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Abstract Domoic acid (DA), the amnesic shellfish toxin,
is a food-web-transferred algal toxin that has been
detected in many marine organisms from copepods to
whales. However, cephalopods, which are important
members of the food chain, have never been implicated
in DA transfer or accumulation. Here, we present data
showing relevant values of DA detected in the common
octopus (Octopus vulgaris) from the Portuguese conti-
nental coast. Even though DA is hydrophilic and is not
expected to be accumulated in the tissues, DA was al-
ways detected in our octopus tissue samples. Tissue
distribution of DA revealed that the digestive gland and
the branchial hearts are the main organs of DA accu-
mulation. Highly variable DA concentrations, ranging
from 1.1 to 166.2 lg DA g)1, were observed in the
digestive glands. Low levels of DA were detected in the
digestive tract (stomach and intestine) and could be a
consequence of high digestion rates or a result of non-
exposure to toxic vectors during the sampling period. In
fact, octopus prey, such as bivalves, crustaceans and
fishes, are known to occasionally work as DA vectors.
Consequently, DA uptake into octopus tissues is likely
sporadic. Similar low levels were detected in the kidney,
gills, systemic heart, posterior salivary glands and
mantle, and no DA was found in either the gonads or
the ink sac. These data are the necessary first step

towards achieving an understanding of the accumulation
of phycotoxins in O. vulgaris.

Introduction

Domoic acid (DA), a naturally produced phycotoxin
with neurotoxic properties, is responsible for the illness
amnesic shellfish poisoning (ASP). In 1987 on Prince
Edward Island, Canada, at least 3 people died and >100
became ill, suffering neurological problems after con-
suming blue mussels (Mytilus edulis) contaminated with
DA (Quilliam and Wright 1989; Todd 1993). Several
species of the diatom genus Pseudo-nitzschia have been
shown to produce this neurotoxin (Subba Rao et al.
1988; Bates et al. 1989; Garrison et al. 1992), which may
accumulate in filter-feeding bivalves such as the mussels.
Although bivalves were the vectors in the first ASP
event, subsequent DA-poisoning events have revealed
that many other marine organisms could also be vectors.
Small and simple herbivorous organisms such as cope-
pods and krill have been shown to accumulate DA
(Lincoln et al. 2001; Tester et al. 2001; Bargu et al. 2002,
2003). Planktivorous fishes have been identified as DA
vectors (Buck et al. 1992; Fritz et al. 1992; Lefebvre et al.
2001, 2002a; Vale and Sampayo 2001), with devastating
effects on piscivorous predators like sea birds and sea
lions (Work et al. 1993; Sierra Beltrán et al. 1997;
Lefebvre et al. 1999; Scholin et al. 2000). The toxin
permeates both benthic and pelagic members of the food
web and has been detected in crustaceans (Wekell et al.
1994; Altwein et al. 1995; Costa et al. 2003) as well as
whales (Lefebreve et al. 2002b). Despite all of these
studies, DA has never been reported in cephalopods. It
seems that there has been less attention focused on this
molluscan group and studies characterising the presence
and movement of the toxin through this member of the
marine food web are needed.

In order to evaluate the presence of DA in cepha-
lopods, we examined the tissue distribution of the
amnesic shellfish toxin in the common octopus (Octopus
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vulgaris). This species has a world-wide distribution in
temperate, subtropical and tropical waters of the
Atlantic, Indian and Pacific Oceans; it is also present in
the Mediterranean Sea (Mangold 1998). It is a common
and opportunistic predator on a wide variety of prey
such as crustaceans, molluscs and fish, in many marine
intertidal and subtidal communities (Altman 1967;
Nigmatullin and Ostapenko 1976; Guerra 1978; Smale
and Buchan 1981; Ambrose and Nelson 1983; Nixon
1987; Sánchez and Obarti 1993). On the other hand,
octopuses are important in the diet of fish and marine
mammals, playing an important role in the food chain
and in the ocean�s ecology (Boyle and Boletzky 1996;
Caddy and Rodhouse 1998; Piatkowski et al. 2001).

Materials and methods

Collection and preparation of octopus samples

Ten samples of Octopus vulgaris comprising a total of 90 individ-
uals, were collected by commercial vessels (with traps and clay
pots) during the period between February and May 2003. Eight of
them were collected in Peniche (NW coast) and two in Olhão
(south coast) (Table 1).

All octopuses were frozen ()20�C) and defrosted just before
being prepared for analysis. A total of 40 specimens were dissected
for: (1) the digestive gland, (2) the branchial hearts, (3) the kidney,
(4) the stomach, caecum and intestine, (5) the gills, (6) the systemic
heart, (7) the posterior salivary glands, (8) the mantle, (9) the
gonads and (10) the ink sac. These tissues were homogenised, and
a 5 g aliquot of each (or the amount available) was weighed
separately.

Toxin extraction and HPLC analysis

Extractions were carried out according to the method of Quilliam
et al. (1995) with some modifications (Vale and Sampayo 2001).
The extraction was performed with aqueous 50% methanol (ratio
1:4) at 20,000 rpm for 1 min with a homogeniser probe. After
10 min of centrifugation at 4,000 rpm, the supernatant was filtered
into a screw-cap autosampler vial with a nylon (0.22 lm, 13 mm
diameter), disposable syringe filter. The equivalent of 1.0 mg
extract (5 ll) was injected on the column without any further
clean-up.

Liquid chromatography (LC) was performed on a Hewlett-
Packard (HP) model 1100, equipped with in-line degasser, qua-
ternary pump, autosampler, oven and diode-array detector (DAD);
data collection and treatment of the results were performed by the

HP ‘‘Chemstation’’ software. The column used was a Nucleosil
100-5C-18 (125·3 mm, 5 lm), with a guard-column Lichrospher
100 RP-18 (4·4 mm, 5 lm), both heated to 40�C. The flow
rate was set at 0.45 ml min)1 of acetonitrile:0.1% formic acid
(10:90, v/v) throughout the run. The injection volume was 5 ll, and
the analysis time was set at 10 min. Detection wavelength was set at
242 nm with a 10 nm bandwidth, and reference wavelength was set
at 450 nm with a 100 nm bandwidth. A confirmatory wavelength at
262 nm was used.

Calibration was performed with a full set of calibration stan-
dards of DA (0.5, 2, 4 and 10 lg ml)1). Samples over the calibra-
tion curve were diluted. Calibration curves were always linear, with
correlation coefficients >0.99. A single-point calibration, with a
working solution of 4 lg DA ml)1 in 10% acetonitrile was per-
formed after six consecutive samples. Under these conditions the
detection limit was 0.04 lg ml)1, which corresponded to 0.2 lg g)1

in tissue.
Solvents used for the HPLC analysis were methanol, acetoni-

trile and formic acid of LC grade supplied by Merck and Millipore-
Q cleaned water. DACS-1D-certified DA standard was purchased
from the National Research Council of Canada (NRC).

Mass spectrometry analysis

Analysis was performed as described in Vale and Sampayo (2001).
The same chromatograph system as above was used, coupled with a
HP model 1100 series single quadrupole mass spectrometer,
through an ionspray LC-MS interface, operated in the positive ion
mode. High-purity nitrogen was used as the nebulising gas, and a
potential of 5,000 V was applied to the interface needle. Selected
ion monitoring was used to record the signals from the ([M+H]+)
ions at m/z 312 and 266. The trace in figures shows only the
m/z 312 signal.

Toxins were separated at 40�C on a Lichrospher 100 RP-18
(125·2 mm, 5 lm) column, protected by the same guard column as
above. The mobile phase consisted of acetonitrile:0.1% formic acid
(10:90, v/v).

Results

LC-UV analysis of octopus digestive gland extract
showed that the compound identified as DA had the
same retention time as DA in the calibration standard.
Other peaks eluting close to DA were observed in the
octopus digestive gland extract, and their retention times
also matched the peaks observed in the chromatogram
of the calibration standard, corresponding to isodomoic
acid D (iso-D), isodomoic acid A (iso-A) and the C5¢-
diasteromer of DA (epi-DA). In the UV spectrum, the

Table 1 Sampling locations of
Octopus vulgaris (dash no depth
measurement taken)

aSystemic heart was not dis-
sected for analysis

Sample Sampling
location

Date
(2003)

Depth
(m)

Octopus weight
(g, mean±SD)

No. of individuals dissected for:

Digestive gland Other tissues

P1 Peniche 12 Feb 46 1,651±255 13 6a

O2 Olhão 12 Feb – 2,894±884 3 0
P3 Peniche 28 Feb 41 1,560±265 8 4
O4 Olhão 7 Mar – 1,076±285 4 0
P5 Peniche 12 Mar 55 839±73 14 7
P6 Peniche 26 Mar 39 3,123±839 9 4
P7 Peniche 9 Apr 46 1,526±361 17 5
P8 Peniche 23 Apr 41 2,566±282 9 5
P9 Peniche 9 May 48 1,315±346 9 5
P10 Peniche 23 May 41 2,995±764 4 4
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iso-D and epi-DA peaks and the iso-A peak had maxima
at 244 and 242 nm, respectively, as reported by Quilliam
and Wright (1989). The UV/diode-array spectra of the
DA peak—maximum at 242 nm—from the octopus
digestive gland extract matched (>99%) the spectra
acquired for the DA standard. Further evidence for the
identification of DA was provided by LC-MS analysis.
Retention times of the peaks in the m/z 312 ([M+H]+)
ion chromatogram of the digestive gland extract mat-
ched those of the DA standard (Fig. 1).

DA was found in all 90 octopus digestive glands
analysed and was highly variable, with values ranging
from 1.1 to 166.2 lg g)1 (Fig. 2). Furthermore, DA was
detected in the digestive gland of specimens collected on
both the west and the south coast.

Highly variable DA levels were also found in the
branchial hearts, ranging from 3.0 to 67.1 lg g)1. It is
worth noting that in 60% of the analysed cases (n=40),
DA levels in the branchial hearts were higher than DA
levels in the digestive glands of the same octopus
(Fig. 3).

In the remaining tissues, DA levels were lower than
those detected in digestive glands and branchial hearts.
Nevertheless, DA was always detected in the 40 kidneys
analysed. Kidney DA levels ranged from 0.2 to 3.5 lg
DA g)1 and had lower variability than in other tissues
(Fig. 4a). DA was found in the stomach, spiral caecum
and intestine, which were analysed together, of 26
octopuses. Highly variable levels were again observed,
and ranged from 0.4 to 7.0 lg DA g)1 (Fig. 4b). DA was
detected in the gills of 33 specimens, and the values were
always <2.0 lg DA g)1 (Fig. 4c). Systemic heart pre-
sented even lower concentrations of DA, which ranged,
when detected, between 0.2 and 1.1 lg g)1 (Fig. 4d). For
this organ only 34 specimens were analysed, and DA

was detected in 24. In the posterior salivary glands only
half of the cases showed DA. However, values detected
in this organ were higher than those observed in the gills,
the systemic heart and even the kidney. The maximum
value detected was 5 lg DA g)1 (Fig. 4e). In the mantle,
which is muscle tissue, the maximum DA detected was
0.4 lg g)1 in specimens from samples P6 and P8. DA
was not detected in the ink sac or in the gonads.

Discussion

Portugal is located in the northern part of the climatic
subtropical, high-pressure belt of the Northern Hemi-
sphere. The upwelling events that migrate from the
south of Morocco to the north of Portugal have a very
well-defined maxima off the west coast in July, August
and September (Fiúza et al. 1982). Such seasonal
upwelling events are responsible for the occurrence of
algal blooms, including Pseudo-nitszchia spp., which are
the producers of the ASP toxin. Although the typical
upwelling period lasts from July to September, it is
not that unusual to detect DA in organisms at other
times. In this study, DA was always found in some
octopus tissues, but the persistence of such toxicity is not

Fig. 1a, b Octopus vulgaris. Comparison of [M+H]+ (m/z 312)
chromatograms obtained from selected ion-monitoring LC-MS
analyses of: a octopus digestive gland and b certified DA standard
(DA domoic acid; iso-D isodomoic acid D; iso-A isodomoic acid A;
epi-DA C5¢-diasteromer of DA)

Fig. 2 Octopus vulgaris. Domoic acid (DA, lg g)1) detected in
octopus digestive gland (median, 25 and 75 quartiles, minimum and
maximum, total n=90). Details on samples, see Table 1

Fig. 3 Octopus vulgaris. Comparison of domoic acid concentra-
tions (DA, lg g)1) detected in octopus branchial hearts (closed bars)
and in digestive gland (open bars) of 40 octopuses
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common. Due to its hydrophilicity, DA is more likely to
be released than to be accumulated (Wright et al. 1989;
Novaczek et al. 1991). However, DA retention has also
been reported in some molluscs, such as the king scallop
(Pecten maximus) (Arévalo et al. 1998; Blanco et al.
2002), and the Pacific razor clam (Siliqua patula) (Drum
et al. 1993; Horner et al. 1993). Our results are compa-
rable to those obtained for king scallops, whereby the
highest DA concentrations were found with high vari-
ability in the digestive gland. Octopuses probably do not
represent new health hazards to humans, since DA was
mainly detected in the digestive gland and not in the
edible parts (muscle). However, when the whole body is
consumed, O. vulgaris may act as a DA vector to pre-
dators such as marine mammals (Blanco et al. 2001;
Piatkowski et al. 2001; Santos and Haimovici 2001).

DA was detected in several tissues in addition to the
digestive gland. In many cases, DA levels detected in the
branchial hearts were above DA levels detected in
the digestive gland. However, the digestive gland is
the largest octopus organ (just surpassed by the female
gonads at the peak of maturity) and may act as a res-
ervoir of the amnesic toxin, as it is for other substances
(Grisley and Boyle 1988). The two branchial hearts are
located at the base of the gills, receiving deoxygenated
blood from the body tissues; from there blood then is
sent to the gills where it is oxygenated. In addition to

this pumping function, the branchial hearts have an
excretory role (Cuénot and Bruntz 1908). Schipp and
Hevert (1981) concluded that these organs might be
involved in excrete-storage activities. Moreover, it has
been demonstrated that these organs are able to accu-
mulate high concentrations of some heavy metals
(Nakahara et al. 1979; Miramand and Guary 1980;
Nakahara and Shimizu 1985); they have been called the
‘‘kidneys of accumulation’’ (Martin and Aldrich 1970).

In spite of the low DA concentrations detected in
kidney, this tissue showed DA whenever analysed, which
might be due to its excretory function as well as to its
connection to the branchial hearts by the pericardial
ducts.

Results obtained in pooled stomach, caecum and
intestine samples showed low DA concentrations. The
lack of DA in these tissues suggests that the octopus may
not have been exposed to DA when sampled, or may be
a consequence of the high digestion rates that cha-
racterise cephalopods (Boucaud-Camou et al. 1976;
Boucher-Rodoni and Mangold 1977). Along the Portu-
guese coast, the common octopus has a versatile diet,
including osteichthyes (e.g. Clupeidae), crustaceans (e.g.
Liocarcinus sp. and Polybius henslowii), bivalves (e.g.
Mytilus sp.), cephalopods and gastropods (Rosa et al.
2004), which is consistent with the general view of
cephalopods as opportunistic predators (Summers

Fig. 4a–e Octopus vulgaris.
Domoic acid (DA, lg g)1)
detected in octopus tissues
(median, 25 and 75 quartiles,
minimum and maximum):
a kidney (n=40); b pooled
stomach, caecum and intestine
(n=40); c gills (n=40);
d systemic heart (n=34); and
e posterior salivary glands
(n=40). Details on samples,
see Table 1
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1983). These prey can occasionally act as DA vectors
(Vale and Sampayo 2001; Costa et al. 2003), resulting in
sporadic uptake of toxin and bioaccumulation in octo-
pus tissues.

Although the gills are connected with the branchial
hearts and receive their venous blood, only low con-
centrations of DA have been detected in gill tissues. The
systemic heart, which is essentially a purely muscular
tissue, pumps oxygen-rich blood from the gills to the rest
of the body and, when detected, presented low values of
DA. This suggests that DA hardly reaches the blood
system. However, small traces of DA were sometimes
found in the mantle, but never were detected in the go-
nads.

Salivary glands did not always show DA, but, when
the toxin was found, it was found at levels similar to
those detected in the kidney. This organ, besides its
digestive function, also appears to play a role in excre-
tion as a path for the elimination of fluid wastes (Wells
1978). Evaluation of the toxin distribution showed that
DA was mainly associated with tissues that take part in
both digestion and excretion.

This is the first report of DA detected in a cephalopod
species. Such data are the necessary first step towards
achieving an understanding of the accumulation of DA
in O. vulgaris, as well as its transfer to predators higher
in the food web. Consequently, it is of great importance
to intensify field and laboratory studies on trophic
interrelationships in which the common octopus is in-
volved.
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