation and sequencing aspects of the interface in a rathe
independent manner.

We believe that HMANOID substantially enhances the itera-
tive design process required for constructing good user in-
terfaces [2, 22] by allowing designs to be put into action
faster and earlier than current design tools allow, and by al-
lowing designers to refine designs along multiple, relatively
independent dimensions.

ACKNOWLEDGEMENTS

We wish to thank Peter Aberg, David Benjamin, and Brian
Harp for helpful comments on earlier drafts of this paper.
This work was supported by DLA and DARPA under con-
tracts #MDA972-90-C-0060 and #N00014-91-J-1623. Con- 13
tents represent the opinions of the authors, and do not reflec
official positions of DLA, DARPA, or any other government
agency.

REFERENCES
1 W. Bennett, S. Boies, J. Gould, S. Greene and C.

Wiecha. Transformations on a Dialog Tree: Rule-Based
Mapping of Content to Style. IRroceedings of the
ACM SIGGRAPH Symposium on User Interface
Softwareand Technology, pp. 67-75, November 1989.

W. Buxton and R. Sniderman. Iteration in the Design of
the Human-Computer Interface. Rroceedings of the
13th Annual Meeting of the Human Factors Association
of Canada 1980, pp. 72-80.

J. D. Foley, W. C. Kim, S. Kovacevic and K. Murray.
UIDE: An Intelligent User Interface Design Environ-
ment. In J. S. Sullivan and S. W. Tyler, editdrgelli-
gent User Interfaceqp. 339-384. ACM Press, 1991.

1
D. Giuse. Efficient Frame Systems. In J. P. Martins and

E. M. Morgado, editord,.ecture Notes in Artificial In-
telligence Springer Verlag, Sep, 1989.

M. Green. Report on dialogue specification tools. In
User Interface Management Systeis E. Pfaff, edi-
tor, Spring-Verlag, 1983, pp. 9-20.

P. J. Hayes, P. Szekely and R. Lerner. Design AIterna-2

tives for User Interface Management Systems Based or
Experience with COUSIN. InrBceedings SIGCHI'85
April 1989, pp. 169-175.

O _ .2
R. K. Jacob. A specification language for direct manip-

ulation interfacesACM Transactions on Graphics 4.
(October 1986), 283-317.

2
W. C. Kim and J. Foley. DON: User Interface Presenta-

tion Design Assistant. IRroceedings UIST'900cto-
ber 1990, pp. 10-20.

sentations of Relational InformatiodCM Transac-
tions on Graphicspp. 110-141, April 1986.

B. Myers, B. Vander Zanden and R. Dannenberg. Creat-
ing Graphical Interactive Application Objects by Dem-
onstration. InProceedings of the ACM SIGGRAPH
Symposium on User Interface Softwared Technolo-

ay, pp- 95-104, November 1989.

B. A. Myers. A New Model for Handling InpuACM
Transactions on Information Syste®s3. (July 1990),
pp. 289-320.

2 Neuron Data, Inc. 19910pen Interface Toolkit156

University Ave. Palo Alto, CA 94301.
NeXT, Inc. 1990Interface BuilderPalo Alto, CA.

D. Olsen. MIKE: The Menu Interaction Kontrol Envi-
ronment ACM Transactions on Graphicgol 17, no 3,
pp. 43-50, 1986.

D. Olsen. A Programming Language Basis for User In-
terface Management. Inrdteedings SIGCHI’89April
1989, pp. 171-176.

6 S. Roth and J. Mattis. Data Characterization for Intelli-

gent Graphics Presentation.
CHI'90. April 1990, pp. 193-200.

IRroceedings SIG-

7 K. J. Schmucker. MacApp: An application framework.

In R. M. Baecker, W. A. Buxton, editorReadings in
Human-Computer Interactionpp. 591-594. Morgan
Kaufmann Publishers, Inc. 1987.

8 G. Singh and M. Green. A High-level User Interface

Management System. Indeeedings SIGCHI'89April
1989, pp. 133-138.

9 G. Singh, C. H. Kok and T. Y. Ngan. Druid: A System

for Demonstrational Rapid User Interface Develop-
ment. InProceedings UIST'900ctober 1990, pp. 167-
177.

0 P. Szekely. Standardizing the interface between applica-

tions and UIMS’s. IfProceedings UIST'8November
1989, pp. 34-42.

1 P. Szekely. Template-based mapping of application data

to interactive displays. IRroceedings UIST'900cto-
ber 1990, pp. 1-9.

2 W. Swartout and R. Balzer. On the Inevitable Intertwin-

ing of Specification and Implementation. CACM 25, 7
(July 1982), pp. 438-440.

3 P. Wellner. Statemaster: A UIMS Based on Statecharts

for Prototyping and Target Implementation. imnéeed-
ings SIGCHI'89 April 1989, pp. 177-182.

