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ABSTRACT
HUMANOID  is a user interface design tool that lets designers
express abstract conceptualizations of an interface in an ex-
ecutable form, allowing designers to experiment with sce-
narios and dialogues even before the application model is
completely worked out. Three properties of the HUMANOID
approach allow it to do so: a modularization of design issues
into independent dimensions, support for multiple levels of
specificity in mapping application models to user interface
constructs, and mechanisms for constructing executable de-
fault user interface implementations from whatever level of
specificity has been provided by the designer.

KEYWORDS: Design Processes, Development Tools and
Methods, User Interface Management Systems, Rapid Pro-
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INTRODUCTION
Interface design really begins much earlier than current
tools recognize. Long before a designer is ready to experi-
ment with presentation issues like the layout of widgets cho-
sen from a widget library, designers have typically made
(often implicitly and unconsciously) strong design commit-
ments about conceptual issues such as the choice of applica-
tion data structures and capabilities that will be presented, as
well as the general nature of interaction techniques which
will be used to present them. By and large, the tools that de-
signers use at this point are whiteboards or pad-and-pencil
because the conceptualizations are more abstract than inter-
face drawing or mock-up tools support. For example, a de-
signer may decide that a file directory structure needs to be
presented in a window, without yet knowing whether to use
indented text or a grapher. The fact that those early concep-
tualizations are not supported on-line inhibits exploration of
design alternatives. It is too difficult to walk through scenar-
ios and imagine dialogues when sketching by hand. There is
too much work and too much commitment to particular de-
tails when using a display layout package.

HUMANOID ’s contribution to interface design is that it lets
designers express abstract conceptualizations in an execut-
able form, allowing designers to experiment with scenarios
and dialogues even before the application model is com-
pletely concretized. For example, designers can execute an
interface after specifying only data types of command in-
puts, without having said anything about sequencing or pre-
sentation. The consequence is that designers can get an
executable version of their design quickly, experiment with
it in action, and then repeat the process after adding only
whatever details are necessary to extend it along the particu-
lar dimension currently of interest to them.

Figure 1. illustrates the nature of this refinement process.
The figure shows ten snapshots from the evolution of the de-
sign for a program to view the slots of an object, starting
with an initially empty design and ending with a complete,
working application. Each snapshot shows the interface that
HUMANOID  generates after one or two refinements to the de-
sign. The interfaces generated at each step are not just
mock-ups of the presentation, but fully working interfaces,
to the extent that they have been defined thus far. For exam-
ple in Version 4 of the evolving design in Figure 1. the de-
signer is able to explore dialogues involving selectable
objects, despite not yet having defined how to display those
objects. We believe that the design process is substantially
enhanced by the opportunity this approach affords to put de-
signs into action faster and earlier, and to test them before
all the abstractions are concretized.

HUMANOID  belongs to the family of interface design tools
and UIMSs centered around the notion of deriving the user
interface from a high-level specification of the semantics of
an application program [3, 6, 14, 15, 17, 18 and 20]. The ap-
plication semantics are usually specified as a set of object
types and procedure headers. The interface is specified by
elaborating the semantic description by annotating it with
information used by an interface generating component. We
recognize five dimensions along which interface designs
can be varied and elaborated. We summarize them below,
and expand on each dimension on the following sections.

Application design. The application design specifies the op-
erations and objects that an application program provides.
Variations involve changing the parameters of operations,
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FIGURE 1. The evolution of the design of a program to browse objects.

Version 1 shows the inter-
face generated for a design
that states that the object
browser is an application ob-
ject with a global variable to
hold the object being
browsed. The presentation
shows the global variable,
and below it the contents of
the object. HUMANOID  gen-
erates a default interface,
choosing a type-in interac-
tion technique for the global
variable. The object-con-
tents are shown in a sche-
matic way (in a dotted
rectangle), since at this point
the designer only stated that
the display should contain a
part to display the contents,
but did not represent any-
thing else.

Version 2 refines the presen-
tation of the object contents
stating that the contents con-
sist of a list of slot value
pairs. Since at this point in
the design the designer has
not specified how to com-
pute the set of slot value

pairs for the object, HUMAN-
OID shows the list in a sche-
matic way with two slot-
value parts in dotted rectan-
gles separated with “...”.

Version 2.1 illustrates that
the design process can in-
volve exploration of alterna-
tives at the same level, not
just refinements. Version
2.1 was an alternative pre-
sentation ofobject-contents
as a graph rather than a list.

Version 3 refines the presen-
tation to include scrollbars.

Version 4 adds a new global
variable to the application
design: current-selection. It
adds a manipulation behav-
ior to the design: making the
slot value pairs selectable
and stored in current-selec-
tion. Note that the behavior
can be immediately exer-
cised even though the pre-
sentation design is
unfinished.

Version 5 refines the presen-
tation by specifying an ac-

cess procedure for the slots
in the object to be presented.
In addition, it refines the
presentation method to show
the names of the slots. The
definition of the selection
manipulation was not
changed, and it still works.

Version 6 further refines the
presentation method to show
the values of the slots, and
refines the manipulation to
only select the value part of
the slots value pairs.

Version 7 refines the appli-
cation description by adding
a parser and an unparser for
the global variable for the
object being browsed. The
user can now type the names
of new objects. The designer
typed in the identifier of a
rectangle object and the dis-
play is updated automatical-
ly. The designer did not have
to write any code for keep-
ing the display up to date.

Version 8 adds three com-
mands to the application de-
scription. The presentation

was not refined. HUMANOID
by default placed the com-
mand buttons at the top of
the display.

Version 9 refines the appli-
cation description for the
Browse command, con-
straining its only input to be
an object, and linking it to
the current-selection global
variable in the application.
The effect on the interface is
to constrain the sequencing
of the dialogue. If the cur-
rent selection is not an ob-
ject, the Browse button is
dimmed, and the user cannot
invoke the browse com-
mand. In contrast, in version
8, the Browse button was se-
lectable, even though the
current selection was not a
browseable object.

Version 10 adds what we
call an action side-effect.
When the object global vari-
able receives an incorrect in-
put, an alert box is displayed
and the value is reverted to
the previous value.

Presentation: Application description: Application description: Sequencing: Action side-effects:
Contents = slot/value pairs, Parser and unparser for Close, Browse and Revert Constrain input of Browse Alert box for incorrect
Only values are selectable object commands to be an object objects

Initial design: Presentation: Presentation: Manipulation: Presentation:
Display = object + contents Contents is a list Add scrollbars Contents selectable Contents = slots of object
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deleting or adding operations, adding attributes to object
types, etc.

Application design is the major direction of refinement in
interface design. Our model of design views designers’ ex-
ploration of design alternatives as a process of incremental-
ly adding information to the application design, generating
alternatives along the other four dimensions of variation as
needed at each step.

Presentation. The presentation defines the visual appearance
of the interface. Variations involve: data to present, major
parts of a display, data to be displayed in each part, presen-
tation methods for each part (recursive step), layout of the
parts, and conditions for including parts in displays.

Manipulation. The manipulation specification defines the
gestures that can be applied to the objects presented, and the
effects of those gestures on the state of the application and
the interface.

Sequencing. The sequencing defines the order in which ma-
nipulations are enabled, or equivalently, the set of manipula-
tions enabled at any given moment. Many sequencing
constraints follow from the data flow constraints specified in
the application description (e.g., a command cannot be in-
voked unless all its inputs are correct). Additional con-
straints can be imposed during dialogue design.

Action side effects. Action side-effects refer to actions that
an interface performs automatically as side effects of the ac-
tion of a manipulation. For example, a newly created object
can become automatically selected, closing a dialogue box
can reset all the options to their default, typing return in a
type-in field can automatically move the cursor to the “next”
type-in field. Side-effects can add, set, delete values of com-
mand inputs and global variables, and can change the state
of commands and inputs, which trigger changes in presenta-
tion and sequencing.

The sections following discuss each of these dimensions in
detail, together with the benefits for interface design explo-
ration that the variations provide. Then we discuss related
work, and close with conclusions.

DESIGN DIMENSION #1: APPLICATION DESIGN
An application design consists of a definition of commands,
object types, global variables and the data flow constraints
between these entities. The application design specifies the
information about an application that is independent of how
the objects are displayed, and how the operations are in-
voked. HUMANOID  provides three kinds of objects to specify
application designs:

Commands. A command is an object that describes all the
information necessary to invoke an operation. The descrip-
tion of a command includes the call-back procedure that im-
plements the command, a set of pre-conditions, and a
description of each of the inputs to the command.

Inputs. An input is an object that describes all the informa-
tion about a parameter of an operation needed to ensure that
the interface will invoke the call-back procedure with cor-
rect arguments. The description of an input includes thetype
of the input value, apredicate, which is a procedure that
does semantic validation on input values, theminimum and
maximum number of values that the input can take,alterna-
tives, which specify a set of values from which the input
values must be chosen, and aparser andunparser for con-
verting strings to input values and viceversa.

Application Objects. An application object groups together a
set of commands and objects. Anapplication program con-
sists of one or more application objects. For example, a mail
program could consist of an application object to manipu-
late folders and an application object to edit messages. At
run time, a program can make multiple instances of its ap-
plication objects. For instance, a mail program would have
an application object instance to manipulate folders, and
perhaps multiple instances of the application object for edit-
ing messages, so that the user would be able to compose
multiple messages in parallel.

Input objects can also be defined for application objects. In
this case they are calledglobal inputs, because they are sim-
ilar to global variables in a program. The value they hold
can be accessed from any command in the application.

Application designs can be refined in three ways: by editing
the command, input and application objects, by defining
data flow constraints, and by defining command and input
groups.

Command, input and application modifications. Commands,
inputs and applications are organized in an inheritance hier-
archy. Designers can define new versions of these objects,
inheriting properties from existing ones. Designers can also
add, delete and modify any of the properties of the com-
mand, input and application objects described above.

Data flow constraints. The data flow constraints specify con-
straints between the properties of inputs, command and ap-
plication objects. One can, for instance, constrain the type,
value, alternatives or other property of an input to be a func-
tion of any property of a command or an input. The con-
straints are enforced automatically by the underlying
representation system [4]. Whenever the value of any of the
slots changes, the constrained values are recomputed, and
HUMANOID  automatically reconstructs the affected portions
of the display, enforces the relevant sequencing constraints,
and performs the relevant side-effects.

The constraints between command inputs and global inputs
can be used to implement selection-based interfaces, and
other interface features where commands get their inputs
from a global variable. For example, these constraints are
used to support the factoring transformations in UIDE [3].

Version 9 of the Object Browser in Figure 1. illustrates the
use of data-flow constraints. Theobject-to-browse input of
thebrowse command is constrained to get its value from the
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application global input calledcurrent-selection. Whenever
a value is selected in theobject-contents part of the display,
the value is stored in thecurrent-selection global input. HU-
MANOID  propagates the value to theobject-to-browse input,
and enforces a sequencing constraint by disabling the
browse button if the selected value is not an object.

Command and input groups. Command and input groups al-
low designers to add more structure to the definition of an
application by grouping command and inputs into named
objects. Command and input groups can be installed in ap-
plication, command and input objects. The groups do not
specify any interface feature by themselves, but designers
can refine them to specify presentation, sequencing and
side-effect interface features.

The application design represents information about an ap-
plication program’s semantics in a central place. This infor-
mation is shared by the other four dimensions of interface
design, and separating it out allows the other dimensions to
be varied more independently. Also, since the application
design describes the “objects of discourse” for the interface
independently of other design dimensions, it represents a
start towards explicitly capturing issues that designers are
concerned with in the early, conceptual phases of design.

The following sections discuss the presentation, manipula-
tion, sequencing and action side-effect dimensions of inter-
face design refinements, which can be applied to application
designs to yield interfaces with particular features.

DESIGN DIMENSION #2: PRESENTATION
The presentation component of HUMANOID  is designed to
allow designers to specify presentations in stages. The goal
is to let designers specify just the amount of information
that they can or want at any given time during the design
process, and to let them refine the presentation design itera-
tively as they understand the design better. HUMANOID  can
prototype the interface given any amount of information.

The presentation component of the user interface for a pro-
gram is defined viatemplates [21]. A template is an object
that specifies a method for constructing the presentation of a
data structure. Designers construct presentations by refining
the templates in HUMANOID ’s library.

HUMANOID ’s template library contains default templates to
display application objects, commands and input objects, as
well as templates to display lists of objects in columns, rows
or tables, to display graphs and trees, and several flavors of
scrolling windows.

The default template for application objects can generate
menu bars of pull down menus, panels of command buttons,
and panels of global inputs using radio buttons, check box-
es, and other traditional interaction techniques. This tem-
plate illustrates the use of command and input groups to
specify presentations. For example, to create the application
window in Version 8 of the Object Browser example in Fig-
ure 1., the designer defined a group calledpanel-commands,

with the close, browse and revert commands. The default
template generates the panel of command buttons. Menu
bars could have been generated by defining themenu-bar-
commands command group, and the input panels are gener-
ated from thepanel-inputs input group.

The templates mechanism supports the following kinds of
presentation refinements:

Adding parts to existing templates. Designers can start by
specifying what data should be displayed in a part, and later
on refine the part to specify how the data should be dis-
played. For example, Version 1 of the Object Browser
shown in Figure 1. was created by adding a part calledob-
ject-contents to the default application template. Designers
can initially provide some hints about the size and propor-
tions of the presentations of parts so that when HUMANOID
prototypes the interface it can generate presentations that
approximate the presentations the designers have in mind.

Adding inclusion conditions. Designers can add an inclusion
condition to the definition of a part so that it is only included
in the display when the conditions are met. The conditionals
can be constraint expressions that depend on application
data. The constraints are automatically maintained so that
when the application information changes, HUMANOID  auto-
matically updates the display to exclude or include the part
as appropriate.

Adding template applicability conditions. Designers can add
applicability conditions to templates to define the situations
when the use of a template is appropriate. The applicability
conditions can also be constraints. When the data they de-
pend on changes, HUMANOID  will automatically re-search
the template hierarchy to find a new template to display the
corresponding portion of the display.

Refining parameters. Designers can refine the parameters of
a template to override default values (e.g., change the font
of a class of labels). It is possible to put a constraint in the
parameters so that the values will be computed at run-time
based on application information. When the application in-
formation changes, HUMANOID  automatically regenerates
the appropriate parts of the display.

Specifying layout. Designers can specify the layout for the
parts of a display separately from the specification of the
parts. Designers can refine the layout once the design of the
presentation of the parts is complete, in order to achieve a
pleasing layout.

Specifying a replacement hierarchy. A replacement hierar-
chy is a decision tree for selecting the most appropriate tem-
plates for displaying an object. Each node in the tree is a
template. Child templates construct more specific presenta-
tions than their parent, and are chosen only if their applica-
bility condition is satisfied in the current context. When
HUMANOID  is directed to display an object with a template,
it will search the replacement hierarchy below that template
to find the lowest template in the hierarchy whose applica-
bility condition is satisfied. By calling HUMANOID  with a
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template close to the top of a replacement hierarchy, design-
ers delegate to HUMANOID  the selection of presentation
method. By specifying a template closer to the bottom of the
hierarchy, designers exercise more control.

For example, HUMANOID  has a template replacement hierar-
chy to choose between different presentations of input ob-
jects, such as check buttons, radio buttons or type-in buffers.
The applicability conditions are based on attributes of the
input object such as whether there is a set of alternatives
from which the value is to be chosen, the size of the alterna-
tives, the number of values that the input accepts, etc. De-
signers can build similar replacement hierarchies for the
templates for their application data structures.

HUMANOID ’s template mechanism for constructing presen-
tations has the following benefits:

• Designers can refine the presentation step by step, always
seeing the effects of the current design, even when it is
only partially specified.

• The part inclusion conditions, and template applicability
conditions provide a natural way to create conditional-
ized displays whose characteristics depend on the run-
time values of the data to be presented.

• The template replacement hierarchy provides a conve-
nient way to organize and reuse presentation methods.

• HUMANOID  automatically reconstructs displays when the
data being presented changes.

DESIGN DIMENSION #3: MANIPULATION
Manipulation specification involves specifying the input
gestures that users can perform to manipulate presented in-
formation, along with the actions that should be invoked
when the appropriate gesture is detected.

Manipulations are specified by adding to templates one or
morebehavior specifications. A behavior specification con-
sists of a specification of the gesture that invokes the behav-
ior (e.g., mouse click, mouse drag), a specification of the
parts of the presentation where the gesture applies (e.g.,
over the widget generated by a template, or over all the parts
of a template), a specification of the application data on
which the gesture operates, and the actions to be taken at in-
teresting points during the gesture (e.g., for a dragging ges-
ture the interesting points are “mouse press”, “mouse move”
and “mouse release”).

The actions of behaviors can contain arbitrary Lisp code.
However, typical actions are very simple. They only set the
value of an input object, or change the status of an input, a
command, or a group (see the following section on sequenc-
ing for an explanation of input, command and group status).
Designers do not need to include code to, for instance, acti-
vate or deactivate other behaviors, highlight or dim presen-
tations, etc. These are subsidiary actions to setting the value
of an input or changing a status, and so are specified in the
sequencing and action side-effect dimensions.

Version 4 of the Object Browser shown in Figure 1. defines
a mouse-click behavior to select slot-value pairs. Thestart-
where slot is the list of all the elements of theobject-con-
tents part (making all the slot-value pairs selectable), and
the action sets thecurrent-selection global input to the value
presented in the slot-value pair that the user buttons. The ac-
tion does not contain code to highlight thecurrent-selection,
or to enable or disable any commands that might use the
current-selection. These features are specified in the presen-
tation and sequencing aspects of the design. When com-
mands are added later on in Version 8, there is no need to
come back to this behavior and edit the actions in order to
enable or disable the relevant commands.

The behaviors are implemented on top of the Garnet Inter-
actors package [11]. The library of behaviors includes be-
haviors for type-in, dragging and moving, button and menu
selection, angle specification, two point specification. These
behaviors cover most of the gestures used in direct manipu-
lation, mouse-based interfaces [11].

HUMANOID ’s model of manipulation has several benefits:

• Separates the specification ofwhat the behaviors do,
where they apply, andwhen they are applicable. The sep-
aration of what and where derives from the Garnet model
of interactors [11]. The separation of when derives from
HUMANOID ’s model of sequencing (see next section).

• When designers refine the presentation of the objects, it is
not necessary to modify the definition of the manipula-
tions. The manipulations will continue to work with the
refined presentations of the objects.

• Behaviors are easy to specify because their actions are
simple: they either set the value of an input, or change the
status of an input, a command or a group. Interface de-
signers need not program in order to specify the actions.

DESIGN DIMENSION #4: SEQUENCING
Sequencing design involves specifying the order in which
different displays appear on the screen, and the set of behav-
iors that are enabled at any given moment. In HUMANOID
designers do not specify sequencing by directly adding in-
structions at appropriate places to enable or disable particu-
lar behaviors. Instead, HUMANOID  computes the set of
enabled behaviors at any time based on the data flow con-
straints in the application design, and by applying a fixed set
of policies to a model of the states of individuals or groups
of commands and inputs. The sequencing of the displays is
computed in a similar way, and is explained in the next sec-
tion on action side-effects.

We discuss the model of command states below. The model
of states for inputs and groups of commands and inputs is
similar, and is not discussed in this paper.

The state of a command is defined by the following slots:

Idle/active/running. Commands areidle by default. Theidle
state specifies that the command is not being interacted
with. The active state specifies that the command is being
interacted with in order to obtain the inputs needed before it
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can run. Therunning state specifies that the call-back of the
command is executing. HUMANOID  automatically returns
the command to its default state once the call-back returns.

HUMANOID ’s policies for determining enabled behaviors
from these states are as follows. When a command isidle,
only the behaviors that set itactive are enabled. When the
command isactive, the behaviors that set inputs for the
command are enabled (subject to one exception, as ex-
plained below), and the behaviors that set the command to
idle are also enabled. The behaviors that set the state torun-
ning are enabled only if the command is ready to run, as de-
fined by theready/not-ready slot. When the state isrunning,
no behaviors are enabled.

Disabled/enabled. When a command isdisabled it cannot be
madeactive, and the behaviors that set the command toac-
tive or running are disabled. Thedisabled/enabled slot can
be defined with a constraint so that a command disables or
enables itself by testing the state and value of any command
or input in the application. By default, commands where one
or more inputs are tied to a global input are automatically
disabled when the value of the global input does not satisfy
the type, the minimum and maximum restrictions, and the
predicate defined for the command input. Commands whose
preconditions are not satisfied aredisabled by default.

Ready/not-ready. Indicates whether a command is ready to
run, i.e., whether it isactive, all its inputs are correct, and no
preconditions are violated. Behaviors that change the com-
mand torunning are enabled only if the command isready.

Thedisabled/enabled and theready/not-ready act as guards:
they specify the conditions under which theidle/active/run-
ning slot can change value. Designers control sequencing in-
directly by defining additional constraints on the guard slots,
and by triggering actions that change the state of other com-
mands and inputs when the value of any of the three slots
changes. HUMANOID  propagates the effects of the state
changes by enabling and disabling behaviors as explained
above.

The actions triggered on state changes are specified via
methods of commands (similarly, the sequencing constraints
of inputs and groups are specified via methods of input and
group objects). Whenever a state slot of a command changes
from A to B, the method a-to-b is called on the command
and all command groups to which the command belongs.
For example, when a command changes fromactive to run-
ning, the methodactive-to-running is called; when a com-
mand is no longer ready to run, the methodready-to-not-
ready is called. The method can then change the status of
other commands in the group, or call arbitrary procedures.

The state transition methods provide a general mechanism
for designers to control the states of individuals and groups
of commands and inputs, and thus a general way to control
sequencing. In addition HUMANOID  provides a library of ob-
jects calledattributes, which define packages of methods
that implement commonly-used sequencing features. For
example, HUMANOID  provides the following attributes for

command sequencing (similar attributes are provided for in-
put sequencing):

• Only-One-Active. This attribute specifies that only one
command in a group can beactive at any given time.
When a new command in the group is madeactive, the
previouslyactive command is madeidle. When no com-
mand isactive, a pre-designated command in the group is
madeactive, if one is defined.

• Only-One-Enabled. This attribute specifies that when a
command in a group is madeactive or running, the other
commands in the group aredisabled.

These two command sequencing attributes can be used to
implement familiar interface features.Only-One-Active can
be used to specify the sequencing of the palette of drawing
commands in a MacDraw-like drawing program, where the
user selects a tool to draw. Only one tool is selected at any
given time, and only the behaviors for the selected tool are
enabled over the drawing area.Only-One-Enabled can be
used to disable the menu bar of pull down menus while one
of the commands is either executing, or prompting for in-
puts in a dialogue box. Note that in both examples the at-
tributes are defined for command groups that the designer
would define to control the presentation.

To incorporate sequencing constraints into a design, the de-
signer simply lists the relevant attribute in theattributes slot
of individuals or groups of command and inputs. If an at-
tribute that packages the desired sequencing constraints
does not exist, the designer first has to define it, by defining
the appropriate methods. This mechanism makes simple,
commonly used features easy for designers to use, but pro-
vides enough generality so that complex sequencing con-
straints can also be implemented.

The browse command in Version 9 of the Object Browser
shown in Figure 1. illustrates the sequencing model. Theob-
ject-to-browse input of thebrowse command is defined to be
of type Object. The default definition of thedisabled/en-
abled slot specifies that if theobject-to-browse is incorrect,
the command isdisabled, causing the behavior that activates
the command to be disabled so that clicking on the Browse
button has no effect. So, when the user selects an object in
theobject-contents part of the display, the button is enabled,
but if the user selects a non-object such as the constant
XOR, the button is disabled.

HUMANOID ’s sequencing model has the following benefits:

• Provides a much less cumbersome means of specifying
sequencing than event-based systems [5], or state transi-
tion networks [7]. Rather than specifying sequencing at
the level of gestures/behaviors, or a potentially large
number of states, HUMANOID  derives the sequencing con-
straints on behaviors by applying a fixed set of policies to
simple state model of commands, inputs and groups.

• Provides a framework (states and methods) for designers
to express complex sequencing constraints, and provides
abstractions (attributes) that make it easy to express com-
monly used sequencing constraints.
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• Provides good support for design exploration because
much sequencing behavior falls out from the data flow
constraints expressed in the application design, with no
extra effort needed from the designer. Additional se-
quencing constraints are expressed as annotations to indi-
viduals and groups of commands and inputs that are often
used for presentation purposes too.

DESIGN DIMENSION #5: ACTION SIDE EFFECTS
Action side-effects are actions performed automatically as
side effects of the actions triggered by user inputs. For ex-
ample, a newly created object can become automatically se-
lected, closing a dialogue box can reset all the options to
their default, typing return in a type-in field can automatical-
ly move the cursor to the “next” type-in field.

Action side-effects are expressed using the command, input
and group state transition methods described in the previous
section. Whenever a behavior sets the value of an input, or
changes the state of a command or an input, methods indi-
cating the change are called.

Designers can specify side-effects by writing methods for
the appropriate state transitions, or can define attributes sim-
ilar to the sequencing attributes. For example, to cause a di-
alogue box to appear in response to a menu selection,
designers can write a method for theidle-to-active state tran-
sition that callspresent-object with the command anddia-
logue-box-template as its parameters. Since showing
dialogue boxes is a common case, HUMANOID  provides a
command attribute calledShow-Dialogue-Box.

HUMANOID  provides the following attributes for commonly
used side-effects on inputs. A similar library for command
and group side-effects is also provided, but it is not dis-
cussed in this paper.

Revert-When-Incorrect. When an input is set to an incorrect
value, the previously correct value is automatically restored.

Message-When-Incorrect. When an input is set to an incor-
rect value, an alert box is posted.

Beep-When-Incorrect. When an input is set to an incorrect
value, the interface beeps.

Prompt-Ring. This attribute is defined for input groups.
When an input in the group is set, the behaviors for the next
input in the group are automatically activated.

Version 10 of the Object Browser shown in Figure 1. is an
example of side-effect specification. It uses theRevert-
When-Incorrect and the Message-When-Incorrect action
side-effect attributes on theobject global input, where users
can enter the object to be viewed. If the user types in an in-
correct object, the user will be notified with an alert box,
and the value of the object is reverted to the previous (cor-
rect) value.

HUMANOID ’s model of side-effects has several benefits,
which derive mostly from linking side-effects to command,

input and group state transitions, rather then specifying
them in the actions of behaviors:

• Makes behaviors easier to reuse. Since the side-effects of
behaviors are separate from the behaviors, the same be-
havior can be used in different contexts that require dif-
ferent side-effects.

• Increases modularity. Side-effects are represented cen-
trally in the command, input or group objects, rather than
being spread out in the possible multiple behaviors that
act on these objects.

• Provides good support for design exploration. The ma-
nipulations and side-effect dimensions can be explored
independently because the side-effects depend on the ef-
fects of the action of a behavior rather than on the behav-
ior itself.

RELATED WORK
The most sophisticated of the UIMSs centered around the
notion of deriving the user interface from a high-level speci-
fication of the semantics of a program are MIKE [14],
UofA* [18] and UIDE [3]. MIKE and UofA* are able to
generate a default interface from a minimal application de-
scription, and provide a few parameters that a designer can
set to control the resulting interface. MIKE allows designers
to define the interaction techniques for prompting for inputs,
the structure of the menus, and actions to be executed when
presentations are selected. However, MIKE has a built-in
prefix dialogue structure that cannot be changed. UofA*
supports prefix, post-fix and no-fix dialogue structures, sup-
ports current selected objects, and open-ended, and close-
ended command invocation. Both systems allow designers
to refine the layout.

HUMANOID ’s general model of commands allows designers
to exert much finer control over dialogue sequencing. In ad-
dition, HUMANOID  provides a library of command groups
that allows designers to very easily specify the dialogue
structures that MIKE and UofA* support. HUMANOID  also
provides finer control over presentation design, and supports
the construction of the “main window” of application pro-
grams, which MIKE and UofA* do not support. UIDE’s ap-
plication description is much richer than those used in
MIKE and UofA*. Such richer descriptions can be used to
support more sophisticated design tools [3] (help genera-
tion, consistency and completeness checking, automatic dia-
logue box and menu design, transformations). Even though
we have not constructed such sophisticated design tools, it
should be possible to construct them, since our application
description provides the necessary knowledge.

HUMANOID ’s application description is similar to UIDE’s.
HUMANOID  improves on UIDE by providing a richer model
of command states, enabling designers to exert finer control
over dialogue sequencing. For example, HUMANOID ’s action
side-effect mechanism subsumes UIDE’s post-condition
one, because it allows commands to assert side-effects on
any of the state transitions of a command, not just on the
successful execution of a command. In addition, HUMANOID
provides more sophisticated facilities for refining the pre-
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sentation and manipulation dimensions of the interface.

The command and input groups attributes provide a com-
pact mechanism to specify dialogue sequencing similar to
Statecharts [23], that avoids the explosion of states that oc-
cur in state transition networks. In fact, command and input
group sequencing attributes can be used to emulate all the
dialogue structures supported in the UofA* UIMS [18], plus
provides the framework to define others.

Interface builders such as the Next Interface Builder [13],
and OpenInterface [12] are a different class of tools to aid in
the design of interfaces. These tools allow designers to draw
interfaces consisting of check boxes, radio buttons, labels,
type-in areas and other such interface building blocks.
These tools make it very easy to construct the particular in-
terfaces they support, but they are poor for design explora-
tion. Designers have to commit to particular presentation,
layout and interaction techniques early in the design. Mak-
ing changes to the dialogue structure is difficult. For exam-
ple, changing an input prompted in a dialogue box to a
global input is difficult because all dialogue boxes that
prompt for that input have to be manually edited. Also,
making global policy changes such as changing the interac-
tion technique to present choices requires manually editing
a large number of displays. Achieving the same results that
HUMANOID  enables by using an interface builders, if it can
be done at all, requires a level of programming sophistica-
tion beyond the reach of the designers for whom these tools
are intended.

Systems such as ITS [1] and HUMANOID  do not have this
problem because to change a global policy it is enough to
change a rule in ITS, or a template in HUMANOID . HUMAN-
OID and ITS provide similar facilities for constructing pre-
sentations, but ITS lacks the facilities to do interface design
along the other dimensions that HUMANOID  supports.

Interface builders are currently easier to use than application
description-centered systems like HUMANOID , MIKE,
UofA* and UIDE, for constructing simple displays like dia-
logue boxes. However, this shortcoming can be overcome.
APT [9], SAGE [16] and DON [8] are examples of systems
that automatically generate high quality displays from the
design knowledge base. APT and SAGE generate high qual-
ity charts, and DON, which is based in UIDE, is an initial at-
tempt to generate high quality dialogue boxes.

HUMANOID  currently lacks an interactive interface to con-
struct the application description, which MIKE and UIDE
have, and an interactive layout editor, which MIKE and
UofA* have. We are currently working to remedy this short-
coming. Perhaps the ultimate interactive interface for design
should also build on demonstrational systems like Lapidary
[10] and Druid [19]. These systems allow the designer to
specify the presentation and the behavior of an interface by
example. Designers draw the interface as the user will see it,
and then demonstrate the actions that users can perform, by
graphically manipulating the presentation. These systems
generalize the examples, and generate code that implements
the general case. The attractiveness of these systems is in

their claims for ease of use. We view these systems as po-
tentially complementary to knowledge-based systems like
HUMANOID . For instance, one could imagine a Lapidary-
like interface to specify some of the design changes illus-
trated in our Object Browser example. To specify that the
slot-value pairs should be selectable, and highlighted in re-
verse video, the designer could draw the black, xored, rect-
angle, and the Lapidary-like tool would make the
appropriate generalizations. It is an open research issue,
however, whether demonstrational tools can be made so-
phisticated enough to design complex interfaces.

Our work only partly addresses issues of task analysis and
user centered design: HUMANOID  facilitates creating designs
that act upon realizations obtained through these design ap-
proaches, but does not address these methods directly.

CONCLUSIONS
HUMANOID  is an interface design system that lets designers
express abstract conceptualizations of an interface design in
executable form, allowing designers to experiment with sce-
narios and dialogues before the application model is com-
pletely concretized. The novel features of HUMANOID  are:

• Supports top-down design. Designers can refine interfac-
es step by step. At any step designers can ask HUMANOID
to generate the interface in order to try it out, or can refine
it further.

• Allows designers to delay committing to specific inter-
face features until they want to. Designers do not have to
fully specify any aspect of the design in order to proto-
type it or to refine another aspect of it. For example, de-
signers can specify manipulations for a presentation that
has not been fully specified.

• Allows designers to explore the design space in any or-
der. HUMANOID  supports both breadth-first and depth-
first design strategies, or any combination in between. In
the breadth-first strategy, designers can specify the com-
plete interface at a high level before refining any aspect
of it. In the depth-first strategy designers can fully specify
one aspect of the design (presentation, manipulation, se-
quencing) before working on a different aspect.

• Supports the specification of all aspects of an interface.
HUMANOID  supports the iterative specification of the ap-
plication functionality, its presentation, input behavior
and sequencing. HUMANOID  supports the construction of
the interface for the “main windows” of programs, not
just the menus and commands to control the program.

• Provides an extensive library of presentation methods,
and defaults for choosing presentation methods based on
the types of objects to be displayed. For example, HU-
MANOID  can construct dialogue boxes automatically,
choosing check boxes, radio buttons, etc. automatically
based on the types of the inputs to be requested. Design-
ers can provide various hints that steer the dialogue box
constructions in several directions.

• Defines a novel partitioning of interface design spaces
into relatively independent dimensions, allowing design-
ers to refine designs along these dimensions. The exam-



9

ple in Figure 1. illustrates how designers can refine the
presentation, application description, interactive manipu-
lation and sequencing aspects of the interface in a rather
independent manner.

We believe that HUMANOID  substantially enhances the itera-
tive design process required for constructing good user in-
terfaces [2, 22] by allowing designs to be put into action
faster and earlier than current design tools allow, and by al-
lowing designers to refine designs along multiple, relatively
independent dimensions.
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