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Abstract

In this paper, we introduce a generalization of the ordinary ideal
transform, denoted by DI,J , which is called the ideal transform with
respect to a pair of ideals (I, J) and has an apparent algebraic struc-
ture. Then we study its various properties and explore the connection
with the ordinary ideal transform. Also, we discuss the associated
primes of local cohomology modules with respect to a pair of ideals.
In particular, we give a characterization for the associated primes of
the non-vanishing generalized local cohomology modules.

1 Introduction

Throughout this paper, without particular explanation, R is always a Noethe-
rian commutative ring with non-zero identity, I, J are ideals of R and M is
an R-module.

Now let R be a commutative unitary domain and K its quotient field.
The ideal transform of R with respect to I was defined by Nagata [Na1]:

TI(R) :=
⋃
n≥1

(R :K In).
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Ideal tranform turns out to be a significant tool in commutative algebra
and algebraic geometry and is closely related to local cohomology modules
of Grothendieck. A very important application is existing in the treatment
of Hilbert’s fourteenth problem (cf. [Na1], [Na2]). In order to study this
algebra deeply, there are several methods for ideal transform (for example,
[Br], [Ha]). In particular, a functorial description of ideal transform was
given (see, for example, [Br]): an ideal transform DI(M) of an R-module M
with respect to I defined as

DI(M) := lim−→n∈NHomR(In,M).

It can be verified that TI(R) = DI(R). Moreover, let Q(M) be the total
module of quotients of M and let T (M) denote the R-module:⋃

n≥1

(M :Q(M) I
n).

Then TI(M) = DI(M) if grade(I,M) > 0.
In [TYY], Takahashi, Yoshino and Yoshizawa introduced the notion of

generalized local cohomology modules, which is an extension of local coho-
mology modules to a pair of ideals (I, J), and they studied their various
properties (another generalization may be seen in [FP]). More precisely, set

W (I, J) = {p ∈ SpecR | In ⊆ p + J for some integer n} and let W̃ (I, J)
denote the set of ideals a of R such that In ⊆ a + J . Also, let the set

ΓI,J(M) = {x ∈M | Inx ⊆ Jx for n� 1}

of elements of M . The functor ΓI,J(−) is a left exact functor, additive and
covariant, from the category of R-modules to itself, which is called (I, J)-
torsion functor. For an integer i, the ith right derived functor of ΓI,J(−) is
denoted by H i

I,J(−) and called the ith local cohomology functor with respect
to (I, J). For an R-module M , we denote by H i

I,J(M), the ith local cohomol-
ogy module of M with respect to (I, J), and ΓI,J(M) will be called the (I, J)-
torsion part of M . When J = 0 or J is a nilpotent ideal, H i

I,J(−) coincides
with the ordinary local cohomology functor H i

I(−) with the support in V (I).
Naturally, in this paper we introduce a kind of ideal transforms as a

generalization of the ordinary ideal transform, which will be called an ideal
transform with respect to a pair of ideals (I, J). We recall that DI(R) is
a commutative ring with an identity; the generalized ideal transform intro-
duced here will have a structure as the quotient of a direct sum of some
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{DI(R)}I⊆R (see Remark 2.1), and therefore, it will have a structure of ring,
as well. We study its various properties and discuss its connection with
the ordinary ideal transform. Also, we give some results about the associ-
ated primes of the local cohomology module H i

I,J(M), which improves some
known results.

The organization of the paper is as follows. In Section 2, we give the
definition of DI,J(M), an ideal transform with respect to a pair of ideals
(I, J), and give some elementary results of DI,J(M). In Section 3, we discuss
the associated primes set of H i

I,J(M). In Section 4, we discuss the exactness
property of an ideal transform module with respect to a pair of ideals (I, J).

2 Ideal transforms defined by a pair of ideals

In the following, we shall introduce a kind of idea transforms, as a gener-
alization of an ideal transform DI(M) of an R-module M with respect to
I.

Let R be a commutative Noetherian ring and let I and J be ideals of R.
Consider the set W̃ := W̃ (I, J) of all ideals a of R such that In ⊆ a + J for
some integer n. We define a partial order on W̃ by letting a ≤ b if b ⊆ a for
a, b ∈ W̃ . Then the order relation on W̃ makes {Da(M)}a∈W̃ into a direct
system of R-modules (see [BS, Exercise 2.2.20]). Now we define the covariant
R-linear functors from the category of R-modules to itself:

DI,J := lim−→a∈W̃Da(−), where Da = lim−→n∈NHomR(an,−)

We shall refer to DI,J as the (I, J)-transform functor. As Da is a left ex-
act functor, and exact sequences are preserved by taking a direct limit, we
conclude that the functor DI,J is also left exact.

For anR-moduleM , we callDI,J(M) = lim−→a∈W̃Da(M) the ideal transform

of M with respect to (I, J), or, alternatively, the (I, J)-transform of M . For
i ∈ N0, we use RiDI,J to denote the ith right derived functor of DI,J and
call RiDI,J(M) the ith right derived module of DI,J .

Remark 2.1. (i) (I, J)-transform functor DI,J is a natural generalization
for the notion of I-transform functor DI , just like from the definition
of H i

I(M) to that of H i
I,J(M):

It is known that

H i
I(M) ∼= lim−→n∈NExtiR(R/In,M).
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In fact, there is another isomorphism:

H i
I(M) ∼= lim−→a∈Ṽ (I)

ExtiR(R/a,M).

Here, Ṽ (I) denotes the set of all ideals a of R such that I ⊆
√
a.

By Theorem 2.2 (below),

H i
I,J(M) ∼= lim−→a∈W̃ExtiR(R/a,M).

While, for the ideal transforms, by Theorem 2.2,

DI(M) ∼= lim−→a∈Ṽ (I)
HomR(a,M);

DI,J(M) ∼= lim−→a∈W̃HomR(a,M).

(ii) Now we let Q(M) be the total module of quotients of M ,

TI,J(M) :=
⋃
a∈W̃

(M :Q(M) a),

and
βa : (M :Q(M) a)→ HomR(a,M) (a ∈ W̃ ),

defined by βa(y)(x) = xy (x ∈ a, y ∈ (M :Q(M) a)), be a canonical
homomorphism. Taking the direct limit lim−→a∈W̃ , there is a homomor-
phism

βW̃ : TI,J(M)→ DI,J(M).

Let depthR(I, J,M) = inf{grade(a,M) | a ∈ W̃ (I, J)}. One can then
deduce that depthR(I, J,M) = inf{depthMp | p ∈ W (I, J)}. Then, by
[TYY, Theorem 4.1], depthR(I, J,M) = inf{i | H i

I,J(M) 6= 0} }. If
depthR(I, J,M) > 0 (that is, ΓI,J(M) = 0), then TI,J(M) ∼= DI,J(M).
It follows similarly as [Br, Lemma 2.8].

(iii) From [BS, Exercise 2.2.3 (iv)], DI(R) is a commutative ring with iden-
tity, and DI(M) can be viewed as DI(R)-module. Therefore,

DI,J(−) = lim−→a∈W̃Da(−)

4



can be viewed as the quotient of a direct sum of {Da(−)}a∈W̃ . Thus,
DI,J(R) is a commutative ring with identity and DI,J(M) can be viewed
asDI,J(R)-module. So all the RiDI,J (i ∈ N0) can be viewed as additive
functors from the category of R-modules to the category of DI,J(R)-
modules.

(iv) Similarly as the proof of [BS, Remark 1.3.7], and since taking the direct
limits is an exact functor, we have that(

lim−→a∈W̃ lim−→n∈NExtiR(an,−)
)
i∈N0

is a negative strongly connected sequence of functors from R-modules.
Now, by [BS, Theorem 1.3.5] we show that there is a unique isomor-
phism of connected sequence of functors of R-modules(

RiDI,J(−)
)
i∈N0

∼=
(

lim−→a∈W̃ lim−→n∈NExtiR(an,−)
)
i∈N0

,

which extends the identity natural equivalence from DI,J to itself.

Theorem 2.2 (i) below is a special case of [BS, Remark 1.3.7], while item
(ii) is a special case of [BS, Definition 2.2.3].

Theorem 2.2. Let M be an R-module and let I, J be ideals of R. Then,
there are some natural isomorphisms:

(i) H i
I,J(M) ∼= lim−→a∈W̃ExtiR(R/a,M), ∀i ≥ 0;

(ii) DI,J(M) ∼= lim−→a∈W̃HomR(a,M);

(iii) DI(M) ∼= lim−→a∈Ṽ (I)
HomR(a,M), where Ṽ (I) := W̃ (I, 0).

Proof. (i) Firstly, we prove that ΓI,J(M) =
⋃

a∈W̃ (0 :M a). For an element
x ∈ ΓI,J(M), there exists an integer n ≥ 0 such that Inx ⊆ Jx, that is,
In ⊆ Ann(x) + J . Let b = Ann(x). Thus,

x ∈ (0 :M b) ⊆
⋃
a∈W̃

(0 :M a).

On the other hand, if x ∈
⋃

a∈W̃ (0 :M a), then there exists b ∈ W̃ with
x ∈ (0 :M b). Since, for the ideal b, there exists m such that Im ⊆ b + J ,
this concludes that Imx ⊆ Jx. So x ∈ ΓI,J(M).
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Clearly, {H i
I,J(−)}i≥0 and {lim−→a∈W̃ExtiR(R/a,−)}i≥0 are both strongly

connected. Moreover, H i
I,J(E) = lim−→a∈W̃ExtiR(R/a, E) = 0 for all i > 0 and

all injective R-modules E. Hence,

H i
I,J(M) ∼= lim−→a∈W̃ExtiR(R/a,M), ∀i ≥ 0.

(ii) Let a be an ideal of R. From the short exact sequence

0→ a→ R→ R/a→ 0,

we have the following commutative graph (the two horizontal lines are both
exact sequences):

0→ Hom(R/a,M) → M → Hom(a,M) → Ext1
R(R/a,M) → 0

f ↓ g ↓ ↓ ↓
0→ Γa(M) → M → Da(M) → H1

a (M) → 0

The four modules Γa(M),M,Da(M) and H1
a (M) in the below line are viewed

as the direct limits of the four direct systems. The maps f and g are given
by the inclusion. Next, we take the direct limits lim−→a∈W̃ in the above com-

mutative graph, and by (i) and [TYY, Theorem 3.2], we have the following
commutative graph:

0→ ΓI,J(M) → M → lim−→a∈W̃Hom(a,M) → H1
I,J(M) → 0

= ↓ = ↓ ↓ ∼= ↓
0→ ΓI,J(M) → M → DI,J(M) → H1

I,J(M) → 0

Hence, DI,J(M) ∼= lim−→a∈W̃HomR(a,M).

(iii) Let a ∈ Ṽ (I). Then there exists n > 0 such that In ⊆ a. Then
we have the following commutative graph (the three horizontal lines are all
exact sequences):

0→ Hom(R/a,M) → M → Hom(a,M) → Ext1
R(R/a,M) → 0

f1 ↓ g1 ↓ ↓ ↓
0→ Hom(R/In,M) → M → Hom(In,M) → Ext1

R(R/In,M) → 0
f2 ↓ g2 ↓ ↓ ↓

0→ ΓI(M) → M → DI(M) → H1
I (M) → 0
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The maps f1 , f2 , g1 and g2 are given by the inclusion. It follows that the
following graph is commutative (the two horizontal lines are both exact se-
quences):

0→ Hom(R/a,M) → M → Hom(a,M) → Ext1
R(R/a,M) → 0

f ↓ g ↓ ↓ ↓
0→ ΓI(M) → M → DI(M) → H1

I (M) → 0

The maps f = f2 ◦ f1 , g = g2 ◦ g1 are given by the inclusion. Then, we take
the direct limits lim−→a∈Ṽ (I)

, and by (i), we have the following commutative

graph (note that the four modules in the second line have nothing to do with
taking the direct limits):

0→ ΓI(M) → M → lim−→a∈Ṽ (I)
Hom(a,M) → H1

I (M) → 0
= ↓ = ↓ ↓ ∼= ↓

0→ ΓI(M) → M → DI(M) → H1
I (M) → 0

Hence, we have the isomorphism: DI(M) ∼= lim−→a∈Ṽ (I)
HomR(a,M).

The following corollary is an immediate result of Theorem 2.2.

Corollary 2.3. Let M be an R-module and let I be an ideal of R. Then
DI,0(M) ∼= DI(M). In Particular,

Da(M) ∼= Db(M)

for two ideals a, b in R such that V (a) = V (b).

In [BS, Theorem 2.2.1], there are very important connections between
the a-transform functor and the local cohomology functors. Similarly, we
will obtain some connections between the (I, J)-transform functor and the
local cohomology functors with respect to a pair of ideals.

Theorem 2.4. Let M be an R-module and let I, J be ideals of R.

(i) There exists an exact sequence

0→ ΓI,J(M)→M
ηM→ DI,J(M)→ H1

I,J(M)→ 0;

(ii) For each i ∈ N, RiDI,J(M) ∼= H i+1
I,J (M).
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Proof. (i) For each a ∈ W̃ (I, J), by [BS, Theorem 2.2.4 (i)], we obtain the
exact sequence 0 → Γa(M) → M → Da(M) → H1

a (M) → 0. Taking direct
limits on this sequence, by the above definition and [TYY, Theorem 3.2], one
obtains the result.
(ii) For each a ∈ W̃ (I, J), by [BS, Theorem 2.2.4 (i)], one has RiDa(M) ∼=
H i+1

a (M). Then, by passing to direct limits and by [TYY, Theorem 3.2], it
can be derived that

lim−→a∈W̃ lim−→n∈NExtiR(an,M) ∼= lim−→a∈W̃RiDa(M) ∼= H i+1
I,J (M).

Remark 2.5. Let M be an R-module and let I, J be ideals of R. From
Theorem 2.4(i) we obtain the following:

(i) M and DI,J(M) are isomorphic if and only if ΓI,J(M) = H1
I,J(M) = 0.

(ii) There is an exact sequence

0→M/ΓI,J(M)→ DI,J(M)→ H1
I,J(M)→ 0.

Lemma 2.6. Let M be an R-module and let I, J be two ideals of R. Then
the followings hold:

(i) DI,J(ΓI,J(M)) = 0;

(ii) DI,J(M) ∼= DI,J(M/ΓI,J(M));

(iii) DI,J(M) ∼= DI,J(DI,J(M));

(iv) ΓI,J(DI,J(M)) = 0 = H1
I,J(DI,J(M));

(v) H i
I,J(M) ∼= H i

I,J(DI,J(M)) for all i > 1.

Proof. The proof is straightforward, it follows by using Theorem 2.4, [TYY,
Corollary 1.13] and Remark 2.5(i).

Proposition 2.7. Let φ : M →M ′ be an R-homomorphism such that Kerφ
and Cokerφ are both (I, J)-torsion R-modules. Then

(i) The map DI,J(φ) : DI,J(M)→ DI,J(M ′) is an isomorphism;
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(ii) There exists an unique R-homomorphism ψ′ : M ′ → DI,J(M) such that
the diagram

M

ηM $$

φ //M ′

ψ′

��
DI,J(M)

commutes. In fact, ψ′ = DI,J(φ)−1 ◦ ηM ′.

(iii) The map ψ′ above is an isomorphism if and only if ηM ′ is an isomor-
phism if and only if ΓI,J(M ′) = H1

I,J(M ′) = 0.

Proof. To prove (i) we make use of Theorem 2.4, [TYY, Corollary 1.13] and
Lemma 2.6(i). For item (ii), make use of Lemma 2.6(iii). Finally, item (iii)
results from Theorem 2.4(i).

In [TYY, Corollary 2.5], it is shown that ifM is a J-torsion thenH i
I,J(M) ∼=

H i
I(M). Here, we provide a more direct proof for this fact. Further, next

result is a similar result for ideal transforms.

Proposition 2.8. Let I, J be ideals of R. If M is a J-torsion R-module,
then

DI,J(M) ∼= DI(M) ∼= DI(DI,J(M)) ∼= DI,J(DI(M)).

Proof. Since M is a J-torsion R-module, then we can take an injective res-
olution E• of M such that in which each term is a J-torsion R-module
by [TYY, Proposition 1.12]. Note that for any J-torsion R-module N ,
ΓI,J(N) = ΓI(N). Then the diagram

· · · −−−→ ΓI,J(Et(M)) −−−→ ΓI,J(Et+1(M)) −−−→ · · ·
=

y =

y
· · · −−−→ ΓI(E

t(M)) −−−→ ΓI(E
t+1(M)) −−−→ · · ·

commutes. It implies that

H i
I,J(M) = H i(ΓI,J(E•)) = H i(ΓI(E

•)) = H i
I(M)

for any i ≥ 0.

9



Let a ∈ Ṽ (I) ⊆ W̃ (I, J). We have the following commutative graph:

0→ Hom(R/a,M) → M → Hom(a,M) → Ext1
R(R/a,M) → 0

f ↓ g ↓ ↓ ↓
0→ ΓI,J(M) → M → DI,J(M) → H1

I,J(M) → 0.

By taking limits lim−→a∈Ṽ (I)
and by Theorem 2.2, we obtain the commutative

graph below (the two horizontal lines are both exact sequence):

0→ ΓI(M) → M → DI(M) → H1
I (M) → 0

= ↓ = ↓ ↓ ∼= ↓
0→ ΓI,J(M) → M → DI,J(M) → H1

I,J(M) → 0.

It follows that DI,J(M) ∼= DI(M). Since any subquotient module of a J-
torsion R-module is still a J-torsion and H i

I,J(M) is a J-torsion for i ≥ 0,
it follows from Remark 2.5(ii) that DI,J(M) is a J-torsion. For a similar
reason, DI(M) is a J-torsion. Hence,

DI,J(M) ∼= DI,J(DI,J(M)) ∼= DI(DI,J(M))

and
DI(M) ∼= DI(DI(M)) ∼= DI,J(DI(M))

by Lemma 2.6(iii).

The following theorem is a generalization of the base ring independence
theorem concerning ideal transforms (see [BS, Theorem 2.2.21]).

Theorem 2.9. Let I,J be ideals of R and ϕ : R→ R′ a ring homomorphism,
and let M ′ be an R′-module. Assume that ϕ(J) = JR′. Then there exists an
isomorphism DI,J(M ′) ∼= DIR′,JR′(M

′) of R′-modules.

Proof. From the proof of [BS, Theorem 2.2.21], one observes there exists an
isomorphism Da(M

′) ∼= DaR′(M
′) as R and R′-modules. Thus, in passing to

limits, we obtain an isomorphism

DI,J(M ′) = lim−→a∈W̃ (I,J)
Da(M

′) ∼= lim−→a∈W̃ (I,J)
DaR′(M

′).

as R and R′-modules, as well. Also, if ϕ(J) = JR′ then

W̃ (IR′, JR′) = {b ⊆ R′ | b is an ideal of R′ and ϕ−1(b) ∈ W̃ (I, J)}.
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In fact, let b be an ideal of R′. So b ∈ W̃ (IR′, JR′) iff ϕ(In) ⊆ b + ϕ(J) for
some integer n iff In ⊆ ϕ−1(b) + J for some n. Besides,

{aR′ | a ∈ W̃ (I, J)} ⊆ W̃ (IR′, JR′).

As for any b ∈ W̃ (IR′, JR′), b ⊇ ϕ−1(b)R′, the set {aR′ | a ∈ W̃ (I, J)}
becomes a cofinal subset of W̃ (IR′, JR′) so that by [R, Exercise 2.43], we
obtain

lim−→a∈W̃ (I,J)
DaR′(M

′) ∼= lim−→b∈W̃ (IR′,JR′)
Db(M

′) = DIR′,JR′(M
′).

Proposition 2.10. Let R be a Noetherian ring and let M be an R-module.
Then Ass(DI,J(M)) = Ass(M/ΓI,J(M)).

Proof. Firstly, note that if p ∈ Ass(DI,J(M)), then there exists an injective
map R/p ↪→ DI,J(M), and since ΓI,J(DI,J(M)) = 0 (by Lemma 2.6(iv)), one
obtains ΓI,J(R/p) = 0. Thus, by [TYY, Proposition 1.10], p 6∈ W (I, J).

The short exact sequence

0→M/ΓI,J(M)→ DI,J(M)→ H1
I,J(M)→ 0

implies that

Ass(DI,J(M)) ⊆ Ass(M/ΓI,J(M)) ∪ Ass(H1
I,J(M)),

Since Ass(H1
I,J(M)) ⊆ W (I, J) (see [TYY, Proposition 1.7]), one has

Ass(DI,J(M)) ⊆ Ass(M/ΓI,J(M)).

On the other hand, by virtue of the above short exact sequence,

Ass(M/ΓI,J(M)) ⊆ Ass(DI,J(M)).

The following is an immediate result of Corollary 2.3 and Proposition 2.9.

Corollary 2.11. Ass(DI(M)) = Ass(M/ΓI(M)).
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It is well-known that

Ass(ΓI(M)) = Ass(M) ∩ V (I)

and
Ass(M/ΓI(M)) = Ass(M)\V (I).

The authors of [TYY] showed that

Ass(ΓI,J(M)) = Ass(M) ∩W (I, J)

as a corresponding result of one of the above results for (I, J)-torsion module
ΓI,J(M) in [TYY, Proposition 1.10]. Now we make a supplement for it by
showing the remaining part.

Lemma 2.12. [S, Proposition 4.5 and Exercise 3.13] Let {Mi}i∈A be a direct
system of R-modules. If p ∈ AssR(lim−→Mi) then p ∈

⋃
i∈A AssRMi.

Proposition 2.13. Let R be a Noetherian ring and M be an R-module.
Then, Ass(M/ΓI,J(M)) = Ass(M)\W (I, J). Thus, Ass(M) = Ass(ΓI,J(M))∪
Ass(M/ΓI,J(M)), as a disjunct union.

Proof. From the short exact sequence

0→ ΓI,J(M)→M →M/ΓI,J(M)→ 0,

we know that

Ass(M) ⊆ Ass(ΓI,J(M)) ∪ Ass(M/ΓI,J(M)).

By [TYY, Proposition 1.10], Ass(ΓI,J(M)) ⊆ W (I, J). Then,

Ass(M)\W (I, J) ⊆ Ass(M/ΓI,J(M)).

Now we prove the other inclusion. By Proposition 2.9, it is enough to prove
that Ass(DI,J(M)) ⊆ Ass(M). Note that

DI,J(M) ∼= lim−→a∈W̃HomR(a,M) (by Theorem 2.2(ii)).

By Lemma 2.12, we have that,

Ass(DI,J(M)) ⊆
⋃
a∈W̃

Ass(HomR(a,M)).
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While, for each a ∈ W̃ , by a well-known fact in [B],

Ass(HomR(a,M)) = Ass(M) ∩ Supp(a) ⊆ Ass(M).

Thus, Ass(DI,J(M)) ⊆ Ass(M) and

Ass(M) = Ass(ΓI,J(M)) ∪ Ass(M/ΓI,J(M)).

This completes the proof.

By Proposition 2.10, we obtain the following.

Corollary 2.14. Ass(DI,J(M)) = Ass(M) \W (I, J).

Proposition 2.15. Let M be a finite R-module. Then

Supp(DI,J(M)) =
⋂

a∈W̃ (I,J)

Supp(Da(M)).

In particular, if W̃ (I, J) ⊆ W̃ (I1, J1), then Supp(DI1,J1(M)) ⊆ Supp(DI,J(M)).

Proof. By Proposition 2.10, Supp(DI,J(M)) = Supp(M/ΓI,J(M)). So we
only need to prove that

Supp(M/ΓI,J(M)) =
⋂

a∈W̃ (I,J)

Supp(M/Γa(M)).

Since for a ∈ W̃ (I, J), Γa(M) is a submodule of ΓI,J(M), M/ΓI,J(M) can
be viewed as a quotient of M/Γa(M) and

Supp(M/ΓI,J(M)) ⊆
⋂

a∈W̃ (I,J)

Supp(M/Γa(M)).

Let p 6∈ Supp(M/ΓI,J(M)). Then,

Mp/(ΓI,J(M))p = (M/ΓI,J(M))p = 0.

So Mp = (ΓI,J(M))p. If {m1,m2, · · · ,mk} is a generator set for the R-module
M , then there exists si ∈ R\p, 1 ≤ i ≤ k, such that simi ∈ ΓI,J(M). Then,
there exist ni, 1 ≤ i ≤ k, such that Ini ⊆ J + (0 :R simi). Denote

b =
⋂

i∈{1,2,··· ,k}

(0 :R simi).

13



Clearly, In1+n2+···+nk ⊆ J + b, and b ∈ W̃ (I, J). Moreover, for 1 ≤ i ≤
k, simi ∈ Γb(M). This shows that mi

1
∈ (Γb(M))p, and Mp = (Γb(M))p.

Therefore, p 6∈ Supp(M/Γb(M)). The proof is completed.

3 Associated primes of H i
I,J(M) and RiDI,J(M).

Let M be a non-zero R-module. The Krull dimension dimRM of M is the
supremum of lengths of chains of prime ideals in SuppRM if this supremum
exists, and ∞ otherwise. In the case when M is finitely generated, this is
equal to dimRR/(0 : M). If M = 0, we set dimRM = −1.

Lemma 3.1. Let M be a non-zero finite R-module. Let k, t be two integers.
The followings are equivalent:

(i) dimRΓI,J(M) ≤ k;

(ii) dimRHomR(R/a,M) ≤ k, ∀a ∈ W̃ (I, J);

(iii) dimRΓa(M) ≤ k, ∀a ∈ W̃ (I, J).

Proof. Since

HomR(R/a,M) ⊆ Γa(M) ⊆ ΓI,J(M), ∀a ∈ W̃ (I, J),

we have

SuppR(HomR(R/a,M)) ⊆ SuppR(Γa(M)) ⊆ SuppR(ΓI,J(M)), ∀a ∈ W̃ (I, J).

So the proof of (i)⇒ (iii)⇒ (ii) completes.
On the other hand, for any chain of prime ideals having the maximal

length in SuppR(ΓI,J(M)), there exists a ∈ W̃ (I, J) such that this chain is
included in SuppR(HomR(R/a,M)). This completes the proof of (ii)⇒ (i).

Theorem 3.2. Let R be a Noetherian ring and M a non-zero finite R-
module. Let E•(M) a minimal injective resolution of M . Let k, t be two
integers. The followings are equivalent:

(i) dimRH
i
I,J(M) ≤ k, ∀i < t;

14



(ii) dimRExtiR(R/a,M) ≤ k, ∀i < t, ∀a ∈ W̃ (I, J);

(iii) dimRH
i
a(M) ≤ k, ∀i < t, ∀a ∈ W̃ (I, J);

(iv) dimRΓI,J(Ei(M)) ≤ k, ∀i < t;

(v) dimRHomR(R/a, Ei(M)) ≤ k, ∀i < t, ∀a ∈ W̃ (I, J);

(vi) dimRΓa(E
i(M)) ≤ k, ∀i < t, ∀a ∈ W̃ (I, J) .

Moreover, if k = −1, and one of these equivalent conditions is satisfied,
then there is an isomorphism:

HomR(R/a, H t
I,J(M)) ∼= HomR(R/a, H t

a(M)) ∼= ExttR(R/a,M), ∀a ∈ W̃ (I, J).

Proof. Firstly we prove the equivalence of (i) and (iv).
Note that the following is a commutative graph:

· · ·
ΓI,J (dr−1)
−−−−−−→ ΓI,J(Er(M))

ΓI,J (dr)
−−−−−→ ΓI,J(Er+1(M))

ΓI,J (dr+1)
−−−−−−→ · · ·y y

· · · dr−1

−−−→ Er(M)
dr−−−→ Er+1(M)

dr+1

−−−→ · · ·

Since Kerdr ⊆ Er(M) is an essential extension, then KerΓI,J(dr) = Kerdr ∩
ΓI,J(Er(M)) ⊆ ΓI,J(Er(M)) is an essential extension. Note that if K ⊆ L
is an essential extension, then AssRK = AssRL, so that dimRK ≤ k if and
only if dimRL ≤ k, for some integer k. Therefore,

(a) dimRKerΓI,J(dr) ≤ k ⇐⇒ dimRΓI,J(Er(M)) ≤ k

for some integer k. On the other hand, it is clear that

(b) dimRImΓI,J(dr) ≤ k if dimRΓI,J(Er(M)) ≤ k.

By using the following exact sequence

0 −→ ImΓI,J(dr−1) −→ KerΓI,J(dr) −→ Hr
I,J(M) −→ 0

for r = 1, 2, · · · , t− 1 and KerΓI,J(d0) ∼= H0
I,J(M), it follows from the results

(a) and (b) that
dimRH

i
I,J(M) ≤ k, ∀i < t ⇐⇒ dimRΓI,J(Ei(M)) ≤ k, ∀i < t.
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Using the above method, for each a ∈ W̃ (I, J), we can also prove that
dimRExtiR(R/a,M) ≤ k, ∀i < t ⇐⇒ dimRHomR(R/a, Ei(M)) ≤ k, ∀i <

t, and
dimRH

i
a(M) ≤ k, ∀i < t ⇐⇒ dimRΓa(E

i(M)) ≤ k, ∀i < t.
Finally, it follows from Lemma 3.1 the equivalence of these conditions.

Let k = −1. Assume that ΓI,J(Ei(M)) = 0 for ∀i < t. Let a ∈ W̃ (I, J).
Set T (−) = ΓI,J(−), Γa(−) or HomR(R/a,−). From the following commu-
tative graph:

· · · T (dt−1)−−−−→ T (Et(M))
T (dt)−−−→ T (Et+1(M))

T (dt+1)−−−−→ · · ·y y
· · · dt−1

−−−→ Et(M)
dt−−−→ Et+1(M)

dt+1

−−−→ · · · ,

it follows that, for ∀a ∈ W̃ (I, J),

HomR(R/a,KerΓI,J(dt)) ∼= HomR(R/a,Kerdt) ∼= HomR(R/a,KerΓa(d
t)).

This shows that, for ∀a ∈ W̃ (I, J),

HomR(R/a, H t
I,J(M)) ∼= ExttR(R/a,M) ∼= HomR(R/a, H t

a(M)).

By virtue of the above theorem for the cases that k = −1, 0, the following
corollaries may be obtained in another way.

Corollary 3.3. ([TYY, Theorem 4.1]) For a finite R-module M , there is
an equality

inf{i | H i
I,J(M) 6= 0} = inf{depthMp | p ∈ W (I, J) }.

Proof. Note the well-known fact that

inf{i | ExtiR(R/a,M) 6= 0 } = inf{depthMp | p ∈ V (a) }.

It is clear that p ∈ W (I, J) if and only if ∃ a ∈ W̃ (I, J), p ∈ V (a). Then,
by Theorem 3.2,

inf{i | H i
I,J(M) 6= 0} = inf

a∈W̃ (I,J)
inf{i | ExtiR(R/a,M) 6= 0 }
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= inf
a∈W̃ (I,J)

inf{depthMp | p ∈ V (a)}

= inf{depthMp | p ∈ W (I, J) }.

Corollary 3.4. ([CW, Theorem 2.4]) Let M be a finite module on a local
ring (R,m). Then there is an equality

inf{i | H i
I,J(M) is not Artinian } = inf{depthMp | p ∈ W (I, J)\{m} }.

Proof. From the proof of Theorem 3.2, it is clear that

dimRH
i
I,J(M) ≤ 0 for all i < t ⇐⇒ dimRΓI,J(Ei(M)) ≤ 0 for all i < t

⇐⇒ ΓI,J(Ei(M)) = Γm(Ei(M)) for all i < t
⇐⇒ ΓI,J(Ei(M)) is Artinian for all i < t
⇐⇒ H i

I,J(M) is Artinian for all i < t.
Note the well-known fact that

inf{i | H i
a(M) is not Artinian } = inf{depthMp | p ∈ V (a)\{m} }.

By using the similar method to the above corollary, we get this result.

The following proposition improves one of the main results in [TT] (See
[TT, Theorem 3.6]).

Proposition 3.5. Let M be a finite R-module and t = inf{i | H i
I,J(M) 6= 0}.

Then, there are some equalities

AssRH
t
I,J(M) =

⋃
a ∈ W̃ (I, J)

grade(a,M) = t

AssRH
t
a(M) =

⋃
a ∈ W̃ (I, J)

grade(a,M) = t

AssRExttR(R/a,M).

=
⋃

p ∈W (I, J)

grade(p,M) = t

AssRH
t
p(M) =

⋃
p ∈W (I, J)

grade(p,M) = t

AssRExttR(R/p,M).

Proof. We recall the well-known fact that

AssRH
r
I (M) = AssRExtrR(R/I,M)
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for r = grade(I,M). So it is enough to prove that

AssRH
t
I,J(M) ⊆

⋃
p ∈W (I, J)

grade(p,M) = t

AssRH
t
p(M)

⊆
⋃

a ∈ W̃ (I, J)

grade(a,M) = t

AssRH
t
a(M)

⊆ AssRH
t
I,J(M).

The second inclusion is clear. We will prove the first and the third inclusions.
Let p ∈ AssRH

t
I,J(M). By [TYY, Proposition 1.7] and [TYY, Corollary

1.13], p ∈ W (I, J). Note the well-known fact that, for a finitely generated
R−module K and an arbitrary R−module L, AssRHomR(K,L) = {p ∈
AssRL | ∃ q ∈ AssRK, q ⊆ p} (see [B]). Then, by Theorem 3.2,

p ∈ AssRHomR(R/p, H t
I,J(M)) = AssRHomR(R/p, H t

p(M)) = AssRH
t
p(M).

ThenH t
p(M) 6= 0, and grade(p,M) ≤ t. On the other hand, t = inf{depthMq |

q ∈ W (I, J) } ≤ inf{depthMq | q ∈ V (p) } = grade(p,M). So t = grade(p,M),
and the proof of the first inclusion completes.

Let a ∈ W̃ (I, J), grade(a,M) = t and p ∈ AssRH
t
a(M). Then by Theorem

3.2,

p ∈ AssRHomR(R/a, H t
a(M)) = AssRHomR(R/a, H t

I,J(M)) ⊆ AssRH
t
I,J(M).

This completes the proof of the third inclusion.

In the following, a characterization for the associated primes of the non-
vanishing local cohomology with respect to a pair ideals is given. It general-
izes [TYY, Proposition 5.6] (see Remark 3.8) and [TT, Theorem 3.6].

Theorem 3.6. Let M be a finite R-module and t = inf{i | H i
I,J(M) 6= 0}.

Then, there is an equality

AssRH
t
I,J(M) = {p ∈ W (I, J) | depthMp = t}.
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Proof. We take p ∈ W (I, J) such that depthRp
(Mp) = t. Then (H t

p(M))p ∼=
H t

pRp
(Mp) 6= 0. Therefore, H t

p(M) 6= 0. So grade(p,M) ≤ t. Note that

t = inf{depthMq | q ∈ W (I, J) } ≤ inf{depthMq | q ∈ V (p) } = grade(p,M).

Therefore, grade(p,M) = t. From the fact that

AssRpHomRp(Rp/pRp, H
t
pRp

(Mp)) = AssRpH
t
pRp

(Mp) 6= ∅,

we know that HomRp(Rp/pRp, H
t
pRp

(Mp)) 6= 0. This implies that

pRp ∈ AssRpH
t
pRp

(Mp) = AssRp(H
t
p(M))p.

Then p ∈ AssRH
t
p(M). By Proposition 3.5, we get that

{p ∈ W (I, J) | depthMp = t} ⊆ AssRH
t
I,J(M).

On the other hand, let p ∈ AssRH
t
I,J(M). Then p ∈ W (I, J). Then, by

Theorem 3.2,

p ∈ AssRHomR(R/p, H t
I,J(M)) = AssRHomR(R/p, H t

p(M)) = AssRH
t
p(M).

Since H t
pRp

(Mp) = (H t
p(M))p 6= 0, we get depthMp ≤ t. Also,

t = inf{depthMq | q ∈ W (I, J) } ≤ depthMp.

Therefore, depthMp = t, and

AssRH
t
I,J(M) ⊆ {p ∈ W (I, J) | depthMp = t}.

This completes the proof.

Corollary 3.7. Let M be a finite R−module and t = inf{i | H i
I(M) 6= 0}(=

grade(I,M)). Then, there is an equality

AssRH
t
I(M) = {p ∈ V (I) | depthMp = t}.

Hence, if x1, x2, · · · , xt is a maximal M−sequence in I, then

AssRH
t
I(M) = V (I) ∩ AssRM/(x1, x2, · · · , xt)M.
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Proof. In Theorem 3.6, we take J = 0 and get that

AssRH
t
I(M) = {p ∈ V (I) | depthMp = t}.

Now we shall prove that

AssRH
t
I(M) = V (I) ∩ AssRM/(x1, x2, · · · , xt)M.

Let p ∈ AssRH
t
I(M). Since depthMp = t, it follows that x1/1, x2/1, · · · , xt/1

is a maximalMp−sequence in pRp, and so pRp ∈ AssRpMp/(x1, x2, · · · , xt)Mp.
Hence, p ∈ AssRM/(x1, x2, · · · , xt)M . On the other hand, we let p ∈
AssRM/(x1, x2, · · · , xt)M . Then

pRp ∈ AssRpMp/(x1, x2, · · · , xt)Mp.

This means that depthMp = t. This completes the proof.

Remark 3.8. Takahashi, Yoshino and Yoshizawa gave the following result
[TYY, Proposition 5.6]: Let (R,m) be a Cohen-Macaulay local ring of di-
mension d with canonical module KR = Hom(Hd

m(R), E(R/m)). Assume that
J is a perfect ideal of grade r. Then there is the following equality

AssRH
d−r
m,J (KR) = {p ∈ W (m, J) | htp = d− r}.

Since KR is a Cohen-Macaulay module of dimension d, by [TYY, Proposition
5.6], it follows that, for p ∈ W (m, J),

depth(KR)p = dim(KR)p = dimKRp = dimRp = d− r.
Therefore, Theorem 3.6 generalizes [TYY, Proposition 5.6].

Proposition 3.9. Let R be a Noetherian ring, M a finite R-module and
t = inf{i | H i

I,J(M) 6= 0}. Then

(i) Ass(H t
I,J(M)) =

⋃
a∈W̃ (I,J) Ass(H t

a(M)).

(ii) Ass(H i
I,J(M)) ⊆

⋃
a∈W̃ (I,J) Ass(H i

a(M)) for each i ≥ 0.

(iii) Ass(RiDI,J(M)) ⊆
⋃

a∈W̃ (I,J) Ass(RiDa(M)) for each i ≥ 0.

Proof. Item (i) can be deduced as same as Proposition 3.5 (we do not consider
the grade(depth) in the proof of Proposition 3.5). Further, since

H i
I,J(M) ∼= lim−→a∈W̃H

i
a(M),

and

RiDI,J(M) ∼= lim−→a∈W̃ lim−→n∈NExtiR(an,M) ∼= lim−→a∈W̃RiDa(M),

items (ii) and (iii) follow by Lemma 2.12.
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4 Exactness of ideal transforms

In this section, we discuss about exactness of ideal transforms with respect
to a pair of ideals (I, J). In fact, in this sense the behavior of the functor
DI,J is very similar to the ordinary case for one ideal.

Remark 4.1. Using the notation of Theorem 2.4, it can be shown that
DI,J(ηM) = ηDI,J(M)

, and further, ηR : R → DI,J(R) is a ring homomor-
phism. We recall that DI,J(R) carries a structure of a commutative ring
since it is given by limits of commutative rings.

Proposition below may be seen for the usual case in [BS, Proposition
2.2.17].

Lemma 4.2. Let φ : R → R′ a ring homomorphism such that Kerφ and
Cokerφ are both (I, J)-torsion, where R′ is regarded as an R-module through
φ. Then the unique R-homomorphism ψ′ : R → DI,J(R) (obtained from
Proposition 2.7) such that the diagram

R

ηR ##

φ // R′

ψ′

��
DI,J(R)

commutes is a ring homomorphism.

Proof. Firstly, note that ψ′(1R′) = ψ′(φ(1R)) = ηR(1R) = 1DI,J (R). Now

let r′1, r
′
2 ∈ R′ and let r′1, r

′
2 be their natural images in Cokerφ. So, by

hypothesis, there exists n such that In ⊆ ann(r′i) + J for i = 1, 2. Let
x := ψ′(r′1)ψ′(r′2) − ψ′(r′1r′2) ∈ DI,J(R). We claim I2n ⊆ ann(x) + J so that
x ∈ ΓI,J(DI,J(R)) = 0. In fact, let b1, b2 ∈ In. Thus bi = ai + ji where
ai ∈ ann(r′i) and ji ∈ J for i = 1, 2. In this way, air

′
i = φ(ri) for some ri ∈ R

and b1b2 = a1a2 + j with j ∈ J . In conclusion, see that

a1a2ψ
′(r′1)ψ′(r′2) = ψ′(a1r

′
1)ψ′(a2r

′
2) = ψ′(φ(r1))ψ′(φ(r2))

= ηR(r1)ηR(r2) = ηR(r1r2) = ψ′(φ(r1r2))

= ψ′(φ(r1)φ(r2)) = ψ′(a1r
′
1a2r

′
2) = a1a2ψ

′(r′1r
′
2),

so that a1a2 ∈ ann(x).
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Next result is a special case of [BS, Corollary 2.2.18].

Corollary 4.3. Let M be an R-module and S a multiplicatively closed subset
of R formed entirely of non-zerodivisors on M such that S ∩ a 6= ∅ for all
a ∈ W̃ (I, J). Then there exists an R-isomorphism

ψ
′

M :
⋃

a∈W̃ (I,J)

(M :S−1M a)→ DI,J(M)

for which the diagram

M

ηM ''

⊆ //
⋃

a∈W̃ (I,J)(M :S−1M a)

ψ′

��
DI,J(M)

commutes.

Proof. By the ordinary case (see [BS, Corollary 2.2.15]), we know that there
exists a R-isomorphism

M

ηa ''

⊆ //
⋃
n∈N(M :S−1M an)

ψ′a
��

Da(M)

By passing to limits, we obtain

M

ηM ))

⊆ //
⋃

a∈W̃ (I,J)

⋃
n∈N(M :S−1M an)

ψ′M
��

DI,J(M)

Note that
⋃

a∈W̃ (I,J)

⋃
n∈N(M :S−1M an) =

⋃
a∈W̃ (I,J)(M :S−1M a).

The following is about exactness of ideal transforms which is an extension
of [BS, Lemma 6.3.1] and the proof is very similar (we make use of Theorem
2.4(ii)), so we omit it.

Proposition 4.4. Let M be an R-module. Then the following conditions are
equivalent:
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(i) DI,J is an exact functor;

(ii) H i
I,J(R) = 0 for all i > 1;

(iii) H2
I,J(M) = 0 for each finite R-module M ;

(iv) H2
I,J(M) = 0 for each R-module M .

We will see the hypothesis from next result implies the exactness of DI,J .
The usual case for next proposition would be [BS, Proposition 6.3.4].

Proposition 4.5. Set c := ∩a∈W̃ (I,J)a and assume that cDI,J(R) = DI,J(R).
Then DI,J(R) is a finitely generated R-algebra.

Proof. The ring R is an (I, J)-torsion if and only if DI,J(R) = 0 by Remark
2.5. So, we assume ΓI,J(R) 6= R and set R := R/ΓI,J(R).

By Remark 2.5, there is an injective homomorphism (induced by ηR)
φR : R → DI,J(R) and Coker(ηR) ∼= H1

I,J(R), and consequently, Coker(φR)

is (I, J)-torsion, where I := IR and J := JR. In conclusion, the R-
homomorphism ψ : DI,J(R) → DI,J(R) (obtained from Lemma 4.2) such
that the diagram

R

ηR ""

φR // DI,J(R)

ψ

��
DI,J(R)

commutes is a ring homomorphism. Besides, by [TYY, Theorem 2.7] and
Lemma 2.6(iv), H i

I,J
(DI,J(R)) ∼= H i

I,J(DI,J(R)) = 0 for i = 0, 1. Because

of Proposition 2.7(iii), the map ψ is an isomorphism, so that cDI,J(R) =

DI,J(R). A fortiori, (∩a∈W̃ (I,J)a)DI,J(R) = DI,J(R). As W̃ (I, J) = {a | a ∈
W̃ (I, J)} and ΓI,J(R) = 0, we may assume ΓI,J(R) = 0. It means that for

each a ∈ W̃ (I, J) there exists an element sa ∈ a which is a non-zerodivisor on
R. Now define S := {sn1

a1 · · · s
nr
ar | sai ∈ ai, ni ∈ N}. By Corollary 4.3, the ring

D :=
⋃

a∈W̃ (I,J)(R :S−1R a) is such that cD = D. Thus, if c1, ..., ct generate

c, then there exist d1, ..., dt ∈ D such that 1 =
∑t

i=1 cidi. We claim D =
R[d1, ..., dt]. Let z ∈ (R :S−1R a), so that ciz ∈ (R :S−1R R) ⊆ R[d1, ..., dt] for
i = 1, ..., t. Hence, z =

∑t
i=1 cidiz =

∑t
i=1(ciz)di ∈ R[d1, ..., dt].

Next result complements Proposition 4.5. See [BS, Proposition 6.3.5] for
the ordinary case.
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Proposition 4.6. Set c := ∩a∈W̃ (I,J)a. The followings are equivalent.

(i) The functor DI,J is exact and c ∈ W̃ (I, J);

(ii) cDI,J(R) = DI,J(R).

Proof. (i)⇒ (ii) By [BS, Exercise 6.1.8], one has

DI,J(R/c) ∼= DI,J(R)/cDI,J(R). (4.1)

Now see that by Lemma 2.6(i), c ∈ W̃ (I, J) implies DI,J(R/c) = 0.
(ii)⇒ (i) We have aDI,J(R) = DI,J(R) for all a ∈ W̃ (I, J). By Proposi-

tion 4.5, DI,J(R) is Noetherian, so by the usual Independence Theorem,

H i
a(DI,J(R)) ∼= H i

aDI,J (R)(DI,J(R)) = 0 for all i ≥ 0.

Then by [TYY, Theorem 3.2], one has H i
I,J(DI,J(R)) = 0. Lemma 2.6(v)

says H i
I,J(R) = H i

I,J(DI,J(R)) for i > 1. The exactness of DI,J follows
by Proposition 4.4. On the other hand, by the isormorphism above (4.1),
one gets DI,J(R/c) = 0, so that R/c = ΓI,J(R/c) (see Remark 2.5(ii)). In
particular, In ⊆ annR(1) + J for some n > 0. As annR(1) = c, we have
c ∈ W̃ (I, J).
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