
Pedro Antonio GutiérrezUniversity of Cordoba (Spain) | UCO · Department of Computer Sciences and Numerical Analysis
Pedro Antonio Gutiérrez
Ph.D.
About
226
Publications
55,680
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,828
Citations
Citations since 2017
Introduction
Pedro Antonio Gutiérrez received the B.S. degree in computer science from the University of Sevilla, Spain, in 2006, and the Ph.D. degree in computer science and artificial intelligence from the University of Granada, Spain, in 2009. He is currently an Assistant Professor in the Department of Computer Science and Numerical Analysis, University of Córdoba, Spain. His current research interests include neural networks and their applications, evolutionary computation, and hybrid algorithms.
Additional affiliations
February 2008 - present
January 2007 - present
Universidad de Córdoba
Education
June 2007 - June 2009
Publications
Publications (226)
Predictive Maintenance (PdM) methods aim to facilitate the scheduling of maintenance work before equipment failure. In this context, detecting early faults in automated teller machines (ATMs) has become increasingly important since these machines are susceptible to various types of unpredictable failures. ATMs track execution status by generating m...
Time Series Classification (TSC) covers the supervised learning problem where input data is provided in the form of series of values observed through repeated measurements over time, and whose objective is to predict the category to which they belong. When the class values are ordinal, classifiers that take this into account can perform better than...
Predictive Maintenance (PdM) methods aim to facilitate the scheduling of maintenance work before equipment failure. In this context, detecting early faults in automated teller machines (ATMs) has become increasingly important since these machines are susceptible to various types of unpredictable failures. ATMs track execution status by generating m...
Time Series Classification (TSC) is an extensively researched field from which a broad range of real-world problems can be addressed obtaining excellent results. One sort of the approaches performing well are the so-called dictionary-based techniques. The Temporal Dictionary Ensemble (TDE) is the current state-of-the-art dictionary-based TSC approa...
Recently, solving ordinal classification problems using machine learning and deep learning techniques has acquired important attention. There are many real-world problems in different areas of knowledge where a categorical variable needs to be predicted, and the existing categories follow an order associated with the nature of the problem: e.g. med...
The sanitary emergency caused by COVID-19 has compromised countries and generated a worldwide health and economic crisis. To provide support to the countries' responses, numerous lines of research have been developed. The spotlight was put on effectively and rapidly diagnosing and predicting the evolution of the pandemic, one of the most challengin...
In this paper we have tackled the problem of long-term air temperature prediction with eXplainable Artificial Intelligence (XAI) models. Specifically, we have evaluated the performance of an Artificial Neural Network (ANN) architecture with sigmoidal neurons in the hidden layer, trained by means of an evolutionary algorithm (Evolutionary ANNs, EANN...
In the last years, multiple quality control tasks consist in classifying some items based on their aesthetic characteristics (aesthetic quality control, AQC), where usually the aspect of the material is not measurable and is based on expert observation. Given the increasing amount of images in this domain, deep learning (DL) models can be used to e...
Many types of research have been carried out with the aim of combating the COVID-19 pandemic since the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason, predicting the SARS-CoV-2 transmissi...
Machine learning (ML) is the field of science that combines knowledge from artificial intelligence, statistics and mathematics intending to give computers the ability to learn from data without being explicitly programmed to do so. It falls under the umbrella of Data Science and is usually developed by Computer Engineers becoming what is known as D...
Modelling extreme values distributions, such as wave height time series where the higher waves are much less frequent than the lower ones, has been tackled from the point of view of the Peak-Over-Threshold (POT) methodologies, where modelling is based on those values higher than a threshold. This threshold is usually predefined by the user, while t...
This work analyzes the performance of several state-of-the-art Time Series Classification (TSC) techniques in the cryptocurrency returns modeling field. The data used in this study comprehends the close price of 6 of the principal cryptocurrencies, collected with a frequency of 5 minutes from January 1st to September 21th of 2021. The aim of this w...
One of the main relevant topics of Industry 4.0 is related to the prediction of Remaining Useful Life (RUL) of machines. In this context, the “Smart Manufacturing Machine with Predictive Lifetime Electronic maintenance” (SIMPLE) project aims to promote collaborations among different companies in the scenario of predictive maintenance. One of the to...
Nowadays, decision support systems (DSSs) are widely used in several application domains, from industrial to healthcare and medicine fields. Concerning the industrial scenario, we propose a DSS oriented to the aesthetic quality control (AQC) task, which has quickly established itself as one of the most crucial challenges of Industry 4.0. Taking int...
Automatic classification tasks on structured data have been revolutionized by Convolutional Neural Networks (CNNs), but the focus has been on binary and nominal classification tasks. Only recently, ordinal classification (where class labels present a natural ordering) has been tackled through the framework of CNNs. Also, ordinal classification data...
In this paper, an approach based on a time series clustering technique is presented by extracting relevant features from the original temporal data. A curve characterization is applied to the daily contagion rates of the 34 sanitary districts of Andalusia, Spain. By determining the maximum incidence instant and two inflection points for each wave,...
Atmospheric low-visibility events are usually associated with fog formation. Extreme low-visibility events deeply affect the air and ground transportation, airports and motor-road facilities causing accidents and traffic problems every year. Machine Learning (ML) algorithms have been successfully applied to many fog formation and low-visibility pre...
The prediction of wave height and flux of energy is essential for most ocean engineering applications. To simultaneously predict both wave parameters, this paper presents a novel approach using short-term time prediction horizons (6h and 12h). Specifically, the methodology proposed presents a twofold simultaneity: 1) both parameters are predicted b...
La Ciencia de Datos es el área que comprende el desarrollo de métodos científicos, procesos y sistemas para extraer conocimiento a partir de datos recopilados previamente, con el objetivo de analizar los procedimientos llevados a cabo actualmente. El perfil profesional asociado a este campo es el del Científico de Datos, el cual requiere un amplio...
Time Series Ordinal Classification (TSOC) is yet an unexplored field of machine learning consisting in the classification of time series whose labels follow a natural order relationship between them. In this context, a well-known approach for time series nominal classification was previously used: the Shapelet Transform (ST). The exploitation of th...
Activation functions are used in neural networks as a tool to introduce non-linear transformations into the model and, thus, enhance its representation capabilities. They also determine the output range of the hidden layers and the final output. Traditionally, artificial neural networks mainly used the sigmoid activation function as the depth of th...
Currently, the use of deep learning for solving ordinal classification problems, where categories follow a natural order, has not received much attention. In this paper, we propose an unimodal regularisation based on the beta distribution applied to the cross-entropy loss. This regularisation encourages the distribution of the labels to be a soft u...
Activation functions lie at the core of every neural network model from shallow to deep convolutional neural networks. Their properties and characteristics shape the output range of each layer and, thus, their capabilities. Modern approaches rely mostly on a single function choice for the whole network, usually ReLU or other similar alternatives. I...
Automatic classification tasks have been revolutionized by Convolutional Neural Networks (CNNs), but the focus has been on binary and nominal classification tasks. Only recently, ordinal classification (where class labels present a natural ordering) has been tackled through the framework of CNNs, such as adapting the classic Proportional Odds Model...
Objective
One of the main problems of lung transplantation is the shortage of organs as well as reduced survival rates. In the absence of an international standardized model for lung donor-recipient allocation, we set out to develop such a model based on the characteristics of past experiences with lung donors and recipients with the aim of improvi...
3D image scans are an assessment tool for neurological damage in Parkinson's disease (PD) patients. This diagnosis process can be automatized to help medical staff through Decision Support Systems (DSSs), and Convolutional Neural Networks (CNNs) are good candidates, because they are effective when applied to spatial data. This paper proposes a 3D C...
Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points...
3D image scans are an assessment tool for neurological damage in Parkinson’s disease(PD) patients. This diagnosis process can be automatized to help medical staff through Decision Support System(DSS), and Convolutional Neural Network(CNN) are good candidates, because they are effective when applied to spatial data. This paper proposes a 3D CNN ordi...
Parkinson’s disease is characterised by a decrease in the density of presynaptic dopamine transporters in the striatum. Frequently, the corresponding diagnosis is performed using a qualitative analysis of the 3D-images obtained after the administration of $$^{123}$$ 123 I-ioflupane, considering a binary classification problem (absence or existence...
An efficient management of solar power systems requires direct and continuous predictions of global irradiation received on inclined planes. This paper proposes a new approach that simultaneously estimates and forecasts inclined solar irradiation. The method is based on a multi-task Hybrid Evolutionary Neural Network with two output neurons: one es...
Meteorological data are extensively used to perform environmental learning. Soft Computing (SC) and Machine Learning (ML) techniques represent a valuable support in many research areas, but require datasets containing information related to the topic under study. Such datasets are not always available in an appropriate format and its preparation an...
Time series ordinal classification is one of the less studied problems in time series data mining. This problem consists in classifying time series with labels that show a natural order between them. In this paper, an approach is proposed based on the Shapelet Transform (ST) specifically adapted to ordinal classification. ST consists of two differe...
The prediction of convective clouds formation is a very important problem in different areas such as agriculture, natural hazards prevention or transport-related facilities. In this paper, we evaluate the capacity of different types of evolutionary artificial neural networks to predict the formation of convective clouds, tackling the problem as a c...
This paper presents a novel approach to tackle simultaneously short- and long-term energy flux prediction (specifically, at 6h, 12h, 24h and 48h time horizons). The methodology proposed is based on the Multi-Task Learning paradigm in order to solve the four problems with a single model. We consider Multi-Task Evolutionary Artificial Neural Networks...
Wind power ramp events (WPREs) are strong increases or decreases of wind speed in a short period of time. Predicting WPREs in wind farms is of vital importance given that they can produce damages in the turbines, and, in any case, they suddenly affect the wind farm production. In contrast to previous binary definitions of the prediction problem (ra...
This paper evaluates the performance of different evolutionary neural network models in a problem of solar radiation prediction at Toledo, Spain. The prediction problem has been tackled exclusively from satellite-based measurements and variables, which avoids the use of data from ground stations or atmospheric soundings. Specifically, three types o...
Purpose of review:
Machine learning techniques play an important role in organ transplantation. Analysing the main tasks for which they are being applied, together with the advantages and disadvantages of their use, can be of crucial interest for clinical practitioners.
Recent findings:
In the last 10 years, there has been an explosion of intere...
This paper proposes a deep convolutional neural network model for ordinal regression by considering a family of probabilistic ordinal link functions in the output layer. The link functions are those used for cumulative link models, which are traditional statistical linear models based on projecting each pattern into a 1-dimensional space. A set of...
Convolutional Neural Networks stands at the front of many solutions which deal with computer vision related tasks. The use and the applications of these models are growing unceasingly, as well as the complexity required to deal with bigger and highly complex problems. However, hitting the most suitable model for solving a specific task is not trivi...
Time-series clustering is the process of grouping time series with respect to their similarity or characteristics. Previous approaches usually combine a specific distance measure for time series and a standard clustering method. However, these approaches do not take the similarity of the different subsequences of each time series into account, whic...
Several European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have giv...
In Machine Learning, the most common way to address a given problem is to optimize an error measure by training a single model to solve the desired task. However, sometimes it is possible to exploit latent information from other related tasks to improve the performance of the main one, resulting in a learning paradigm known as Multi-Task Learning (...
In this paper we tackle a problem of convective situations analysis at Adolfo-Suarez Madrid-Barajas International Airport (Spain), based on Ordinal Regression algorithms. The diagnosis of convective clouds is key in a large airport like Barajas, since these meteorological events are associated with strong winds and local precipitation, which may af...
Shapelets are phase independent subseries that can be used to discriminate between time series. Shapelets have proved to be very effective primitives for time series classification. The two most prominent shapelet based classification algorithms are the shapelet transform (ST) and learned shapelets (LS). One significant difference between these app...
The aim of this study is to develop and validate a machine learning (ML) model for predicting survival after liver transplantation based on pre-transplant donor and recipient characteristics. For this purpose, we consider a database from the United Network for Organ Sharing (UNOS), containing 29 variables and 39,095 donor-recipient pairs, describin...
This work analyses the complementarity and contrast between two metrics commonly used for evaluating the quality of a binary classifier: the correct classification rate or accuracy, C, and the F1 metric, which is very popular when dealing with imbalanced datasets. Based on this analysis, a set of constraints relating C and F1 are defined as a funct...
This work applies evolutionary product unit neural networks (EPUNNs) to estimate global inclined irradiation at real time and predict it 10 minutes in advance. Both tasks are accomplished simultaneously, by using one single model with two outputs. One advantage of our approach is that the predictions of inclined irradiation are obtained without the...
This paper proposes a deep convolutional neural network model for ordinal regression by considering a family of probabilistic ordinal link functions in the output layer. The link functions are those used for cumulative link models, which are traditional statistical linear models based on projecting each pattern into a 1-dimensional space. A set of...
This paper proposes a deep neural network model for ordinal regression problems based on the use of a probabilistic ordinal link function in the output layer. This link function reproduces the Proportional Odds Model (POM), a statistical linear model which projects each pattern into a 1-dimensional space. In our case, the projection is estimated by...
Weather and atmospheric patterns are often persistent. The simplest weather forecasting method is the so-called persistence model, which assumes that the future state of a system will be similar (or equal) to the present state. Machine learning (ML) models are widely used in different weather forecasting applications, but they need to be compared t...
Ordinal data are those where a natural order exists between the labels. The classification and preprocessing of this type of data is attracting more and more interest in the area of machine learning, due to its presence in many common problems. Traditionally, ordinal classification problems have been approached as nominal problems. However, that im...
The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time series, in order to facilitate their processing and ana...
Currently, knowledge discovery in databases is an essential first step when identifying valid, novel and useful patterns for decision making. There are many real-world scenarios, such as bankruptcy prediction, option pricing or medical diagnosis, where the classification models to be learned need to fulfill restrictions of monotonicity (i.e. the ta...
Ordinal regression, also named ordinal classification, studies classification problems where there exist a natural order between class labels. This structured order of the labels is crucial in all steps of the learning process in order to take full advantage of the data. ORCA (Ordinal Regression and Classification Algorithms) is a Matlab/Octave fra...
Wave height prediction is an important task for ocean and marine resource management. Traditionally, regression techniques are used for this prediction, but estimating continuous changes in the corresponding time series can be very difficult. With the purpose of simplifying the prediction, wave height can be discretised in consecutive intervals, re...
Renewable energy is the fastest growing source of energy in the last years. In Europe, wind energy is currently the energy source with the highest growing rate and the second largest production capacity, after gas energy. There are some problems that difficult the integration of wind energy into the electric network. These include wind power ramp e...
Currently, knowledge discovery in databases is an essential step to identify valid, novel and useful patterns for decision making. There are many real-world scenarios, such as bankruptcy prediction, option pricing or medical diagnosis, where the classification models to be learned need to fulfil restrictions of monotonicity (i.e. the target class l...
Time series clustering is the process of grouping time series with respect to their similarity or characteristics. Previous approaches usually combine a specific distance measure for time series and a standard clustering method. However, these approaches do not take the similarity of the different subsequences of each time series into account, whic...
Ordinal Data are those where a natural order exist between the labels. The classification and pre-processing of this type of data is attracting more and more interest in the area of machine learning, due to its presence in many common problems. Traditionally, ordinal classification problems have been approached as nominal problems. However, that im...
Weather and atmospheric patterns are often persistent. The simplest weather forecasting method is the so-called persistence model, which assumes that the future state of a system will be similar (or equal) to the present state. Machine learning (ML) models are widely used in different weather forecasting applications, but they need to be compared t...
The prediction of low-visibility events is very important in many human activities, and crucial in transportation facilities such as airports, where they can cause severe impact in flight scheduling and safety. The design of accurate predictors for low-visibility events can be approached by modelling future visibility conditions based on past value...
The amount of data available in time series is recently increasing in an exponential way, making difficult time series preprocessing and analysis. This paper adapts different methods for time series representation, which are based on time series segmentation. Specifically, we consider a particle swarm optimization algorithm (PSO) and its barebones...
Large time series are difficult to be mined and preprocessed, hence reducing their number of points with minimum information loss is an active field of study. This paper proposes new methods based on time series segmentation, including the adaptation of the particle swarm optimisation algorithm (PSO) to this problem, and more advanced PSO versions,...
Time series forecasting (TSF) consists on estimating models to predict future values based on previously observed values of time series, and it can be applied to solve many real-world problems. TSF has been traditionally tackled by considering autoregressive neural networks (ARNNs) or recurrent neural networks (RNNs), where hidden nodes are usually...
Time series segmentation is aimed at representing a time series by using a set of segments. Some researchers perform segmentation by approximating each segment with a simple model (e.g. a linear interpolation), while others focus their efforts on obtaining homogeneous groups of segments, so that common patterns or behaviours can be detected. The ma...